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A B S T R A C T  
 

 

 
A previously introduced two phase model was used to assess its capability in predicting the behavior of 

reinforced soil walls under working stress conditions. The two phase model is a homogenization 

method based on the virtual work theorem. The reinforced soil medium is considered as the 
superposition of two continuous phases, the reinforcement and matrix phases that interact within the 

medium. Application of the two phase model simplifies changes in the arrangement and properties of 

the inclusions and decreases the computation time considerably. This approach can be used to reduce 
the time needed for optimization in practical applications. The introduced approach was first validated 

by comparison with the filed measurements. Therefore, a full-scale reinforced soil wall that has been 

constructed and tested under working stress condition at the Public Works Research Institute in Japan 
was simulated using the two phase model. A finite difference code was used to implement the two 

phase model and simulate the model. A nonlinear elasto-plastic law and a linearly elastic, perfectly 

plastic constitutive law were employed for the matrix and reinforcement phases, respectively. Then an 
extensive parametric study including 125 reinforced soil wall models was conducted to show the 

capability and strength of the introduced approach for simulation of the reinforced soil walls under 

working stress condition. The effect of inclusion length and stiffness, inclusion spacing, and wall 
height on maximum lateral displacement of the models was investigated. Eventually, a new 

dimensionless design parameter was introduced to achieve a simple criterion for evaluating lateral 

displacements. 

doi: 10.5829/ije.2019.32.12c.09 
 

 

 NOMENCLATURE 

m
D  stiffness tensor of the matrix phase t inclusion thickness (mm) m  mass density of the matrix phase 

r
D  

stiffness tensor of the reinforcement 

phase 
incV  

inclusion volume in one periodic 

layer 
r  mass density of the reinforcement phase 

incE  
Young's modulus of the inclusion 

layers (kN/m2) 
sV  soil volume in one periodic layer Σ  stress tensor of the two phase material 

rE  
Young's modulus of the 
reinforcement phase (kN/m2) 

WL wall length (m) ij  stress rate of the two phase material in 
global (1, 2, 3) space 

m
F  

body force mass density applied to 

the matrix phase   angle of the inclusion layer relative 

to the horizon (axis 3) 
m

σ  stress tensor of the matrix phase 

r
F  

body force mass density applied to 
the reinforcement phase   model constant, the PZC model  r

σ  stress tensor of the reinforcement phase 

0G  Shear modulus, the PZC model 
(kN/m2) 0  model constant, the PZC model 

m

ij  stress rate of the matrix phase in global 
(1, 2, 3) space 

H  wall height (m) 1  model constant, the PZC model 
r

ij  stress rate of the reinforcement phase in 

global (1, 2, 3) space 

0H  plastic modulus, the PZC model ò  
strain tensor of the two phase 

material 
r

y  in-plane stress rate of the reinforcement 

phase in (x, y, z) coordinate system 
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h inclusion spacing (in Figure 1) (m) m  strain tensor of the matrix phase 
r

z  in-plane stress rate of the reinforcement 
phase in (x, y, z) coordinate system 

I  
interaction force between the matrix 

and reinforcement phases 
r  

strain tensor of the reinforcement 

phase 
r

u  ultimate tensile strength of the 

reinforcement phase (kN/m2) 

0K  bulk modulus, the PZC model 

(kN/m2) 

m

ij  strain rate of the matrix phase in (1, 

2, 3) space 
inc

u  ultimate tensile strength of the inclusion 

in the layered model (kN/m2) 

L  inclusion length (m) 
r

y  
in-plane strain rate of the 
reinforcement phase in (x, y, z) 

coordinate system 

r

x  the stress perpendicular to the inclusion 

sheet plane 

fM  model constant, the PZC model 
r

z  
in-plane strain rate of the 
reinforcement phase in (x, y, z) 

coordinate system 

r

y  in-plane stress of the reinforcement 

phase in (x, y, z) coordinate system 

gM  slope of critical state line, the PZC 

model 
γ Soil unit weight (kN/m3) 

r

z  in-plane stress of the reinforcement 

phase in (x, y, z) coordinate system 

S 
Inclusion spacing (in parametric 

study) (m) 
r  

Poisson ratio of the reinforcement 

phase 
Χ reinforcement volume ratio 

 
1. INTRODUCTION 

 

Geosynthetic reinforced soil (GRS) walls show 

satisfactory performance against surcharge loads, 

asymmetric settlement and traffic and earthquake loads.  

GRS walls are widely used in construction projects as 

bridge abutments and retaining walls. The design of 

these structures involves stability and displacement 

analysis. Stability analysis can be conducted using 

either equilibrium or limit analysis. A GRS wall may be 

stable analytically; however, it may show large 

deformations and not satisfy serviceability. Predicting 

displacements of a GRS wall is always a challenge. 

Researchers have given special attention to 

experimental and numerical prediction of reinforced soil 

wall displacements.  

Two techniques for numerical simulation of GRS 

walls can be employed for prediction of displacement. 

The first is layered, or discrete simulation in which the 

soil and inclusion are considered separately. To reach an 

optimized design for the GRS wall and satisfy 

deformation criteria, repeated analyses are performed 

using the discrete approach and the arrangement of the 

inclusion layers are changed for each analysis. This 

procedure is very time-consuming and may not be cost 

effective or straightforward for practical applications. 

The second method is the homogenization approach, 

which replaces reinforced soil with an equivalent 

homogeneous but anisotropic medium. The two phase 

method, as an extension of classic homogenization 

methods, was introduced by De Buhan and Sudret [1]. 

This approach is based on the virtual work theorem. It is 

a macroscopic description of a composite medium 

where the continuous matrix phase (soil) and continuous 

reinforcement phase (inclusion) are superposed. These 

phases are coincident geometrically at any point in the 

two phase material. A constitutive law is assigned to 

each of the phases. Considering strain compatibility 

between the phases, the global behavior of the 

composite can be represented by the outcome of the 

behavior of the two phases. The time needed to change 

arrangement of the inclusions during the model 

construction for optimal design in the two phase model 

is considerably low. 

De Buhan and Sudret [1] used two phase model and 

a tensile-compressive load-carrying element for the 

reinforcement phase. They assigned linearly elastic, 

perfectly plastic constitutive laws for the reinforcement 

and matrix phases and assumed perfect bonding 

between the phases. They next added flexural behavior 

in addition to axial behavior for the reinforcements. 

Linearly elastic constitutive laws were assumed for the 

matrix and reinforcement phases [2]. Sudret and de 

Buhan [3] employed a two phase model to simulate 

rock-bolted tunnels and piled-raft foundations. They 

used the Mohr-Coulomb yield criterion and Drucker-

Prager yield criterion for the matrix phases in the rock-

bolted tunnel and the piled-raft foundation, respectively. 

Hassen and de Buhan [4, 5] simulated a piled-raft 

foundation subjected to vertical and lateral loading. The 

perfectly plastic condition accounted for the 

reinforcement and matrix phases. Shear, flexural and 

axial behaviors were considered for the inclusions. 

Seyedi and Farzaneh [6] introduced a two phase 

formulation for reinforced soil structures. They applied 

a relatively simple constitutive model for the matrix 

phase. The behavior of the reinforcement phase was 

regarded linear elastic-perfectly plastic. De Buhan and 

Hassen [7] evaluated the yield strength properties of soil 

medium reinforced with linear inclusions. Nguyen et al. 

[8] used a two phase linearly elastic continuum model 

associated with equations of elastodynamics to evaluate 

impedance of a vertically loaded piled raft foundation.  

Several researchers have predicted the static 

behavior of GRS walls numerically and analytically. 

Karpurapu and Bathurst [9] predicted static behavior of 

GRS walls using the finite element method. They 

subjected GRS walls to surcharge loads and took them 

to the point of collapse. Moghadasnezhad [10] 

developed a finite element program to simulate 

pavements reinforced with geogrid. The results showed 

that using geogrid decreased vertical deformation of 

pavements and for strong subgrades the optimum 

position of geogrid in base layer is at the level of 
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maximum lateral displacement. Hatami and Bathurst 

[11] developed and validated a numerical model for the 

analysis of GRS walls under working stress conditions. 

Qhaderi et al. [12] performed several simulations to 

investigate the effect of soil properties, slope geometry, 

and reinforcement properties on the behavior of 

reinforced soil slopes. They validated the numerical 

procedure using available experimental data. Hatami 

and Bathurst [13] simulated four full-scale reinforced-

soil segmental retaining walls numerically and 

evaluated the effect of backfill compaction and 

reinforcement type on the behavior at the end of 

construction and after surcharge loading. Vafaeian and 

Abbaszadeh [14] investigated the effect of 

reinforcement vertical spacing and tensile strength on 

the stability and failure of reinforced soil embankments 

subjected to surcharge loads. They found that Bishop’s 

formula is an appropriate approach in which the effect 

of wall side friction and reinforcement tensile strength is 

taken into account. Ling and Liu [15] compared 

simplistic and sophisticated finite element methods for 

simulation of a full-scale GRS wall under static 

conditions. Kibria et al. [16] presented a case study and 

simulated it numerically. The objective of the study was 

to evaluate the effects of reinforcements on excessive 

lateral displacements of a mechanically stabilized earth 

wall. Shafabakhsh and Motamedi [17] studied 

numerically the behavior of unreinforced and reinforced 

pavement under different load conditions. They 

concluded that the position of geogrids is dependent on 

the base layer thickness and the ratio of elasticity 

modulus of asphalt to the base layer.  

The two phase model proposed by Farzaneh and Iraji 

[18] and Iraji and Farzaneh [19] has been evaluated in 

the present paper to assess its capability in predicting 

the behavior of a full-scale reinforced soil wall under 

working stress conditions. A new design parameter has 

been introduced for evaluating lateral displacements of 

reinforced soil walls. The full-scale test was also 

simulated using the layered (discrete) approach and the 

results have been compared with the two phase model. 

In addition, given the ease of reinforced soil modeling 

using the two phase model, an extensive parametric 

study was performed to evaluate the effect of GRS wall 

properties on lateral wall displacement. A finite 

difference code, FLAC 2D, was used to simulate the 

models. The developed two phase model was 

implemented into FLAC using Fish programming. All 

the simulations were performed under drained 

conditions. 
 
 

2. TWO PHASE MODEL 
 

A brief description of the two phase model developed 

by Farzaneh and Iraji [18] is presented here. The 

nonlinear elasto-plastic constitutive model (Pastor-

Zienkiewicz-Chan model, PZC) introduced by Pastor et 

al. [20] has been used to simulate the matrix (soil) 

behavior. The most important advantage of this model is 

its incremental nonlinear stress-strain law. Details of the 

PZC model can be found in Appendix A.  

Sudret [21] has explained the governing equations 

for the equilibrium of multiphase material. He used the 

virtual work method, kinematics of phases and related 

principles. Equilibrium relations for each phase can be 

written as follows: 

0r r rdiv + − =σ F I                                                  (1) 

0m m mdiv + + =σ F I                                                  (2) 

where div is divergence, superscripts m and r denote the 

matrix and reinforcement, respectively. r
σ and 

m
σ denote the stress tensors and r r F and m m F  are the 

volume density of external body forces applied to the 

reinforcement and matrix phases, respectively.  is the 

interaction force between the matrix and reinforcement 

phases. The equilibrium relation for the two phase 

model can be calculated by summing the equilibrium 

relations for the matrix and reinforcement phases as 

follows: 

0div + =Σ F                                                  (3) 

where: 

r r m m  = +F F F                                                  (4) 

r m= +Σ σ σ                                                  (5) 

where F  is the volume density of body force 

subjected to the mass of the two phase material and Σ  is 

the global stress tensor of the two phase material. The 

total stress tensor, Σ , is sum of the partial stresses of the 

matrix, m
σ , and the reinforcement phase, r

σ , based on 

the statics of the two phase medium. 

The stress-strain relationship for the reinforcement 

and matrix phases are as follows: 

r r r=σ D                                             (6) 

m m m=σ D                                                 (7) 

where r
D  and m

D  are the fourth-order stiffness tensors 

of the reinforcement and matrix phases, respectively. r  

and m  are the strain tensors of the reinforcement and 

matrix phases, respectively. Each phase has its own 

constitutive law as presented in detail by Farzaneh and 

Iraji [18]. The perfect bonding hypothesis was 

considered between the matrix and reinforcement 

phases as follows: 

𝛆𝑚 = 𝛆𝑟 = 𝝐                                                   (8) 

where ϵ is the strain tensor for the composite. De Buhan 

and Sudret [2], Sudret and De Buhan [3], Hassen and 
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De Buhan [4], and De Buhan et al. [22] simulated rock-

bolted tunnels and piled-raft foundations using two 

phase approach and perfect bonding hypothesis. Ling et 

al. [23], Kitsabunnarat et al. [24], Zarnani et al. [25], 

and Yang et al. [26] assumed perfect bonding in discrete 

modeling of reinforced soil structures under static and 

seismic loading. All the mentioned researchers 

concluded that the assumption of perfect bonding 

between the soil and inclusions in reinforced soil 

structure analyses has a very minor effect on the results. 

 Although the two phase model has some advantages 

over discrete analysis method, however, the main 

drawback of this method appears when large 

displacement occurs in the reinforced soil wall. Large 

displacements may result in local slips between the soil 

and reinforcements. Large displacements may be caused 

by big surcharge loads and strong earthquake motions or 

occur in high rise reinforced soil walls. Because of the 

perfect bonding hypothesis assumed in the two phase 

model, it cannot consider the slippage between the soil 

and reinforcements. Therefore, in the case of large 

displacements, the deformations predicted by the two 

phase model may be smaller than the observed values. 

In spite of perfect bonding hypothesis, there is yet an 

interaction and equilibrium between two phases 

according to Equations (1), (2), and (3).  
By placing Equations (6) and (7) into Equation (5) 

and using Equation (8), Equation (5) can be rearranged 

as follows: 

( )r m r r m m r m= + = + = + =Σ σ σ D D ε D D Dò òε           (9) 

where D  is the global stiffness tensor of the two-phase 

material. Note that the developed two phase model is 

robust enough to incorporate the internal mode of 

failure in which the inclusion yields, leading to large 

deformations and collapse of reinforced soil structures.  

The inclusions were considered to be two-

dimensional tensile elements. Linearly elastic perfectly-

plastic behavior and the Tresca yield criterion were 

applied for the reinforcement phase. The reinforcement 

volume ratio, χ, was used to calculate macroscopic 

parameters ( rE , r and r

u ) of the reinforcement phase. 

The reinforcement volume ratio χ is defined as the ratio 

of the inclusion volume (Vinc) to the soil volume (Vs) in 

one periodic layer [18, 19]: 

inc

s

V t

V h
 = =                                    (10) 

where t is the inclusion thickness and h is the spacing 

between the inclusion layers. The macroscopic 

properties of the reinforcement phase at a constant 

Poisson’s ratio are calculated as follows: 

r incE E=                                          (11) 

r inc

u u =                                              (12) 

where rE is the corresponding macroscopic Young's 

modulus of the reinforcement phase in the two-phase 

model, incE  is the Young's modulus of the inclusion 

layers in the layered model, r

u  is the corresponding 

macroscopic ultimate tensile strength of the 

reinforcement phase in the two phase model, inc

u  is the 

ultimate tensile strength of the inclusion in the layered 

model. The Tresca yield criterion is expressed as 

follows: 

r r

z uF  = −                                          (13)
 

where r

z  is in-plane stress of the reinforcement phase 

in local Cartesian (x, y, z) system. r

y  is another in-

plane stress of the reinforcement. Because the inclusion 

is regarded as a sheet under plane stress condition, r

x , 

which is perpendicular to the inclusion sheet plane, is 

not considered. The mechanical parameters of the soil 

must not decrease because the inclusion properties 

already have been scaled to the soil volume (Equations 

(11) and (12)). 

Figure 1 is a flowchart for calculating the global 

stress rate tensor of a reinforced medium in the two-

phase scheme [18]. Two coordinate systems, global (1, 

2, 3) space and the local (x, y, z) coordinate system, are 

defined in the two phase model. The stress rate tensor of  

 

 
Figure 1. Flowchart for calculating global stress rate tensor of 

the two phase material (modified from Farzaneh and Iraji [18]) 
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the matrix phase is defined in global (1, 2, 3) space. The 

stress rate tensor of the inclusion is initially defined in 

the local (x, y, z) coordinate system. The inclusion layer 

plane is set in the y-z plane. The angle of the inclusion 

layer relative to the horizon (axis 3) is assumed to be α. 

The inclusion layers are spaced equally apart (h). The 

stress rate tensor of the inclusion is transformed to 

global (1, 2, 3) space. The global stress rate tensor of the 

reinforced medium is calculated by summing the stress 

rate tensors of the matrix and reinforcement phases 

according to Equation (5). 

 

 

3. TWO PHASE AND LAYERED MODELING OF A 
TESTED FULL-SCALE GRS WALL 

To validate the proposed two phase model, a full-scale 

GRS wall that has been constructed in the Public Works 

Research Institute (PWRI) in Japan was simulated. 

Detailed information about the PWRI wall can be found 

in Tajiri et al. [27]. Figure 2 shows the configuration of 

the wall. The wall was constructed on a concrete 

foundation. It was 6.0 m in height and 5.0 m in width. 

Six primary geosynthetic layers with lengths of 3.5 m 

and five secondary geosynthetic layers with lengths of 

1.0 m were used to reinforce the wall. The inclusion 

layers were connected to 12 concrete blocks constituting 

the wall facing. Each block was 50 cm in height and 35 

cm in width, with the exception of the top and bottom 

blocks (45 and 55 cm, respectively).  

 

3. 1. Backfill Soil             Silty sand was used as the 

backfill. The unit weight of the soil was 16.0 kN/m3. 

Three drained compression triaxial tests that had been 

conducted by Tajiri et al. [27] for the backfill soil were 

used to determine the soil model parameters. The 

confining pressures for the tests were 25, 50 and 100 

kPa.  

Table 1 shows the parameters of the soil constitutive 

model. The parameters were calibrated from the triaxial 

tests performed on the backfill soil. Two calibrated sets 

of the PZC model parameters for dense and loose sand 

samples by Pastor et al. [20] were reported here that can 

be compared with the values in Table 1. 0G  was taken 

1.66×104 kPa for both of samples in Pastor et al. [20]. 

0K  was taken 3.0×104 kPa for both of them. 
gM  was 

1.28 for dense sand and 1.33 for loose sand. 
fM   was 

0.72 and 0.5 for dense and loose sand samples, 

respectively. 0H  was 1.6×104 and 4.0×103 for dense and 

loose sand samples, respectively. 0  was 2.25 for both 

of samples. 1  was 0.2 for both of them.  

0G  can be derived from the initial slope of the 

stress-strain curve. 0K  can be derived from the isotropic 

compression test or by matching the initial slope of 

volumetric strain versus to axial strain curve. 
gM  is the 

slope of the critical state line in p q−  plane. It can also 

be determined from the curve for the stress ratio versus 

the shear strain or axial strain.  It is approximately equal 

to the maximum value of stress ratio. 
fM  is determined 

using /f g rM M D= as a good initial approximate. rD  is 

relative density.   can be calculated from the curve 

for dilatancy versus stress ratio using Equation (4) in 

Appendix A. It is usually considered to be 0.45. 0H  is 

calculated by fitting the monotonic stress-strain curve 

and volumetric strain versus axial strain curve for 

drained tests. 0  and 1  are determined by matching 

the stress-strain curve. The recommended ranges for 

0 and 1  are 1.0~5.0 and 0.1~0.2, respectively [20].  

Figure 3 shows behavior of the backfill soil in the 

triaxial tests and their predicted diagrams. The soil 

constitutive model predicted deviatoric stress versus 

axial strain well. The volumetric strain variation versus 

axial strain was not predicted as satisfactorily as the 

stress-strain behavior. This prediction did not match the 

experimental results well. 

 

 

 
Figure 2. Configuration of PWRI wall (dimensions in m) 

 

 

 

TABLE 1. Calibrated soil constitutive model parameters from triaxial tests 

Model 

Parameter 

Bulk modulus 

0K  (kPa) 

Shear modulus 

0G  (kPa) 

Model 

constant 
fM  

Slope of critical 

state line
gM  

Plastic 

modulus 0H  

Model 

constant 0  

Model 

constant 1  
Model 

constant   

Value 2.5×104 5×103 0.79 1.38 6×103 2.0 0.1 0.45 
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(a) 

 
(b) 

Figure 3. Comparison of triaxial tests and simulations: a) 

Deviatoric stress vs. axial strain; b) Volumetric strain vs. axial 

strain (triaxial tests from Tajiri et al. [27]) 

 

 

3. 2. Reinforcement         A high-density polyethylene 

geogrid was used to reinforce the PWRI wall. Its tensile 

strength, measured at an axial strain of 15%, was 54 

kN/m. A secant stiffness of 1436 kN/m at 0.4% strain 

was used for the numerical model, which was 

approximately the average measured value for the 

inclusion layers in the full-scale test. The thickness of 

the geogrid was not reported and was assumed to be 2.0 

mm. The reinforcement volume ratio for the geogrid 

was calculated as χ = 0.2/100 = 0.002 for the zone 

reinforced by the primary layers and χ = 0.2/50 = 0.004 

for the zone reinforced by the primary and secondary 

layers. The strength parameters of a geogrid layer were 

first divided by its thickness and then multiplied by the 

reinforcement volume ratio to calculate the 

reinforcement phase properties for the two phase model. 

The elastic modulus of the reinforcement phase was 

calculated as Er = 1436.0/0.002 × 0.002 = 1436.0 kN/m2 

for the zone reinforced by the primary layers and Er = 

1436.0/0.002 × 0.004 = 2872.0 kN/m2 for the zone 

reinforced by the primary and secondary layers. The 

tensile strength of the reinforcement phase was 
r

u
 = 

54.0/0.002 × 0.002 = 54.0 kN/m2 for the zone 

reinforced by the primary layers and 
r

u
 = 54.0/0.002 × 

0.004 = 108.0 kN/m2 for the zone reinforced by the 

primary and secondary layers. 

 

3. 3. Concrete Blocks and Interfaces       Linearly 

elastic behavior was used for the concrete blocks. The 

typical elastic parameters assumed for the concrete 

blocks were E = 2.0 × 106 kPa, ν = 0.17 and γ = 23 

kN/m3. Large-scale direct shear tests had been 

conducted for the PWRI wall to investigate the block–

block and soil–block interfaces. The resulting interface 

friction angles for the block–block and soil–block 

interfaces were 19.6° and 16.5°, respectively. 

 

3. 4. Numerical Model         Numerical modeling was 

performed using finite difference code in FLAC 2D 

under the two-dimensional plane strain condition. The 

proposed two phase model was implemented in FLAC 

as a user-defined model. The forward Euler method was 

used for integration of the constitutive model. Figure 4 

shows the finite difference mesh for the numerical 

model with 1920 zones for the backfill soil, 855 zones 

for the concrete floor and 48 zones for the facing 

blocks. A total of 2823 zones were used for the 

numerical model. The backfill soil in the model was 

stage constructed as for the full scale test.  

 

3. 5. Lateral Displacements         Figure 5 compares 

predicted lateral displacement of the PWRI wall in the 

two phase model with the measured displacements and 

the results of the layered model at different fill heights. 

Each concrete block was represented using 4 zones; 

therefore, the results are represented as a 5-point cluster. 

As shown, the two phase model predicted lateral 

displacement at fill heights of 4 m and more 

 

 

 
Figure 4. Finite difference mesh for PWRI wall (dimensions 

in meter) 
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Figure 5. Predicted lateral displacement of PWRI wall for two 

phase model vs. measured displacement and results of layered 

model (Measured results from Tajiri et al. [27]) 

 

 

satisfactorily. The discrepancy between the maximum 

displacement predicted by the two phase model and the 

measured displacements were 7.0, 10.0 and 1.7% for fill 

heights of 4.0, 5.0 and 6.0 m, respectively. Good 

agreement can be seen between the two phase model 

and layered model results. Maximum discrepancy 

appeared at maximum displacement at a fill height of 

6.0 m and was roughly 10.0%.  

 

 

4. PARAMETRIC STUDY 
 
4. 1. Model Details       The effect of inclusion length, 

inclusion stiffness, wall height, and inclusion spacing on 

lateral displacement were studied extensively. The 

effect of facing was not addressed; therefore, the facing 

block was not considered and the GRS walls were 

assumed to be wrap-faced. 125 reinforced soil walls 

were simulated using the two phase model for the 

parametric study. Table 2 shows the details of the 

models. Each Category includes four sub-categories. 

The yield stress of the inclusion material was 50.0 

kN/m. The thickness of inclusions was assumed to be 

1.0 mm. For instance the reinforcement volume ratio for 

 

 
TABLE 2. Properties of reinforced soil walls in parametric 

study 

Category 1 

→ 

H= 4 m 

(WL = 6.6 

m) 

H = 5 m 

(WL = 8.2 

m) 

H = 6 m 

(WL = 

10.0 m) 

H = 7 m 

(WL = 11.6 m) 

L (m) 

Unchanged 

parameters: 

E=6×105 

kN/m2 

0.8 1.0 1.2 1.4 

1.6 1.8 2.0 2.6 

2.2 2.6 3.0 3.8 

2.8 3.4 4.0 5.0 

S=0.4 m 

γ = 16.0 

kN/m3 

3.4 4.2 5.0 6.2 

4.0 5.0 6.0 7.4 

4.6 5.8 7.0 8.6 

5.2 6.6 8.0 9.8 

5.6 7.0 9.0 - 

Category 2 

→ 

H = 4 m 

L= 2.8 m 

(WL = 6.6 

m) 

H = 5 m 

L= 3.4 m 

(WL = 8.2 

m) 

H = 6 m 

L= 4.0 m 

(WL = 

10.0 m) 

H = 7 m 

L= 4.8 m 

(WL = 11.6 m) 

E (kN/m2) 

Unchanged 

parameters: 

S=0.4 m 

γ = 16.0 

kN/m3 

2×105 2×105 2×105 2×105 

3×105 3×105 3×105 3×105 

4×105 4×105 4×105 4×105 

5×105 5×105 5×105 5×105 

6×105 6×105 6×105 6×105 

7×105 7×105 7×105 7×105 

8×105 8×105 8×105 8×105 

9×105 9×105 9×105 9×105 

1×106 1×106 1×106 1×106 

1.1×106 1.1×106 1.1×106 1.1×106 

1.2×106 1.2×106 1.2×106 1.2×106 

Category 3 

→ 

L = 2.8 m 

(WL = 6.6 

m) 

L = 3.4 m 

(WL = 8.2 

m) 

L = 4.0 m 

(WL = 

10.0 m) 

L = 4.8 m 

(WL = 11.6 m) 

H (m) 

Unchanged 

parameters: 

E=6×105 

kN/m2 

S=0.4 m 

γ = 16.0 

kN/m3 

2.0 2.4 2.4 3.4 

3.2 3.6 3.0 4.6 

4.4 4.8 3.6 5.8 

5.6 6.0 4.8 7.0 

6.8 7.2 6.0 8.2 

8.0 8.4 7.2 9.4 

- - 8.4 10.6 

- - 9.6 11.8 

- - 10.8 - 

Category 4 

→ 

H = 4 m 

L= 2.8 m 

(WL = 6.6 

m) 

H = 5 m 

L= 3.4 m 

(WL = 8.2 

m) 

H = 6 m 

L= 4.0 m 

(WL = 

10.0 m) 

H = 7 m 

L= 4.8 m 

(WL = 11.6 m) 

S (m) 

Unchanged 

parameters: 

E=6×105 

kN/m2 

γ = 16.0 

kN/m3 

0.2 0.2 0.2 0.2 

0.4 0.4 0.4 0.4 

0.6 0.6 0.6 0.6 

0.8 0.8 0.8 0.8 

1.0 1.0 1.0 1.0 

1.2 1.2 1.2 1.2 

Note: H = Wall height; WL = Wall length; L = Inclusion length; E = 
Elastic modulus of inclusion; γ = Unit weight of soil; S = 

Reinforcement spacing 
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the models with the inclusion spacing of 0.4 m was 

calculated as χ = 0.1/40.0 = 0.0025. The tensile strength 

of the reinforcement phase for these models was r

u  = 

50.0/0.001 × 0.0025 = 125.0 kN/m2. The elastic 

modulus of the reinforcement phase varied for the 

models. The soil used for all models was the same as 

that used for the PWRI project. Therefore, the same 

PZC model parameters were used for the parametric 

study.   

 

4. 2. Numerical Model         Numerical modeling in the 

parametric study was similar to that for the PWRI 

model. The soil in the model was constructed in stage 

and the thickness of the soil layer lifts at each stage was 

assumed 20 cm. FHWA [28] recommends that the lift 

thickness for loose backfill should not be greater than 

30 cm. 

  

4. 3. Results and Discussion         In addition to the 

usual GRS wall parameters, a new dimensionless design 

parameter was introduced to evaluate its effect on lateral 

displacement. The dimensionless parameter is EL/SγH 

in which E is the elastic modulus of the inclusion, L is 

the inclusion length, S is the spacing between the 

inclusion layers, γ is the unit weight of the soil and H is 

the wall height.  
Figure 6 shows the normalized maximum lateral 

displacement of models in categories 1, 2, 3 and 4. The 

normalized maximum lateral displacement versus L/H, 

elastic modulus of the inclusion layer, wall height and 

inclusion spacing are shown. 

Figure 6a shows that the normalized maximum 

lateral displacement increased suddenly at L/H values 

smaller than 0.5. This threshold increased with an 

increase in the wall height of the model such that the 

value for the model at H = 7 m was 0.6. Therefore, the 

limit for L/H = 0.6 can be generalized for GRS walls of 

up to 7.0 m in wall height. This observation for L/H is 

consistent with the value recommended by the NCMA 

[29] of 0.6. The FHWA [28] and NCMA [29]  

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. Normalized maximum lateral displacement of GRS 

walls versus: a) L/H for walls with different heights in 

category 1; b) elastic modulus of inclusion for walls of 

different heights and inclusion lengths in category 2; c) height 

for walls with different inclusion lengths in category 3; d) 

inclusion spacing for walls of different heights and inclusion 

lengths in category 4 

 

 

recommend 0.7 and 0.6 as the minimum L/H to satisfy 

the internal and external stability and to control lateral 

displacement. Although L/H values of less than 0.6 are 

sufficient to control lateral displacement for models at H 
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= 4 and 5 m, the values recommended by the FHWA 

[28] and NCMA [29] satisfy the requirements for the H 

= 6 and 7 m as well. No clear critical values for the 

elastic modulus of the inclusion layer and its spacing 

can be seen in Figures 6b and 6d. Figure 6c shows that 

an increase in H increased the maximum lateral 

displacement significantly in the models with shorter 

inclusion lengths. In contrast, the model with the longest 

inclusion length (4.8 m) showed small lateral 

displacements up to the elevation of 10.8 m. 

If EL/SγH for the horizontal axis in Figure 6 is 

replaced, it becomes Figure 7, in which the diagrams are 

aggregated and produce a more convenient 

interpretation. Note that not all data sets were displayed 

in this figure to prevent the figure from becoming so 

messy. Half of the data sets were removed in such a way 

that the overall trend of the graphs was not disturbed. 

The normalized maximum lateral displacement of 

half of the models versus EL/SγH is shown in Figure 7. 

The NCMA [30] and PWRC [31] recommend the 

allowable verticality (Δx/H) of 3.5% for segmental 

reinforced soil walls and 3% for all types of reinforced 

soil walls, respectively. For instance, a value of 1% 

verticality is an equivalent rotation of 10 mm/m of the 

wall height. If we assume an allowable verticality of 2% 

here, it will be equivalent to normalized maximum 

lateral displacement of 1%. It can be concluded that 

normalized maximum lateral displacement can be held 

at under 1% by limiting the value of EL/SγH to 5×104 or 

more. This can be seen in Figure 7. This figure gives an 

appropriate evaluation of maximum lateral displacement 

in terms of EL/SγH. If the value of EL/SγH is held at 

greater than 5 × 104, the normalized maximum lateral 

displacement will not be greater than 1%. 
 

 

 
Figure 7. Normalized maximum lateral displacement of wall 

models versus EL/SGH, (G=Gamma or γ) 

 

 

5. CONCLUSION 
 

A previously introduced two phase model was used to 

assess its capability in simulating geosynthetic 

reinforced soil walls in different arrangements and 

under working load conditions.   

A tested full scale reinforced soil wall under 

working stress conditions was used to validate the 

numerical approach. An extensive parametric study for 

wrapped-face reinforced soil walls was performed. 

The main advantages of the two phase model are 

that discrete modeling of the soil and inclusions and 

defining a contact model between them is not needed. 

It is not necessary to change the inclusion spacing 

and it can be addressed only by changing the 

reinforcement phase parameters to achieve optimal 

design. As tested the time required for two phase model 

simulation is about 60 to 65% of that of the 

corresponding layered simulation. 

The effect of inclusion length to wall height ratio 

(L/H), inclusion elastic modulus (E), wall height (H), 

and inclusion spacing (S) were studied on the 

normalized lateral displacement. The critical L/H 

calculated by the two phase model was about 0.6, which 

is consistent with the value recommended by the 

NCMA [29]. The study shows that this limitation can be 

decreased for walls with shorter heights. The effect of a 

change in H on lateral displacement is considerable. A 

linear increase in lateral displacement was observed 

when inclusion spacing increased. The study showed 

that the lateral displacement for models with short 

inclusion lengths and greater wall heights increased 

remarkably. It was shown that lateral displacement can 

be controlled using a longer length (e.g. L = 4.8 m) for 

inclusions at greater wall heights.   

Dimensionless design parameter EL/SγH was 

introduced to achieve a more simple and general 

criterion for evaluating lateral displacement. Lateral 

displacement was surveyed for different EL/SγH in 

which E, L, S and H were changed to capture all 

possible values for EL/SγH. A threshold value for 

EL/SγH of 5 × 104 was introduced for model, after 

which lateral displacement increased considerably. The 

normalized maximum lateral displacement for EL/SγH 

values greater than 5 × 104 can be held under 1%.  

 

 
6. APPENDIX A: PZC MODEL  
 

The relation between the increments of stress and strain 

for a material is expressed as follows: 

:ep=σ D ε   (1) 

where σ  is the stress rate; ε  is the strain rate; and 
ep

D is 

the elasto-plastic tensor. The elasto-plastic tensor for 

generalized plasticity is defined as follows: 

: : :

: :

e T e

gLep ep

T e

L gLH
= −

+

D n n D
D D

n D n
              (2) 
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where 
e

D  is the elastic stiffness tensor, n  is the loading 

direction vector; 
gLn  is the plastic flow direction vector 

under loading; and LH  is the plastic modulus for 

loading. Shear and bulk moduli are expressed as 

follows: 

0.5

0

a

p
G G

p

 
=   

 

, 
0.5

0

a

p
K K

p

 
=   

 

             (3a, 3b) 

where 0G  and 0K  are the shear and bulk modulus 

values, respectively; p=I1/3; I1 is the first stress 

invariant; and pa (atmospheric pressure)= 101.325 kPa. 

The stress-dilatancy relationship is defined as follows: 

( )( )1
p

v
g gp

s

d
d M

d


 


= = + −  (4) 

where p

vd  is the incremental plastic volumetric strain; 
p

sd  is the incremental plastic deviatoric strain; Mg is 

the slope of the critical state line on the p-q plane; η 

(=q/p) is the stress ratio; and α  is a model parameter. 

The gradient vectors for yield and potential surfaces are 

called the loading direction vector (n), and plastic flow 

direction vector (ng), respectively. These vectors are not 

the same in non-associated soils and defined as follows: 

( ), , ,1, cos3 / 2

T
T

f f

f f f
d qM

p q




   
= = − 

   
n  (5) 

( ), , ,1, cos3 / 2

T
T

gL g g

g g g
d qM

p q




   
= = − 

   
n  (6) 

f and g denote the yield and plastic potential surfaces, 

respectively. 
fM  and ( )( )1f fd M = + − are model 

parameters. The plastic modulus during loading is 

defined: 

 0L f v sH H pH H H= +  (7) 

4

1f

f

H




 
= − 

 
 

, 
1

1f fM


 
= + 

 
 (8a, 8b) 

1v

g

H
M


= − , ( )0 1 0expsH    = −  (8c) 

where LH  is the plastic modulus under loading; 0H  is 

the plastic modulus constant;
fH , vH and sH  are plastic 

coefficients; 
f  is the stress ratio; 0  and 1  are 

material model constants; and   is the accumulated 

plastic deviatoric strain defined as: 
p

sd =  .  
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 چکیده 

 
 

برداری ارزیابی شده  سازی دیوارهای خاک مسلح تحت بارهای بهرهتحقیق توانایی یک مدل دوفازی برای شبیهین در ا

سازی بر  است. این مدل دوفازی پیش از این توسط نگارنده توسعه داده شده است. مدل دوفازی یکی از روشهای همگن

کننده  م نهی دو فاز پیوسته ماتریس )خاک( و مسلحر همبنای اصل کار مجازی است. در این مدل، توده خاک مسلح از ب

ها و کننده)جوشن( تشکیل شده که در اندرکنش با همدیگر قرار دارند. با استفاده از مدل دوفازی، تغییر آرایش مسلح

ان برای  تویابد. از این مدل همچنین میپارامترهای آنها بسیار آسانتر شده و زمان تحلیل به مقدار قابل توجهی کاهش می

سنجی مدل مذکور های خاک مسلح در موارد عملی استفاده کرد. برای صحتکاهش زمان لازم برای طراحی بهینه سازه

بینی مدل با یک پروژه عملی مقایسه شده است. از یک پروژه دیوار خاک مسلح ساخته شده در مقیاس ابتدا نتایج پیش

افزار تفاضل  اده شده است. مدل دوفازی توسعه داده شده در یک نرمستفبزرگ در مؤسسه پژوهشی کارهای عمومی ژاپن ا

سازی مدل دیوار استفاده شده است. یک مدل رفتاری الاستوپلاستیک غیرخطی برای  محدود اعمال شده و از آن برای شبیه

س برای ارزیابی سپ کننده فرض شده است.پلاستیک کامل برای فاز مسلح –فاز ماتریس و یک مدل رفتاری الاستیک خطی 

  125سازی داده شده در ابعاد و شرایط مختلف، یک مطالعه پارامتریک گسترده شامل شبیهتر مدل توسعهبیشتر و مطمئن

ها و کنندهبرداری انجام شده است. اثر طول، سختی و فاصله مسلحمدل عددی دیوار خاک مسلح تحت شرایط بارهای بهره

بعد جدید، ساده و در پایان یک پارامتر بی ای جانبی بیشینه دیوارها بررسی شده است. کلهارتفاع دیوار بر روی تغییرش

 های جانبی دیوارهای خاک مسلح معرفی شده است.کاربردی برای ارزیابی تغییرشکل

doi: 10.5829/ije.2019.32.12c.09 
 

 


