Multi-Conductor Transmission Line Model of Split-Winding Transformer for Frequency Response and Disk-to-Disk Fault Analysis

Document Type : Original Article

Authors

1 Department of Electrical Engineering, Zanjan Branch, Islamic Azad University, Zanjan, Iran

2 Department of Electrical Engineering, Abhar Branch, Islamic Azad University, Abhar, Iran

3 Electrical Engineering Department, Amirkabir University of Technology, Tehran, Iran

Abstract

For transformer designers, split-winding transformer modeling in different frequency ranges is of great importance. In this paper, for the first time, a multi-conductor transmission line model is proposed for high-frequency modeling of the split-winding transformer. In this model, all the turns in layers and disks have been considered and the model's parameters have been calculated using the finite element method. In order to validate the proposed model, the results are compared with the result of a model, which is based on finite element and coupled field-circuit. It is shown that the introduced model has good accuracy and it can be employed for split-winding transformer modeling in different frequency ranges. In addition, using the validated multi-conductor transmission line model, the frequency response of the split-winding transformer and disk-to-disk short circuit fault are analyzed.

Keywords


  1. Akbari, M., Yavari, M., Nemati, N., Babaee, D. J, Molavi, H., Asefi,  M., “An Investigation on Stability, Electrical and Thermal Characteristics of Transformer Insulting Oil Nanofluids”, International Journal of Engineering, Transactions A: Basics, Vol. 29, No. 10, (2016), 1332-1340. doi: 10.5829/idosi.ije.2016.29.10a.02
  2. Siahkolah, B., Faiz, J., “Effect of solid-State on Load Distribution Transformer Tap-Changer on Power Quality Enhansement”, International Journal of Engineering, Transactions B: Applications, Vol. 17, No. 2, (2004), 141-154.
  3. Bigdeli, M., Vakilian, M., Rahimpour, E., “Transformer winding faults classification based on transfer function analysis by support vector machine” IET Electric Power Applications, Vol. 6, No. 5, (2012), 268-276. doi: 10.1049/iet-epa.2011.0232
  4. Ganji, M., Bigdeli, M., Azizian, D., “Mitigation Transformer Inrush Current Using Modified Transient Current Limiter”, International Journal of Engineering, Transactions B: Applications, Vol. 32, No. 5, (2019), 701-709. doi: 10.5829/ije.2019.32.05b.12.
  5. Bigdeli, M., Rahimpor, E., and Khatibi, M., “Transient-state Modelling of distribution transformers”, International Review on Modelling and Simulations, Vol. 4, No. 1, (2011),  295-302.
  6. Eslamian, M., Vahidi, B., and Hosseinian, S. H., “Transient simulation of cast-resin dry-type transformers using ّFEM”, European Transactions on Electrical Power, Vol. 21, No. 1, (2011), 363-379. doi: 10.1002/etep.447.
  7. Eslamian, M. and Vahidi, B., “New Equivalent Circuit of Transformer Winding for the Calculation of Resonance Transients Considering Frequency-Dependent Losses”, IEEE Transactions on Power Delivery, Vol. 30, No. 4, (2015),  1743-1751. doi: 10.1109/TPWRD.2014.2361761.
  8. Hosseini, S. M., Rezaei Baravati, P., “New High Frequency Multi-conductor Transmission Line Detailed Model of Transformer Winding for PD Study”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 24, No. 1, (2017),  316-323. doi: 10.1109/TDEI.2016.005694.
  9. Eslamian, M., Vahidi,  B., and Hosseinian, S. H., “Analytical calculation of detailed model parameters of cast resin dry-type transformers“, Energy Conversion and Management, Vol. 52, No. 7, (2011), 2565-2574. doi:10.1016/j.enconman.2011.01.011
  10. Eslamian, M., Vahidi, B., and Hosseinian, S. H., “Combined analytical and FEM methods for parameters calculation of detailed model for dry-type transformer”, Simulation, Modelling Practice and Theory, Vol. 18, No. 3, (2010),  390-403. doi: 10.1016/j.simpat.2009.12.005.
  11. Eslamian, M., Vahidi, B. “New Methods for Computation of the Inductance Matrix of Transformer Windings for Very Fast Transients Studies”, IEEE Transactions on Power Delivery, Vol. 27, No. 4, (2012), 2326-2333. doi: 10.1109/TPWRD.2012.2204905.
  12. Eslamian, M. and Vahidi, B., “Computation of Self-impedance and Mutual Impedance of Transformer Winding Considering the Frequency-dependent Losses of the Iron Core”, Electric Power Components and Systems, (2016), 1236-1247. doi: 10.1080/15325008.2016.1157111
  13. Faiz, J., Naderian Jahromi, A., Mohseni, H., “A Fast Method for Calculation of Transformers Leakage Reactance Using Energy Technique", International Journal of Engineering, Transactions B: Applications, Vol. 16, No. 1, (2003), 41-48.
  14. Bigdeli, M. and Valii, M., Azizian, D., “Applying Intelligent Optimization Algorithms for Evaluation of Transformer Black Box Model,” 6th International Conference on Soft Computing Applications, Timisoara, Romania, (2014). doi: 10.1007/978-3-319-18416-6_102
  15. Aghmasheh, R., Rashtchi, V., and Rahimpour, E., “Gray Box Modelling of Power Transformer Windings for Transient Studies”, IEEE Transactions on Power Delivery, Vol. 32, (2017),  2350- 2359. doi: 10.1109/TPWRD.2017.2649484
  16. Gunawardana, M., Fattal, F., Kordi, B., "Very Fast Transient Analysis of Transformer Winding Using Axial Multiconductor Transmission Line Theory and Finite Element Method", IEEE Transactions on Power Delivery, Vol. 34, No. 5 , (2019),  1948- 1956. doi: 10.1109/TPWRD.2019.2932669
  17. Kumbhar, G. B., and Kulkarni, S. V., “A Directly Coupled Field-Circuit Model of a Transformer to Study Surge Phenomena and for Frequency Response Analysis”, 18th National Power Systems Conference (NPSC), India, 2014. doi: 10.1109/NPSC.2014.7103838
  18. Liu, S., Li, H., and Lin, F., “Diagnosis of Transformer Winding Faults based on Fem Simulation and On-site Experiments”, IEEE Transactions on Dielectrics and Electrical Insulation Vol. 23, No. 6, (2016), 3752-3760. doi: 10.1109/TDEI.2016.006008
  19. Wan, H., Yang, Q., Li, Y., Wang, J., Yuan, D., Hu, M., "Electromagnetic Characteristic Calculation of Several Parallel Coils for High Current Transformer Based on Field-Circuit Coupling Method", IEEE Transactions on Applied Superconductivity, Vol. 29, No. 2, (2019). doi: 10.1109/TASC.2019.2893706
  20. Kumbhar, G. B., Kulkarni, S. V., “Analysis of short-circuit performance of split-winding transformer using coupled field-circuit approach”, IEEE Transaction on Power Delivery, Vol. 22, No. 2, (2007),  936-943. doi: 10.1109/TPWRD.2007.893442.
  21. Kumbhar, G. B., Kulkarni, S. V., “Analysis of sympathetic inrush phenomena in transformers using coupled field-circuit approach”, IEEE Power Engineering Society General Meeting, (2007), 427-432. doi: 10.1109/PES.2007.386128
  22. Hosseini, S.M.H., Baravati, P. R., “Transformer Winding Modeling based on Multi-Conductor Transmission Line Model for Partial Discharge Study” ,Electrical Engineering and Technology, Vol. 9, No. 1, (2014), 154-161. doi: 10.5370/JEET.2014.9.1.154
  23. Jafari, A.M., Akbari, A., Mirzaei, A., Kharezi, M.,  Allahbakhshi. M, “Investigating Practical Experiments of Partial Discharge Localization in Transformers using Winding Modeling”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 15, No. 4, (2008), 1174-1182. doi: 10.1109/TDEI.2008.4591240
  24. Zhang, P., Wang, Y., Nie, X., Yan, W., Zhang, H., “Transient modeling and analysis of transformer windings under VFTO”, 7th World Congress on Intelligent Control and Automation, China, 2008. doi: 10.1109/WCICA.2008.4593306
  25. Naderi, M. S., Vakilian, M., Blackburn, T. R., Phung, B. T., Naderi, M. S., Nasiri, A., “A hybrid transformer model for determination of partial discharge location in transformer winding”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 14, No. 2, (2007), 436-443. doi: 10.1109/TDEI.2007.344625
  26. Popov, M., van der Sluis, L., Paap, G. C., De Herdt, H., “Computation of very fast transient overvoltages in transformer windings”, IEEE Transactions on Power Delivery, Vol. 18, No. 4, (2003),  1268-1274. doi: 10.1109/TPWRD.2003.817738
  27. Azizian, D., “Windings Temperature Prediction in Split-Winding Traction Transformer”, Turkish Journal of Electrical Engineering and Computer Sciences, Vol. 24, No. 4, (2016),  3011-3022. doi:10.3906/elk-1403-304
  28. Azizian, D., Vakilian, M., Faiz, J., and Bigdeli, M., “Calculating Leakage Inductances of Split-Windings in Dry-Type Traction Transformers”, ECTI Transaction EEC, Vol. 10, No. 1, (2012), 99-106.
  29. Azizian, D., Vakilian, M., and Faiz, J., “A New Multi-Winding Traction Transformer Equivalent Circuit for Short-Circuit Performance Analysis”, International Transaction on Electrical Energy Systems, Vol. 24, No. 2, (2014), 186-202. doi: 10.1002/etep.1686
  30. Azizian, D., “Nonlinear Behaviour Analysis of Split-Winding Dry-Type Transformer Using a New Star Model and a Coupled Field-Circuit Approach”, Archives of Electrical Engineering, Vol. 65, No. 4, 773-787, 2016. doi: 10.1515/aee-2016-0054
  31. Azizian, D., Gharehpetian, G. B., “Split-Winding Transformer Design Using New Hybrid Optimization Algorithm Based on PSO and I-BB-BC”, IET Science, Measurement and Technology, Vol. 12, No. 6, (2018), 712-718. doi: 10.1049/iet-smt.2017.0118
  32. Sobouti, M. A., Azizian, D., Begdeli, M., Gharehpetian, G. B., “Electromagnetic transients modelling of splitwinding traction transformers for frequency response analysis”, IET Science, Measurement and Technology, Vol. 13, No. 9, (2019). 1362-1371. doi: 10.1049/iet-smt.2019.0164
  33. Gharehpetian, G. B., Mohseni, H.,  Moller, K., “ Hybrid modelling of inhomogeneous transformer winding for very fast transient overvoltage studies”, IEEE Transactions on Power Delivery, Vol. 13, No. 1, (1998), 157-163. doi: 10.1109/61.660873
  34. Gunawardana, M., Fattal, F., Kordi, B., “Very Fast Transient Analysis of Transformer Winding Using Axial Multiconductor Transmission Line Theory and Finite Element Method”, IEEE Transactions on Power Delivery, (2019), Vol. 34, No. 5.1948-1956. doi: 10.1109/TPWRD.2019.2932669
  35. Fouineau, A., Raulet, M., Lefebvre, B., Burais, N., and Sixdenier, F., “Semi-Analytical Methods for Calculation of Leakage Inductance and Frequency-Dependent Resistance of Windings in Transformers”, IEEE Transaction on Magnetics, (2018), Vol. 54, No. 10, 1-10. doi: 10.1109/TMAG.2018.2858743
  36. Ahour, J., Seyedtabaie, S.,  Gharehpetian, G. B., “Modified transformer winding ladder network model to assess non-dominant frequencies”, IET Electric Power Applications, (2017), Vol. 11, No. 4. 578-585. doi: 10.1049/iet-epa.2016.0635
  37. Mombello, E.E., “Impedances for the calculation of electromagnetic transients within transformers”, IEEE Transactions on Power Delivery, (2002), Vol. 17, No. 2. 479-488. doi: 10.1109/61.997922
  38. IEEE Guide for the Application and Interpretation of Frequency Response Analysis for Oil-Immersed Transformers, IEEE Std C57.149, 2012.