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A B S T R A C T  

 

The dynamic behaviour of a circular plate in contact with fluid and resting on two-parameter elastic 

foundations is of interest in the field of geotechnics, structure, highway, railway, oil and gas and 
mechanical engineering. In this work, the dynamic behaviour of circular plate in contact with fluid and 

resting on Winkler and Pasternak foundations is investigated. The coupled differential equation of the 

system is analysed using differential transformation method. Good agreements are established when the 
results of the analytical solutions are compared to the results of the experimental investigation as reported 

in literature. The analytical solutions obtained are used to investigate the effects of elastic foundation 

parameters on natural frequency, combine foundation parameters on natural frequency, plate in contact 
with fluid and that of radial and circumferential stress on mode shapes. From the results, it is observed 

that, increases in elastic foundation parameter increases the natural frequency in all cases. Presence of 

fluid reduces the natural frequency of the plate. Also, it is established that mode shapes are not altered 
by the presence of fluid. However, mode shape displacement occurs due to presence of radial and 

circumferential stresses. Since the study provides a physical insight into the vibration mode of the 

structure, it is expected that the study will enhance better understanding on the dynamic behaviour of a 
circular plate in contact with fluid and resting on two-parameters elastic foundation. 

doi: 10.5829/ije.2019.32.12c.13 
 

NOMENCLATURE   

w  Deflection Greek Symbols  

h  Plate thickness 𝜐 Poisson’s ratio 

g  Gravity( m/s2) 𝜌 Density (kg/m3) 

  Aspect ratio 𝜇 Plane wave number 

  Slender ratio Ω Natural frequency 

 
1. INTRODUCTION1 
 
Recently, research interests into the study of dynamic 

behaviour of circular plate in contact with fluid have 

gained more attentions. This is because of the wide 

acceptable usage in various fields of engineering. 

Therefore, the studies of the natural frequency and modal 

behaviour of circular plate are justified. Motaghian et al. 

[1], used exact method in obtaining the solution for free 

vibration analysis of plate on elastic foundation. In later 

 

*Corresponding Author Email: safolu@gmail.com (S. A. Salawu) 

study, Rezaiefar and Galal [2] worked on free vibration 

of plate with nonlinear load using finite element method. 

Winkler’s idealization represents the soil medium as a 

system of identical but mutually independent, closely 

spaced, discrete, linearly elastic springs deformation of 

foundation due to confined applied load to loaded regions 

only. The pressure–deflection relation at any point is 

obtained with linear relation formula. Meanwhile, for 

Pasternak foundation, the existence of shear interaction 

among the spring elements is assumed which is 
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accomplished by connecting the ends of the springs to the 

plate that only undergoes transverse shear deformation. 

The load-deflection relationship is obtained by 

considering the vertical equilibrium of a shear layer. 

Hence, the pressure–deflection relationship is given by 

incorporation of shear layer factor to existing Winkler 

formula. The Pasternak foundation accounts for the 

deficiency part of the Winkler foundation. The adoption 

of two-parameters foundation has proven to be more 

reliable than only Winkler foundation due to the ability 

to take care of the shear interaction among spring 

element.  

However, Adibi and Adibi [3] worked on forced and 

free convection in closed domians with emphasis on 

various fluids. Meanwhile, Benferhat et al. [4] determine 

porosity effect on free vibration analysis and bending of 

functionally graded plate resting on two-parameter 

foundations. In another work, Özdemir [5] employed 

finite element method in the vibration response of 

Mindlin plate on Winkler foundation. In a further study, 

Umair et al. [6] performed numerical analysis on semi-

empirical relations. Likewise, Nikbakhat and Behnamfar 

[7] demonstrated experiment on structures under subway 

induced vibrations. Recently, researchers have proposed 

and applied several semi-analytical methods in analysing 

dynamic behaviour of rectangular plate resting on 

nonlinear foundations. Bayat et al. [8] applied Homotopy 

perturbation method (HPM) for nonlinear free vibration 

of tapered beams. Werfalli and Karoud [9] used Galerkin 

method for the analysis of rectangular plate. Also, 

variational iteration method (VIM), is adopted in 

analytical investigation of rectangular plate resting on 

two-parameter foundations by Younesian et al. [10]. 

Eztensive literatures had studied the characteristic of 

immersed and submerged plate in fluid Lamb [11] carried 

out an analytical approach into the investigation of fluid-

plate coupled system. They determined the natural 

frequency of clamped circular plate in contact with water 

using Rayleigh’s method, the results were validated later 

with experimental results of Gascón-Pérez and García-

Fogeda [12]. The reviewed of the past studies showed 

that the analysis of the dynamic behaviour of circular 

plates resting on Winkler and Pasternak foundations with 

the aid of differential transformation method has not been 

investigated. While the analytical method is considered 

to be more effective when compared to others like 

numerical and semi-analytical but the shortcomings of 

handling nonlinear problem have not been overcome. 

Differential transformation method (DTM) proposed by 

Zhou [13], is a reliable method of solution capable of 

solving linear, nonlinear, coupled and integro-differential 

equations. The method provides closed form solution 

with few iterations. The advantages of DTM over other 

semi-analytical method of solutions justify the 

application in this study. Therefore, the present study 

focuses on application of DTM to determine dynamic 

analysis of circular plates in contact with fluid and resting 

on Winkler and Pasternak foundations. The solutions are 

used for parametric studies. 
 
 

2. PROBLEM FORMULATION AND 
MATHEMATICAL ANALYSIS 
 

Circular plate resting on Winkler and Pasternak 

foundations is considered as shown in Figure 1. The 

diameter of the cylinder filled with water is 2𝑎, height is 

Н. The fluid is inviscid and compressible of density ρ. 

The bottom cavity is at 𝑧 = 𝐻, which is resting on 

Winkler and Pasternak foundations, the side wall is at 

𝑟 = 𝑎 also considered rigid. However, the fluid surface 

is covered with circular plate at 𝑧 = 0 and at the bottom. 

The motion of the fluid is presumed to be of small 

magnitude and irrotational. The governing differential 

equations of the coupled system can be expressed in 

dimensionless form as stated in literature [14]: 
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where f is the transverse deflection of the circular plate, 

kw is the Winkler foundation parameter, ks is the shear of 

Pasternak foundation, Ω is the non-dimensioned natural 

frequency, Pk is the hydrostatic dynamic pressure of fluid. 

  is the slender ratio and c is the speed ratio of sound in 

fluid and circular plate.  

4 24A m m= −  and 22 1B m= +  (3) 

where m is the integer number of nodal diameter. 

 
2. 1. Boundary Conditions             Three type of 

boundary conditions are considered: Clamped, free and 

simply supported which are presented in dimensionless 

form according to classical theory of vibration as follows 

[14]:  

Clamped edge, 

1
1

( ) 0,
r
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Winkler             Plate                       Pasternak 

Figure 1. Circular plate with fluid resting on two-parameter 

foundations 
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Simply supported edge, 
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The bending moment is represented as 𝑀𝑟 and the radial 

shear force per unit length is represented as 𝑉𝑟. The 

coupled governing Equations (1) and (2) are fourth order 

and second order, respectively. Invariably four 

conditions and two conditions are needed for solving the 

problem respectively. Two conditions may be obtained 

from the external condition of the plate while the rest is 

obtained from the condition at the centre of the plate. For 

the other equation second-order equation, one at the 

external as usual. The regularity conditions at the centre 

are given as follows: 

Symmetric case, 
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where 0,2,4 ,m =  

Axisymmetric case, 
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and 1,3,5m =  

 

 

3. METHOD OF SOLUTION 
 
3. 1. Principle of Differential Transformation 
Method          Differential transformation method 

proposed by Zhou [13] is a very simple, powerful, 

reliable and very versatile method of solution. DTM 

involves transformation techniques which are applied to 

the governing equation along with the boundary 

conditions to form algebraic recursive expression. The 

resulting solution of the algebraic equations form the 

solution of the system in series form. This transformation 

makes it very simple to manipulate and convergences 

very fast. The accuracy of the results compared to 

numerical method and experimental is very high. The 

basic definitions and operational properties are as 

follows: 

Considering a function 𝑓(𝑟) that is analytic in the 

domain R, then it will be differential continuously with 

rest to space r: 

( )
( )

, ,
k
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=


  for all r R  (10) 

For  𝑟 = 𝑟𝑖 , then 𝜑(𝑟, 𝑘) = 𝜑(𝑟𝑖, 𝑘), where k belongs to 

the set of non-negative integers, denoted as the k-domain. 

Therefore, Equation (10) is written as follows: 
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where 𝐹𝑘 is the spectrum of 𝑓(𝑟) is at 𝑟 = 𝑟𝑖 𝑓(𝑟) 

expressed in Taylor’s series, then 𝑓(𝑟) is presented as 

follows: 
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Equation (12) is the inverse of 𝐹(𝑘) using the symbol 

"𝐷"representing the differential transform process and 

combining Equation (11) and (12), we have: 
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(13) 

 

3. 2. Application of DTM to the Solution of 
Nonlinear Equation under Investigation             Using 

the operational properties, the differential transformation 

of the governing Equations (1) and (2) are transformed 

along with regularity condition at the centre.  

Table 1 shows operational properties of DTM. 

Applying the operational properties of DTM as stated in 

Table 1, the coupled governing differential Equations (1) 

and (2) are transformed as follows: 
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The boundary conditions stated in Equations (8) and (9) 

are transformed as follows: 

[0] , [1] 0, [2] / 2, [0] , [1]F a F F b P d P e= = = = =  (16) 

 

 

TABLE 1. Operational properties of differential transformation 

method 

S/N Function Differential Transform 

1 𝑤(𝑟) ± 𝑓(𝑟) 𝑊(𝑘) ± 𝐹(𝑘) 

2 𝛼𝑓(𝑟) 𝛼𝐹(𝑘) 

3 
𝑑𝑓(𝑟)

𝑑𝑟
 (𝑘 + 1)𝐹(𝑘 + 1) 

4 
𝑑2𝑓(𝑟)

𝑑𝑟2
 (𝑘 + 1)(𝑘 + 2)𝐹(𝑘 + 2) 
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3. 3. Application of DTM to the Conditions             
Same principle is adopted in transforming other 

conditions. For the fluid pressure different conditions 

exist but, this study is investigating the effect of the fluid 

when in contact with the plate. 

To obtain the natural frequency of the coupled 

equation, the condition Equation (16) is applied along 

with the coupled Equations (14) and (15) and non-trivial 

solutions obtained which is resolved to obtain the Eigen 

value and natural frequency. 

 

3. 4. The Stress-Deflection Expression as [14]            
To determine the radial and circumferential stress for the 

circular plate, the following dimensionless expression 

may be used: 
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where 𝐸 is the Young modulus of the circular plate, 𝜈 is 

the Poison’s ratio and 𝑧 is the mid-plane of the plate. 

Equations (17) and (18) are the radial and circumferential 

stress respectively. 

 

 

4. RESULTS AND DISCUSSION 
 
The analytical solution of coupled governing equation of 

motion of the circular plate under various boundary 

conditions with differential transformation method is 

hereby presented. The material properties for the thin 

uniform thickness, homogenous circular plate used are:  

𝐸 =  207𝐺𝑃𝑎,     𝜌 =   7850 𝑘𝑔 𝑚3⁄ ,        ℎ =  10𝑚𝑚, 

𝜌 = 1000 𝑘𝑔 𝑚3⁄ , Young modulus, material density, 

plate thickness and density of water respectively. 

The analytical solution obtained is compared with 

experimental results reported in literature [15] and 

presented in Tables 2 and 3. 

 

 
TABLE 2. Validation of fundamental natural frequency for 

symmetric condition 

Edge 

Condition 

Natural 

frequency 
Leissa [15] Present 

Simply 

Supported 

Ω1 4.977 4.935 

Ω2 29.72 29.72 

Clamped 

Support 

Ω1 10.2158 10.2158 

Ω2 39.7711 39.7711 

Free Edge 
Ω1 9.003 9.003 

Ω2 38.443 38.439 

TABLE 3. Validation of fundamental natural frequency for 

axisymmetric condition 

Edge 

Condition 

Natural 

frequency 
Leissa [15] Present 

Simply 

Supported 

Ω1 13.94 13.9 

Ω2 48.51 48.48 

Clamped 

Support 

Ω1 21.26 21.26 

Ω2 60.82 60.83 

Free Edge 
Ω1 20.475 20.555 

Ω2 59.812 59.831 

 

 

Good agreement is observed along the entire values 

under different boundary and regularity conditions. 

Generally, the natural frequency is expressed in 

dimensionless form Ω. Therefore, the results are valid for 

all thickness to radius ratio. Table 4 clearly shows that, 

the number of iterations needed to obtain convergence in 

relation to natural frequency differs. For instance, 

fundamental mode requires 10 iterations for DTM while 

the second requires 15 iterations and third iteration 

requires more as illustrated in Table 4. This behaviour is 

attributed to more complex series functions combination. 

Results shown in Tables 2 and 3 illustrate that, first two 

natural frequency gives a reasonable prediction of plate 

behaviour, more iterations are required for higher mode 

natural frequencies and also increases the fundamental 

frequency accuracy. 

 

4. 1. Effect of Foundation Parameters of Natural 
Frequency              The analysis is performed on the three 

boundary conditions as discussed earlier and using 

regularity conditions at the centre to start the iterations. 

In this study, consideration is given to; 

Elastic Winkler type 𝑘𝑤 = 0, 50, 100, 150 

Elastic Pasternak type 𝑔𝑠 = 10, 50, 100 

Two-parameter  elastic  foundations (𝑘𝑝 = 0, 𝑘𝑤 = 50,

 𝑔𝑠 = 10, 50, 100) 

The values are given based on experimental 

investigations and as used in practice. Although, it a 

global behaviour of plate to be affected by presence of 

elastic foundation, comparing Tables 5 to Tables 2 and 3 

indicates that for both plate and foundation stiffness to be  
 

 
TABLE 4. Convergence study 

N Mode 1 Mode 2 Mode 3 Mode 4 

15 4.9351271 29.158475   

25 4.9351358 29.719307 74.054478  

30 4.9351222 29.720113 74.194844 135.43725 

35 4.9351222 29.720113 74.194693 137.30178 
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comparable there is a need to properly study the 

foundation stiffness to be chosen. As it is expected in all 

cases, increasing the foundation stiffness results into 

higher value of natural frequencies. Moreover, it is also 

observed that, effect of the difference in natural 

frequencies is more significant for higher mode of the 

circular plate. 

 

4. 2. Mode Shape             According to literature [14], 

for transient stress investigation, the response is normally 

based on modal superposition principle and the modal 

stress which to certain level, will expose the 

characteristics and content of the whole response of the 

plate. Based on that, study of the non-dimension radial 

and circumferential stress is determined using Equations 

(17) and (18) with results illustrated in Figures 2 and 3. 

The mode shape for the natural frequencies is shown in 

Figures 2 and 3, respectively. It is essential to note that, 

the mode shape obey the classical theory of vibration. For 

radial and circumferential stresses, location of the 

vibrating node and antinodes are in-away different due to 

the vanishing mode of the boundary condition. Figures 4 

and 5 show mode shape due to the radial and 

circumferential stress, it is clearly shown that, the 

location of node and antinodes of the vibrating plate 

changes. Figures 4 and 5 when compared to Figures 2 and 

3 different in the mode shape is clearly shown. 

Invariably, the extrema mode shapes location differs 

based on the boundary conditions. Figure 2 illustrates 

symmetric case vibration while Figure 3 shows 

axisymmetric case vibration. There is a clear difference 

in the shape of the mode shapes due to different modal 

numbers adopted. The condition at the centre play a 

major role in the shape modal shapes.  
 

4. 3. Effect of Combine Winkler and Pasternak           
The combine variation effect of two-parameter 

foundations on natural frequency as shown in Table 5 

illustrate the variation of the two-parameter foundations 

on the natural frequencies. From the results shown, 

increasing the  combines of the  two-foundation  stiffness 

 

 
TABLE 5. Combine Winkler and Pasternak variation effect on 

natural frequency 

Edge 

Condition 

Natural 

frequency 
(𝒌𝒘 = 𝟓𝟎, 𝒎 = 𝟎) 

Mode 𝒈𝒔 = 𝟏𝟎 𝒈𝒔 = 𝟓𝟎 𝒈𝒔 = 𝟏𝟎𝟎 

Simply 

Supported 

Ω1 9.07 17.71 24.36 

Ω2 33.98 48.73 63.24 

Clamped 

Support 

Ω1 13.15 20.91 27.61 

Ω2 42.41 56.33 69.91 

Free 

Support 

Ω1 11.55 18.30 24.16 

Ω2 43.23 59.74 75.90 

also increases the natural frequency of the plate. The 

effect is more remarkable with the combined foundation 

parameter than when compared to only Winkler or 

Pasternak foundation. 

 

 
 

 
Figure 2. Modes shapes of symmetric free edge 

 

 

 

Figure 3. Modes shapes of axisymmetric free edge 

 

 

 

Figure 4. Radial stress for simply supported edge 

Symmetric case 
 

 

 

Figure 5. Circumferential stress for symmetric case first 

mode simply supported edge 
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4. 4. Effect of Fluid on the Plate             Based on the 

analysis, it is observed that, lower natural frequency is 

attained while plate is in fluid as compared to when on 

air. The medium act as damper to the natural frequency 

of vibrating circular plate. This is because, both vibrating 

plate and fluid possess kinetic energy, when vibrating 

plate is in contact with fluid, the kinetic energy of both 

systems increases significantly. This is referred to as 

added virtual mass incremental factor. It is also observed 

from the results obtained that, there is no significant 

change in mode shape of the plate when immersed in 

fluid. 

 

 

5. CONCLUSION 
 
The study of vibration of circular plate in contact with 

fluid and resting on two-parameter foundations is 

investigated using DTM. The radial and circumferential 

stress determined. The analytical solutions obtained are 

used for the parametric study. From the results, it is 

concluded that, increase elastic foundation increases the 

natural frequencies, mode shapes are distorted due to 

radial and circumferential stress. Mode shapes of circular 

plate are not significantly affected when in contact with 

fluid. Natural frequencies of plate lower when in contact 

with fluid. The present study exposes the significant of 

the controlling parameters in dynamic behaviour of the 

plate. 
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 چکیده

 

ای در تماس با سیال ساکن بر مبانی الاستیک مورد توجه ژئوتنیک، اتوبان، راه آهن نفت و گاز  رفتار دینامیکی صفحه دایره 

وینکلرو  ای در تماس با سیال ساکن بر مبانی و مهندسی مکانیک قرار گرفته است. در این مقاله رفتار دینامیکی صفحه دایره 

. چند معادله دیفرانسیل با استفاده از روش ترانسفرم مورد آنالیز قرار گرفته است.  پسترنک مورد تحقیق قرار گرفته است

انطباق مطلوبی بین حل تحلیلی و نتایج تحقیق تجربی بدست آمده در پیشینه تحقیق گزارش شده است. نتایج تحلیلی بدست 

کانس طبیعی، صفحه در تماس با سیال، استرس  آمده تاثیر پارامترهای الاستیکی بر فرکانس طبیعی، پارامترهای ترکیبی بر فر

دهد در کلیه موارد افزایش پارامتر ها را بررسی نموده است. نتایج بدست آمده نشان میشعاعی و محیطی بر استایل شکل 

گردد. همچنین حضور  شود. حضور سیال موجب کاهش فرکانس طبیعی صفحه میمبانی موجب افزایش فرکانس طبیعی می 

ها شده که تحت ها نخواهد شد. به هر حال حضور سیال موجب جابجایی استایل شکل تغییر استایل شکل سیال موجب 

رود موجب های شعاعی و محیطی خواهند بود. مقاله حاضر نگاهی فیزیکی بر ارتعاشات سازه دارد که انتظار می تاثیر استرس 

  دارد.  ال ساکن بر مبانی الاستیک ای در تماس با سیرفتار دینامیکی صفحه دایره فهم بهتری برای
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