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A B S T R A C T  
 

In this paper, we develop an economic production quantity (EPQ) model under machine breakdown and 

two types of repair (corrective and preventive). also, study the simultaneous effect of holding safety 
stock and purchasing policy. In order to avoid shortages occurring as a result of the random repair time, 

in addition to keep safety stock, we suppose that the manufacturer could purchase some quantities from 

an external supplier. This paper addresses the following question: how the manufacturer determine the 
optimal values of safety stock, production and purchasing lot sizes, simultaneously, to minimize the 

expected total cost? The introduced model is then compared with the situations in which the 

manufacturer only keeps safety stock or just uses an external supplier, respectively. The results through 
the analysis show that using the simultaneous policy when the system is prone to shortages due to long 

repair times, have more improvement in the performance of the system rather than using the safety stock 

or purchasing policies, separately.  

doi: 10.5829/ije.2019.32.11b.16 
 

1. INTRODUCTION1 
 
Considering the importance that manufacturers place on 

responding to customers’ needs in today's world of 

trade, and organizations’ efforts to keep up their credit 

and service level in the supply chain, process 

deterioration during the production run is one of the 

important challenges facing economic production 

quantity (EPQ) systems. Process deterioration is 

manifested as a decrease in production rate, the 

production of defective items or machine breakdown. In 

this situation, the production manager is forced to 

deviate from production planning. The remarkable 

weakness of the classical EPQ models is the ignorance 

of the production facilities stoppage during the 

production run time. This issue makes the inconsistency 

between models and practical situations. Over the past 

three decades, researchers considered the unavailability 

of production facilities in the classical models and 

addressed different strategies such as preventive 

maintenance, holding safety stock and 

inspection/rework operation individually or in 
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combination to reduce any disruption’s side effects. 

Although holding safety stock as an appropriate solution 

in machine breakdown case is addressed in the part of 

researches [1, 2]. Sometimes the expensive costs of this 

strategy are not beneficial for the system due to high 

product holding costs or storage limitations. In such 

situations, emergency replenishment may be 

advantageous to meet the demand when the machine is 

being repaired. This policy has been used in the 

inventory management literature to address a perfect 

EPQ system with stochastic demand [3, 4] and an 

imperfect EPQ system with constant demand [5, 6]. The 

issue is not necessarily about the final product. It could 

be related to a standard piece of a final product 

manufactured by the main supplier, in which he/she is 

responsible for supplying the piece according to a long-

term contract. In this case, the supplier can purchase 

from smaller suppliers with lower reliability to prevent 

shortages in urgent situations. Although purchasing 

items from an external supplier reduces margins, but it 

could protect the reputation of the manufacturer, and 

guarantee future demand [6].  
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The contribution of this study is the simultaneous 

implementation of the holding safety stock and 

purchasing policy on a failure prone production-

inventory system. What distinguishes our model from 

existing models in the literature is that in the 

simultaneous policy, the manufacturer has more 

flexibility to cope with  the variation of the production, 

holding and shortage cost and can reduce the total cost 

of the system through the trade-offs between the amount 

of buffer stock, order quantities and production lot size. 

We also incorporate preventive maintenance, as an 

option to confront machine failure. Considering all of 

these issues bring the model closer to real-world 

situations; however, it will make the model more 

complicated. The remainder of this paper is structured 

as follows. Section 2 presents the literature survey; 

section 3 defines the notation and the basic assumptions 

of the model. In section 4 the details of the model are 

described along with the mathematical model under 

general failure and general repair time distributions. For 

verification of the model, we presented the purchasing 

and safety stock policy, that is presented in previous 

articles, separately and make them comparable to our 

proposed model. Results of this comparison and 

sensitivity analysis of the model through a numerical 

example are illustrated in section 6. The final section 

concludes the paper and provides areas for future 

research. 

 

 

2. LITERATURE REVIEW 
 

Unexpected machine breakdown is a very common 

incident in a production environment and regarded as a 

critical reliability factor. This issue is one area of 

research in imperfect production-inventory systems. 

Groenevelt et al. [7] as one of the pioneer researchers, 

introduced two order policies on an EPQ system under 

stochastic machine breakdown. Under the first policy 

(no resumption-NR policy), when a breakdown occurs, 

the new production cycle started after repair operation, 

once the available inventory is totally depleted; while 

under the second policy (abort-resume A/R policy), the 

production process will be instantly started, after the 

renovation of the production facility. Boone et al. [8] 

investigated the simultaneous effect of process 

deterioration and machine breakdown under the NR 

policy. Abboud [9] developed an imperfect EPQ model 

by assuming that a shortage occurred due to machine 

failure, is partially backlogged. Giri and Yun [10] 

proposed a model where the machine was subject to 

random failure and limited to at most two failures in a 

production cycle. In their model, if the shortage 

occurred because of longer repair time, there was a 

partial backlog after machine repair. Accordingly, if a 

failure occurs again during the backlogging, then the 

shortages accumulated during the second repair time 

will be lost. Chiu et al. [11] developed an EPQ model 

with scrap, rework and machine breakdown under the 

NR policy. Chiu et al. [12] studied rework capability for 

defective items for an EPQ model under A/R policy. 

Preventive maintenance and holding safety stock are 

two strategies that researchers analyze the performance 

of an imperfect EPQ system by using either one of two 

strategies or simultaneously. Cheung and Hausman [13] 

studied the joint effect of preventive maintenance and 

safety stock in an unreliable manufacturing system. 

They assumed that production and demand rate are 

equal in a normal production phase. Dohi et al. [14] 

developed the model theoretically by adding different 

restrictive assumptions. Giri et al. [1] presented an 

unreliable production-inventory system, which 

considered exponential failure time while repair time 

occurs under an NR inventory control policy. In their 

model, the production cost and failure rate depend on 

the production rate, and they formulated the problem 

with and without a policy of holding safety stock. 

Chakraborty et al. [15] extended Boone et al. [8] model 

by concurrently considering the impacts of process 

deterioration, machine failure and two kinds of repairs 

on the manufacturer optimal decisions. Assuming that 

non-conforming items are not detectable during the 

production run time, they fixed the warranty cost for the 

sold defective items. The joint effects of the safety stock 

and age-based preventive maintenance were studied by 

Chelbi and Rezg [16]. El-Ferik [17] examined similar 

research by assuming that the maintenance activities are 

incomplete and unable to restore the system to its 

primary state. Sana and Chaudhuri [2] considered the 

joint determination of preventive maintenance and 

safety stock on an EPQ system under two A/R and NR 

policies for optimizing production rate and lot size. 

Chakraborty and Giri [18] expanded a similar model by 

assuming a varying production rate. They also discussed 

on the optimality of the model and suggested a 

computational algorithm to solve the problem. Other 

related researches can be referred to more literature [19–

21]. 

In recent studies, Al-Salamah [22] developed EPQ 

models for the case when both the production and 

inspection processes are imperfect. Shah et al. [23] 

considered an imperfect production system which sales 

price is depended to stock demand and investigated 

optimal production rate, cycle time and retail price to 

maximize the system’s total profit. Ozturk [24] 

investigate optimal production run time on an EPQ 

system under A/R machine breakdown policy with 

inspection and rework capability. Taleizadeh et al. [25] 

Developed a single-vendor/single-buyer model under 

the NR policy with random machine breakdown, 
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multiple shipments and keeping safety stock capability. 

They assumed both batch lot size and distance between 

two shipments are identical and the buyer pays 

transportation cost. Sarkar et al. [26] Developed an 

imperfect production system to obtain the optimal 

production run and inspection policy. They considered 

two types’ inspection errors to make the model more 

realistic. Due to inspection error, they assumed that the 

non-inspected defective items are passes to customers 

with free minimal repair warranty. Al-Salamah [27] 

presented an imperfect EPQ system under A/R machine 

breakdown policy and rework capability. The author 

assumed that the rework rate is performed after the main 

manufacturing process and be different from the 

production rate. He implemented an artificial bee colony 

algorithm to find the optimal production lot size.  

The implementation of the purchasing policy, in an 

imperfect production-inventory system was first 

introduced by Pirayesh and Yavari [5]. By assuming 

exponential time to failure and repair time, they 

obtained the optimal production and purchasing lot 

sizes. Peymankar et al. [6] developed the model in 

which they assumed that the external supplier has a 

known reliability. They also investigated the effects of 

the revenue sharing and price discount contracts on the 

optimal design of the production system. In this paper, 

we developed the worked done by Peymankar et al. [6] 

in which the manufacturer, in addition to outside 

purchasing, can benefit from the safety stock policy, 

simultaneously. We also considered preventive 

maintenance as an approach that strives to avoid 

machine failure. Through these assumptions, we have 

formulated a cost function, and minimize it by 

considering production, purchasing, and safety stock lot 

sizes as decision variables. 

 

 
3. PROBLEM NOTATION AND ASSUMPTION 
 
3. 1. Notations             The notations for the proposed 

model are presented as follows: 

𝑡𝑤: random variable denoting time to failure 

𝐹(𝑡𝑤), 𝑓(𝑡𝑤): Cumulative distribution function and 

probability density function of 𝑡𝑤 

D: demand rate (units/time) 

P>D: production rate (units/time) 

𝑡𝑟: Random variable denoting corrective maintenance 

time 

𝐺(𝑡𝑟), 𝑔(𝑡𝑟): Cumulative distribution function and 

probability density function of 𝑡𝑟 

𝑡𝑚: Random variable denoting preventive maintenance 

time 

𝐻(𝑡𝑚), ℎ(𝑡𝑚): Cumulative distribution function and 

probability density function of 𝑡𝑚 

𝐴: Fixed setup cost for each production run time 

𝐴′:  Fixed ordering cost for the purchased item from an 

external supplier 

θ: Reliability of external supplier 

𝑐ℎ: Inventory holding cost per produced/purchased item 

(units/time) 

𝑐𝑝:  Production cost per unit item r 

𝑐′:  Unit purchase price from external supplier 

𝑐𝑟:  Corrective repair cost (units/time) 

𝑐𝑚 < 𝑐𝑟:  Preventive repair cost (units/time) 

𝑐𝑠:  Shortage cost (units/time) 

T: Expected total cycle time 

Q: Production lot size per cycle (decision variable) 

𝑆𝑓:  Safety stock lot size (decision variable) 

Q’: Order quantity lot size to external supplier per cycle 

(decision variable) 

 

3. 2. Assumptions              The assumptions for the 

proposed model are as follows: 

1.  The planning horizon is infinite. 

2.  The problem concerns a single-machine single-

product environment. 

3.  Setup time is negligible and equals to zero. 

4.  The demand rate and production rate are known 

constants and the production rate is greater than the 

demand rate. 

5.  The machine breakdown may occur at any random 

time during the production run. 

6.  If a machine failure occurs during the production 

run, the corrective repair is started immediately; 

thereafter, the machine is restored to its primary state. 

7.  If a machine failure does not occur during the 

production run, the preventive maintenance action 

renews the production system at the end of each 

production run.  

8.  The demand during repair operations is met first 

from the accumulated inventory. Safety stock in the 

system is used to avoid possible shortages during the 

machine repair.  

9. If the safety stock is not able to meet the demand 

during repair operation, the manufacturer can obtain the 

required items from the market.  

10. To avoid the complexity of the model, it is assumed 

that supplier lead time is negligible and equals to zero 

11. The Shortages that may occur due to longer repair 

times will be lost.  

 
 
4. MODEL DESCRIPTION 
 
We consider a production-inventory system, which may 

stop, at any random time during the production run. We 

suppose that the manufacturer holds a safety stock 𝑆𝑓 at 

the beginning of each production cycle to protect against 

possible shortages during the period of machine repair. 

If a machine failure occurs, the corrective repair is 
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started immediately; otherwise, the preventive 

maintenance starts after the production runs at time 𝑡𝑃 =
𝑄/𝑃. During the corrective and preventive maintenance, 

the accumulated on-hand inventory is reduced at a 

constant D to response the demand during the machine 

idle time (in the case of no machine breakdown 𝑡𝐼𝑃 =
𝑄/𝐷 − 𝑄/𝑃  and in the case of machine breakdown 

𝑡𝐼𝐶 = 𝑃𝑡𝑤/𝐷 − 𝑡𝑤 ). If the maintenance activity is 

completed before the termination of the accumulated 

on-hand inventory, then the new production cycle is not 

started until the inventory level decreases to the safety 

stock level. If the inventory level drops below the safety 

stock level then the production process is started 

immediately after repair operation to increase the 

inventory level to the safety stock level. Lost sales are 

incurred when the stock level drops to zero before the 

repair is completed. To avoid shortages in this situation, 

we assume that the manufacturer has the option to fulfill 

the demand using an external supplier with a determined 

service level. Configuration of the model is presented in 

Figure 1 and 2. Based on this assumption and given that 

different situation that the manufacturer may face during 

one inventory cycle, we present the formulation of the 

model in section 5. 
 
 

5. FORMULATION OF THE MODEL 
 

As shown in Figure 1 and 2, based on whether 

theproduction facility is corrupted or not during the 

production run, the manufacturer may face two cases 

and in each case based on repair time, five different. 

situations maybe take place during one inventory cycle. 

In sections 5.1 and 5.2, we present a mathematical 

model for each condition. 

 
5. 1. The Model with Machine Breakdown          
Suppose that the machine is corrupted at random time 

𝑡𝑤 before producing the planned lot size. If the 

corrective repair operation completed before the 

inventory level reaches to 𝑆𝑓, the new cycle begins after 

the finishing of the on-hand inventory (Figure 1(a)). The 

cycle time and the total cost for the system for this 

situation are: 

𝑇1
𝑟 =

𝑃.𝑡𝑤

𝐷
  (1) 

𝑇𝐶1
𝑟 = 𝐴 + 𝑐ℎ (

(𝑃−𝐷)𝑃.𝑡𝑤
2

2𝐷
+

𝑆𝑓 .𝑃.𝑡𝑤

𝐷
) + 𝑐𝑃 . 𝑃. 𝑡𝑤 + 𝑐𝑟 . 𝑡𝑟  (2) 

If 𝑡𝑟 gets longer, it may cause the manufacturer using 

safety stock to meet the demand. In this situation, if 

corrective repair completed before the inventory level 

reaches zero, the manufacturer immediately starts the 

production process to increase inventory level to 𝑆𝑓 

(Figure 1(b)). So, we have: 

𝑇2
𝑟 = 𝑡𝑤 + 𝑡𝑟 + (𝑡𝑤 + 𝑡𝑟 −

𝑃.𝑡𝑤

𝐷
) (

𝐷

𝑃−𝐷
) = (

𝑃

𝑃−𝐷
) 𝑡𝑟  (3) 

𝑇𝐶2
𝑟 = 𝐴 + 𝑐ℎ (

(𝑃−𝐷)𝑃.𝑡𝑤
2

2𝐷
+

𝑆𝑓 .𝑃.𝑡𝑟

𝐷
−

𝑃(𝐷.𝑡𝑟−(𝑃−𝐷)𝑡𝑤)2

2𝐷(𝑃−𝐷)
) + 𝑐𝑃

𝑃.𝐷.𝑡𝑟

𝑃−𝐷
+ 𝑐𝑟 . 𝑡𝑟  

(4) 

 

 

 
Figure 1. Configuration of model with machine breakdown when (a) on-hand inventory are sufficient to meet up demand during 

corrective repair operation; (b) safety stocks are sufficient to meet up demand during corrective repair operation; (c) orders not 

satisfied with probability 1-θ and shortages occurs due to prolonged corrective repair time; (d) orders satisfied with probability 

θ and corrective repair operation done before finishing purchasing items; (e) orders satisfied, but shortages occurs due to 

prolonged corrective repair time 
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It may happen that the safety stock neither can cover 

the demand during the repair time. In this situation, the 

manufacturer can meet the demand by using an external 

supplier. However, with the probability of 1 − 𝜃, the 

necessary items cannot be delivered by the supplier and 

the system faces shortage until the machine is fixed 

(Figure 1(c)). So, the system’s cycle time and total cost 

are calculated as follows: 

𝑇3
𝑟 = 𝑡𝑤 + 𝑡𝑟 +

𝑆𝑓

𝑃−𝐷
  (5) 

𝑇𝐶3
𝑟 = 𝐴 + 𝑐ℎ (

(𝑃−𝐷)𝑃.𝑡𝑤
2

2𝐷
+

𝑆𝑓.𝑃.𝑡𝑤

𝐷
+

𝑃.𝑆𝑓
2

2𝐷(𝑃−𝐷)
) 

+𝑐𝑃 (𝑃. 𝑡𝑤 +
𝑃.𝑆𝑓

𝑃−𝐷
) + 𝑐𝑟 . 𝑡𝑟 + 𝑐𝑠(𝐷. 𝑡𝑟 − (𝑃 −

𝐷)𝑡𝑤 − 𝑆𝑓) 

(6) 

With the probability of 𝜃 supplier can provide necessary 

items. If the order quantity 𝑄′ was sufficient to cover the 

demand and the corrective repair operation completed 

before the purchasing lot size reaches to zero, then 

shortages would not occur and the new cycle starts after 

the inventory level reaches to 𝑆𝑓 (Figure 1(d)). In this 

situation, we have: 

𝑇4
𝑟 =

𝑃.𝑡𝑤

𝐷
+ 𝑡𝑟 +

𝑃.𝑆𝑓

𝐷(𝑃−𝐷)
+

𝑄′

𝐷
  (7) 

𝑇𝐶4
𝑟 = 𝐴 + 𝑐ℎ (

(𝑃−𝐷)𝑃.𝑡𝑤
2

2𝐷
+

𝑆𝑓.𝑃.𝑡𝑤

𝐷
+

𝑃.𝑆𝑓
2

2𝐷(𝑃−𝐷)
+

𝑄′2

2𝐷
) 

+𝐴′ + 𝑐𝑃 (𝑃. 𝑡𝑤 +
𝑃.𝑆𝑓

𝑃−𝐷
) + 𝑐′. 𝑄′ + 𝑐𝑟 . 𝑡𝑟 

(8) 

Figure 1(e) shows that the prolonged corrective 

operation causes the purchasing items is finished before 

the machine is repaired and the system faces shortages. 

The cycle time and total cost for this situation are: 

𝑇5
𝑟 = 𝑡𝑤 + 𝑡𝑟 +

𝑆𝑓

𝑃−𝐷
  (9) 

𝑇𝐶5
𝑟 = 𝐴 + 𝑐ℎ (

(𝑃−𝐷)𝑃.𝑡𝑤
2

2𝐷
+

𝑆𝑓.𝑃.𝑡𝑤

𝐷
+

𝑃.𝑆𝑓
2

2𝐷(𝑃−𝐷)
+

𝑄′2

2𝐷
) +

𝐴′ + 𝑐𝑃 (𝑃. 𝑡𝑤 +
𝑃.𝑆𝑓

𝑃−𝐷
) + 𝑐′. 𝑄′ + 𝑐𝑟 . 𝑡𝑟 + 𝑐𝑠(𝐷. 𝑡𝑟 −

(𝑃 − 𝐷)𝑡𝑤 − 𝑆𝑓)  

(10) 

Now we can obtain the expected cycle time and the 

expected total cost per cycle in the machine breakdown 

case as follows: 

𝐸(𝑇𝑟) = ∫ 𝑇1
𝑟𝑑𝐺(𝑡𝑟)

(𝑃−𝐷)𝑡𝑤
𝐷

0
+ ∫ 𝑇2

𝑟𝑑𝐺(𝑡𝑟)
(𝑃−𝐷)𝑡𝑤

𝐷
+

𝑆𝑓

𝐷
(𝑃−𝐷)𝑡𝑤

𝐷

+

𝜃 (∫ 𝑇4
𝑟𝑑𝐺(𝑡𝑟)

(𝑃−𝐷)𝑡𝑤
𝐷

+
𝑆𝑓+𝑄′

𝐷
(𝑃−𝐷)𝑡𝑤

𝐷
+

𝑆𝑓

𝐷

+

∫ 𝑇5
𝑟𝑑𝐺(𝑡𝑟

∞
(𝑃−𝐷)𝑡𝑤

𝐷
+

𝑆𝑓+𝑄′

𝐷

)) + (1 −

𝜃) ∫ 𝑇3
𝑟𝑑𝐺(𝑡𝑟)

∞
(𝑃−𝐷)𝑡𝑤

𝐷
+

𝑆𝑓

𝐷

  

(11) 

𝐸(𝑇𝐶𝑟) = ∫ 𝑇𝐶1
𝑟𝑑𝐺(𝑡𝑟)

(𝑃−𝐷)𝑡𝑤
𝐷

0
+

∫ 𝑇𝐶2
𝑟𝑑𝐺(𝑡𝑟)

(𝑃−𝐷)𝑡𝑤
𝐷

+
𝑆𝑓

𝐷
(𝑃−𝐷)𝑡𝑤

𝐷

+ 

𝜃 (∫ 𝑇𝐶4
𝑟𝑑𝐺(𝑡𝑟)

(𝑃−𝐷)𝑡𝑤
𝐷

+
𝑆𝑓+𝑄′

𝐷
(𝑃−𝐷)𝑡𝑤

𝐷
+

𝑆𝑓

𝐷

+

∫ 𝑇𝐶5
𝑟𝑑𝐺(𝑡𝑟

∞
(𝑃−𝐷)𝑡𝑤

𝐷
+

𝑆𝑓+𝑄′

𝐷

)) +(1 −

𝜃) ∫ 𝑇𝐶3
𝑟𝑑𝐺(𝑡𝑟)

∞
(𝑃−𝐷)𝑡𝑤

𝐷
+

𝑆𝑓

𝐷

 

(12) 

 

5. 2. Model without Machine Breakdown               In 

this case, the manufacturer faces no machine 

breakdowns and the planned lot size are produced at the 

production run 𝑡𝑃. After the completion of the 

production process, the preventive repair starts to return 

the machine to the primary state efficiency before the 

beginning of the new production run. Similar to machine 

breakdown case, based on the preventive repair time 𝑡𝑚, 

five different modes may occur. If the preventive repair 

completed before the inventory level reaches to 𝑆𝑓, the 

new cycle starts when all the produced items delivered 

to the customer (Figure 2(a)). So, the length of one cycle 

and total cost are: 

𝑇1
𝑚 =

𝑃.𝑡𝑃

𝐷
=

𝑄

𝐷
  (13) 

𝑇𝐶1
𝑚 = 𝐴 + 𝑐ℎ (

(𝑃−𝐷)𝑄2

2𝑃.𝐷
+

𝑆𝑓 .𝑄

𝐷
) + 𝑐𝑃 . 𝑄 + 𝑐𝑚 . 𝑡𝑚  (14) 

The inventory level may go down below the safety stock 

if 𝑡𝑚 >
𝑄

𝐷
−

𝑄

𝑃
; But shortages do not occur when the 

preventive operation ended before the inventory level 

reaches zero. For this situation, the manufacturer 

immediately starts the production process to increase 

inventory level to 𝑆𝑓 (Figure 2(b)). So, we have: 

𝑇2
𝑚 =

𝑄

𝑃
+ 𝑡𝑚 + (

𝑄

𝑃
+ 𝑡𝑚 −

𝑄

𝐷
) (

𝐷

𝑃−𝐷
) = (

𝑃

𝑃−𝐷
) 𝑡𝑚  (15) 

𝑇𝐶2
𝑚 = 𝐴 + 𝑐ℎ (

(𝑃−𝐷)𝑄2

2𝑃.𝐷
+

𝑆𝑓 .𝑃.𝑡𝑚

𝑃−𝐷
−

𝑃(𝐷.𝑡𝑚−(𝑃−𝐷)𝑄/𝑃)2

2𝐷(𝑃−𝐷)
) +𝑐𝑃

𝑃.𝐷.𝑡𝑚

𝑃−𝐷
+ 𝑐𝑚. 𝑡𝑚 

(16) 

If the preventive repair takes longer, as the inventory 

cannot cover the demand meet up, purchasing strategy 

is the only solution for the manufacturer to avoid 

shortages.  

In this situation, depended on the supplier reliability 

and the preventive repair time, three scenarios may 

occur (Figures 2(c)-2(e)). The corresponding inventory 

period and total cost for each scenario are stated as 

follows: 

𝑇3
𝑚 =

𝑄

𝑃
+ 𝑡𝑚 +

𝑆𝑓

𝑃−𝐷
  (17) 
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𝑇𝐶3
𝑚 = 𝐴 + 𝑐ℎ (

(𝑃−𝐷)𝑄2

2𝑃.𝐷
+

𝑆𝑓 .𝑄

𝐷
+

𝑃.𝑆𝑓
2

2𝐷(𝑃−𝐷)
) + 𝑐𝑃 (𝑄 +

𝑃.𝑆𝑓

𝑃−𝐷
) + 𝑐𝑚. 𝑡𝑚 + 𝑐𝑠 (𝐷. 𝑡𝑚 − (𝑃 − 𝐷)

𝑄

𝑃
− 𝑆𝑓)  

(18) 

and 

𝑇4
𝑚 =

𝑄

𝐷
+

𝑃.𝑆𝑓

𝐷(𝑃−𝐷)
+

𝑄′

𝐷
  (19) 

𝑇𝐶4
𝑚 = 𝐴 + 𝑐ℎ (

(𝑃−𝐷)𝑄2

2𝑃.𝐷
+

𝑆𝑓 .𝑄

𝐷
+

𝑃.𝑆𝑓
2

2𝐷(𝑃−𝐷)
+

𝑄′2

2𝐷
) + 𝐴′ +

𝑐𝑃 (𝑄 +
𝑃.𝑆𝑓

𝑃−𝐷
) + 𝑐′. 𝑄′ + 𝑐𝑚 . 𝑡𝑚  

(20) 

and 

𝑇5
𝑚 =

𝑄

𝑃
+ 𝑡𝑚 +

𝑆𝑓

𝑃−𝐷
  (21) 

𝑇𝐶5
𝑚 = 𝐴 + 𝑐ℎ (

(𝑃−𝐷)𝑄2

2𝑃.𝐷
+

𝑆𝑓 .𝑄

𝐷
+

𝑃.𝑆𝑓
2

2𝐷(𝑃−𝐷)
+

𝑄′2

2𝐷
) + 𝐴′ +

𝑐𝑃 (𝑄 +
𝑃.𝑆𝑓

𝑃−𝐷
) + 𝑐′. 𝑄′ + 𝑐𝑚 . 𝑡𝑚 + 𝑐𝑠 (𝐷. 𝑡𝑚 − (𝑃 −

𝐷)
𝑄

𝑃
− 𝑆𝑓)  

(22) 

By the conditional probability, the expected cycle time 

in no machine breakdown case is: 

𝐸(𝑇𝑚) = ∫ 𝑇1
𝑚𝑑𝐻(𝑡𝑚)

(𝑃−𝐷)𝑄

𝑃.𝐷
0

+

∫ 𝑇2
𝑚𝑑𝐻(𝑡𝑚)

(𝑃−𝐷)𝑄

𝑃.𝐷
+

𝑆𝑓

𝐷
(𝑃−𝐷)𝑄

𝑃.𝐷

+ 𝜃 (∫ 𝑇4
𝑚𝑑𝐻(𝑡𝑚)

(𝑃−𝐷)𝑄

𝑃.𝐷
+

𝑆𝑓+𝑄′

𝐷
(𝑃−𝐷)𝑄

𝑃.𝐷
+

𝑆𝑓

𝐷

+

∫ 𝑇5
𝑚𝑑𝐻(𝑡𝑚

∞
(𝑃−𝐷)𝑄

𝑃.𝐷
+

𝑆𝑓+𝑄′

𝐷

)) + (1 −

𝜃) ∫ 𝑇3
𝑚𝑑𝐻(𝑡𝑚)

∞
(𝑃−𝐷)𝑄

𝑃.𝐷
+

𝑆𝑓

𝐷

  

(23) 

Similarly, the expected total cost for this case is given 

by the following expression: 

𝐸(𝑇𝐶𝑚) = ∫ 𝑇𝐶1
𝑚𝑑𝐻(𝑡𝑚)

(𝑃−𝐷)𝑄

𝑃.𝐷
0

+

∫ 𝑇𝐶2
𝑚𝑑𝐻(𝑡𝑚)

(𝑃−𝐷)𝑄

𝑃.𝐷
+

𝑆𝑓

𝐷
(𝑃−𝐷)𝑄

𝑃.𝐷

+

𝜃 (∫ 𝑇𝐶4
𝑚𝑑𝐻(𝑡𝑚)

(𝑃−𝐷)𝑄

𝑃.𝐷
+

𝑆𝑓+𝑄′

𝐷
(𝑃−𝐷)𝑄

𝑃.𝐷
+

𝑆𝑓

𝐷

+

∫ 𝑇𝐶5
𝑚𝑑𝐻(𝑡𝑚

∞
(𝑃−𝐷)𝑄

𝑃.𝐷
+

𝑆𝑓+𝑄′

𝐷

)) + (1 −

𝜃) ∫ 𝑇𝐶3
𝑚𝑑𝐻(𝑡𝑚)

∞
(𝑃−𝐷)𝑄

𝑃.𝐷
+

𝑆𝑓

𝐷

  

(24) 

 

5. 3. Integrated Model             Now, according to the 

probability of occurrence of two conditions described in 

sections 5.1 and 5.2, the integrated model for the 

expected inventory cycle and the expected total cost is 

obtained as follows: 

𝐸(𝑇) = ∫ 𝐸(𝑇𝑟)𝑑𝐹(𝑡𝑤)
𝑄

𝑃
0

+ ∫ 𝐸(𝑇𝑚)𝑑𝐹(𝑡𝑤)
∞

𝑄

𝑃

  (25) 

𝐸(𝑇𝐶) = ∫ 𝐸(𝑇𝐶𝑟)𝑑𝐹(𝑡𝑤)
𝑄

𝑃
0

+ ∫ 𝐸(𝑇𝐶𝑚)𝑑𝐹(𝑡𝑤)
∞

𝑄

𝑃

  (26) 

We employ the renewal reward theorem [28] to optimize 

the expected total cost per unit time: 

𝐶(𝑄, 𝑄′, 𝑆𝑓) =
𝐸(𝑇𝐶)

𝐸(𝑇)
  (27) 

 
 
6. NUMERICAL EXPERIMENT 
 
In this section, using a numerical example, we obtain the 

optimal value of decision variables and investigate the 

joint effects of safety stock, purchasing policy and repair 

operations on the optimal lot sizing decisions. We will 

also perform a sensitivity analysis on some important 

parameters related to the purchasing, failure and the 

repair mechanisms. Furthermore, we compare the 

simultaneous policy, the safety stock policy and the 

purchasing policy through sensitivity analysis. For this 

issue, we present the model with the safety stock policy 

and the purchasing policy, separately. The results of 

these policies are used as an index to evaluate the 

performance of the simultaneous policy. The model 

with the purchasing policy is similar to the model 

introduced by Peymankar et al. [6]. The difference is 

that we considered the effect of preventive maintenance. 

The corresponding functions related to the cycle time 

and the cycle cost for this policy are presented in 

Appendix A. 

 The safety stock policy has also been considered in 

numerous studies. We adopt the model proposed by 

Sana and Chaudhuri [2] and relax some minor 

assumption to be comparable with our model (e.g. the 

shortages will be backlogged after repair operation, 

whereas in our paper, shortages will be lost). The 

corresponding expected inventory period and expected 

total cost are formulated in Appendix B. 

 We first suppose that the random time to failure as 

well as repair times (corrective and preventive) have the 

exponential distributions with the probability density 

functions as follows: 

𝑓(𝑡𝑤) = 𝜆𝑒−𝜆𝑡𝑤, 𝑔(𝑡𝑟) = 𝜇𝑟𝑒−𝜇𝑟𝑡𝑟, ℎ(𝑡𝑚) = 𝜇𝑚𝑒−𝜇𝑚𝑡𝑚 

where λ is the machine failure rate, 
1

𝜇𝑟
 and 

1

𝜇𝑚
 are 

respectively the meantime for corrective and preventive 

repair.  

Given that we have three decision variables in the 

proposed model, we have used a comprehensive search 

algorithm with numerical computational software 

MATHEMATICA to find the optimal values. To 

consider the performance of the model, the following 

relevant data with appropriate units are set on the 

parameters: 

𝑃 = 600, 𝐷 = 400, 𝐴 = 100, 𝐴′ = 120, 𝑐𝑃 = 20, 𝑐 ′ =
25, 𝑐ℎ = 4, 𝑐𝑠 = 40, 𝑐𝑟 = 80, 𝜇𝑚 = 2.4 
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Figure 2. Configuration of model without machine breakdown case when (a) on-hand inventory are sufficient to meet up demand 

during preventive repair operation; (b) safety stocks are sufficient to meet up demand during preventive repair operation; (c) orders 

not satisfied with probability 1-θ and shortages occurs due to prolonged preventive repair time; (d) orders satisfied with probability 

θ and preventive repair operation done before finishing purchasing items; (e) orders satisfied, but shortages occurs due to prolonged 

preventive repair time 

 
By optimizing the proposed model, the optimal 

value of decision variables is 𝑄∗ = 615.9, 𝑆𝑓
∗ = 90.9, 

𝑄′∗
= 273.9 and the minimum value of 𝐶∗(𝑄, 𝑄′, 𝑆𝑓) is 

obtained as 9217.1. Comparison between policies 

demonstrates that the result of the simultaneous policy 

is better than two other policies (in the safety stock 

policy 𝐶∗(𝑄, 𝑆𝑓) = 9501.1 and in the purchasing 

policy 𝐶∗(𝑄, 𝑄′) = 9266.7). 

Now, we examine the sensitivity of optimal values 

of decision variables against changes in some important 

parameters. As shown in Figure 3 when the holding cost 

increases, the manufacturer prefers to respond demand 

met up through the produced and the purchased 

quantity; so that, for 𝑐ℎ > 15 the simultaneous policy is 

equivalent to the purchasing policy. This can be justified 

from the managerial point of view. Higher holding cost 

increases the cost of holding safety stock to deal with 

potential lost sales during a cycle time.  In this situation, 

the production manager prefers to consider an external 

supplier with acceptable reliability to meet the demand 

during the shortage period. 

The supplier parameters (𝜃 and 𝑐′) have an 

important role on the manufacture decisions for the 

optimal design of the system. In the following, we have 

numerous analysis with regard to the supplier 

parameters and the manufacturer parameters. The 

variation of 𝜃 illustrated in Table 1. The table shows that 

the production batch size and the order quantity in 

simultaneous policy is lower than the purchasing policy, 

because of the safety stock usage in the simultaneous 

policy. When the supplier is less reliable, in addition to 

increasing production lot size, the model raises the order 

quantity to confront uncertainties. In other words, by 

accumulating more inventory and make a balance 

between holding cost and shortage cost, the model tries 

to avoid lost sales.  As Table 1 depicts, the increasing 

rate of the production and purchasing lot in 

simultaneous policy is slower. Indeed, the existence of 

the safety stock can help the production manager to 

attain a lower expected cost with fewer changes in 

production lot size.  

A comparison between three policies by variation of 

𝑐𝑃 when the supplier is more reliable is shown in Table 

2. It is obvious that the keeping safety stock is preferable 

 

 

 
Figure 3. Optimal value of decision variables verses 

holding cost 
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TABLE 1.  𝑄′∗
and 𝐶∗when 𝜃changes in simultaneous and purchasing policy 

𝜽  
Simultaneous policy  Purchasing policy 

𝑸∗  𝑸′∗
  𝑺𝒇

∗   𝑪∗(𝑸, 𝑸′, 𝑺𝒇)   𝑸∗  𝑸′∗
  𝑪∗(𝑸, 𝑸′)  

0.1 633.8 288.7 131.2 9434.1  1177.4 309.9 9566.8 

0.2 631.4 286.8 126.5 9408.6  1151.8 307.1 9528.9 

0.3 629.1 285 121.8 9382.7  1126.4 304.3 9491.2 

0.4 626.7 283.3 116.9 9356.4  1101 301.5 9453.6 

0.5 624.5 281.4 112 9329.6  1075.6 298.7 9416.12 

0.6 622.2 279.6 107 9302.3  1050.2 296 9378.7 

0.7 620 277.7 101.7 9274.4  1024.7 293.2 9341.3 

0.8 617.9 275.8 96.4 9246  999.2 290.4 9304.2 

0.9 615.9 273.9 90.9 9217.1  973.5 287.7 9266.7 

1 614.2 272 85.2 9187.4  947.6 284.9 9229.4 

 

 
TABLE 2. A comparison of performance of three policies under the variation of 𝑐𝑃when θ=0.9 

𝒄𝑷  
Simultaneous policy Safety stock policy Purchasing policy 

𝑸∗ 𝑸′
∗
 𝑺𝒇

∗  𝑪∗(𝑸, 𝑸′, 𝑺𝒇) 𝑸∗ 𝑺𝒇
∗  𝑪∗(𝑸, 𝑺𝒇) 𝑸∗ 𝑸′

∗
 𝑪∗(𝑸, 𝑸′) 

5 662.6 129 195 3783.5 661.2 208.6 3853.6 1567 142.8 4140.9 

10 653.2 157.7 168.6 5640.4 653.9 187.3 5738.5 1394.6 172.6 5886.5 

15 639.6 201.4 135.9 7462.1 645.6 163.5 7608.6 1204.6 217.3 7603.1 

20 615.9 273.9 90.9 9217.07 636.2 135.7 9459.1 973.5 287.7 9266.7 

25 575.6 397.2 8.1 10801.7 627.3 102.2 11281.7 606.9 398.7 10801.8 

30 0 437 0 11415.3 623.3 56.8 13060.2 0 437 11415.3 

 
for the manufacturer for low values of 𝑐𝑃. As 𝑐𝑃 

decreases, the optimal value of 𝑄∗ and 𝑆𝑓
∗ increases and 

the manufacturer ordered a smaller quantity to the 

external supplier whereas by increasing 𝑐𝑃, for higher 

reliability of the supplier when the production unit cost 

becomes greater than the purchasing unit cost, the 

optimal quantity of 𝑄∗and 𝑆𝑓
∗ are zero and the system act 

as an inventory system. This is completely justifiable 

from the managerial insight because when the 

production unit cost exceeds the sales price, the 

production system is not economic; otherwise, when the 

reliability of the supplier decreases, despite increasing 

the production unit cost, the model suggests the 

manufacturer has a production lot size to avoid facing 

lost sales. Figure 4 confirms this issue. In fact, the 

superiority of the simultaneous policy comparing to 

other two policies are that by decreasing of 𝑐𝑃, the 

manufacturer can choose the production as the basis of 

the inventory decision, whereas, for high values of 𝑐𝑃, 

he/she switches to outside purchasing option. This is 

why the expected cost in the simultaneous policy is 

always less than two other policies (see Table 2). 

Table 3 illustrated the effect of 𝑐 ′variation on 

production and inventory decisions. As the table shows, 

changes in 𝑐′ value in the opposite direction of 

𝑐𝑃variations, affect the expected total cost. As the 

purchasing unit cost decrease, the manufacturer 

decreases production lot size and buys a bigger lot size 

from the market. 

 

 

 
Figure 4. Manufacturer decision for using production by 

variation of θ when 𝑐𝑃 = 30 and 𝑐′ = 25 
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TABLE 3. A comparison of performance of simultaneous policy and purchasing policy under the variation of  𝑐′ 

𝒄′ 
Simultaneous policy  Purchasing policy 

𝑸∗ 𝑸′∗
 𝑺𝒇

∗  𝑪∗(𝑸, 𝑸′, 𝑺𝒇)  𝑸∗ 𝑸′∗
 𝑪∗(𝑸, 𝑸′) 

15 0 508.7 0 7640  0 508.7 7640 

20 526.9 436.8 33.2 8868.3  657 444.2 8871.3 

25 615.9 273.9 90.9 9217.07  973.5 287.7 9266.7 

30 636.5 153.2 120.2 9379.7  1125.7 164.5 9485.2 

35 642.2 65.7 134 9454  1199 71.5 9595.3 

40 643.2 0 137.9 9475  1220 0 9627.5 

 
When the purchasing unit cost becomes smaller than 

the production unit cost, 𝑄∗ and 𝑆𝑓
∗ will be null and both 

policies will yield the same result; while, by increasing 

sales price, the purchasing quantity decreases. When 

sales price becomes bigger than the shortage cost, 

purchasing from the external supplier is not beneficial. 

in this situation, for the simultaneous policy, the 

manufacturer can optimize the system total cost by 

determining the values of 𝑆𝑓
∗ and 𝑄∗, but in purchasing 

policy he/she does not have the advantage of using 

safety stock and is forced to increase the production lot 

size.  

Sensitivity analysis based on the change in unit 

shortage cost is depicted in Table 4 and Figure 5. 

Although the purchasing strategy raising the 

manufacturer service level through the reducing lost 

sales; but applying this strategy completely depend on 

the importance of the customer retention for the 

manufacturer. This value is determined through the cost 

of lost sale. Theoretically, by decreasing the unit 

shortage cost, the model prefers lost sales. In 

simultaneous policy, as 𝑐𝑠decreases, the model at first 

reduces the amount of 𝑄′∗
 and 𝑆𝑓

∗, in return, increases 

𝑄∗. By continuing drop rate, if the purchasing lot size 

and stock level reach to zero, the production lot size will 

be decreased. The behavior of the model can be 

interpreted as follows: By decreasing the lost sale cost, 

the accumulated inventory required to meet the demand 

is reduced. In this situation, the manufacturer decides to 

reduce the implementation of purchasing and keeping 

safety stocks and respond to demand by using more 

production. Therefore, he/she reduces the amount of 𝑄′∗
 

and 𝑆𝑓
∗ at higher rates and instead increases 𝑄∗ with a 

slight rate. It is obvious that this strategy has a better 

performance on reducing the expected total cost than the 

concurrent reduction of all of the decision variables in 

the purchasing policy (see Table 4). 

Moreover, as illustrated in Figure 5 by decreasing 

the value of shortage cost, the model prefers to face 

more lost sale. Therefore, the expected shortage cost 

will be increased. Due to the expected total cost 

reduction (Table 4), the percentage of shortage cost in 

total cost, increases in both policies. From the 

managerial insight, based on the comparison between 

the lost sale cost and production, purchasing and holding 

costs, the less the lost sale cost, the more beneficial for 

the manufacturer to reduce the accumulated inventory 

level. 

 

 

TABLE 4. A comparison of performance of simultaneous policy and purchasing policy under the variation of 𝑐𝑠 

𝒄𝒔 
Simultaneous policy  Purchasing policy 

𝑸∗ 𝑸′∗
 𝑺𝒇

∗  𝑪∗(𝑸, 𝑸′, 𝑺𝒇)  𝑸∗ 𝑸′∗
 𝑪∗(𝑸, 𝑸′) 

20 232 0 0 8320.96  232 0 8320.96 

25 635.7 0.017 0.018 8790.38  635.7 0.0002 8790.38 

30 636.1 139.6 46 9016.8  809.5 143.2 9027.4 

35 621.2 218.6 73.4 9135.06  904.8 227.8 9165.42 

40 615.9 273.9 90.9 9217.07  973.5 287.7 9266.7 

45 613.9 316.7 103.8 9280.84  1028.4 344.4 9348.57 

50 613.4 351.8 114.3 9333.6  1075.1 372.7 9418.31 

60 614.4 407.3 130.8 9418.9  1152.8 433.6 9535.1 

80 618.9 486.5 154.7 9546.13  1275 520.4 9718.7 
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Figure. 5. Variation of expected shortage cost per unit time 

with respect to 𝑐𝑠 

 

 

The impact of λ variations on the optimal value of 

decision variables is shown in Table 5. Studying this 

table gives remarkable results. As failure rate increases, 

due to the rising probability of machine failure with 

increasing production quantity, the model decreases 𝑄∗ 

and instead increases 𝑄′∗
and 𝑆𝑓

∗. Whereas, when the 

failure rate decreases, the model first reduces safety 

stock (due to its high holding cost) and replace it by 

growth in the production quantity. If the safety stock 

level reaches zero, with decreasing failure rate, the 

model reduces the optimal quantity of 𝑄∗and 
*'Q  to 

optimize systems expected cost. The performance of the 

safety stock policy and the purchasing policy, are 

similar to the simultaneous policy in this situation. From 

the manufacturer point of view, although keeping the 

safety sock is more reliable than outside purchasing, 

decreasing in the safety stock level is more beneficial 

than the reduction in purchasing quantity. This is 

because of the fact by decreasing the probability of 

machine failure, the risk of shortages is decreased and 

holding safety stocks incur more cost.   

Variation of corrective repair time effects on the 

optimal values of decision variables is depicted in 

Figure 6. According to this figure, as 𝜇𝑟decreases (the 

mean time for the correcting repair increases), the 

manufacturer decreases the optimal production lot size 

and prefers to order a more quantity of 𝑄′from the 

supplier as well as rises the safety stock level. In return, 

when the repair time decreases, the production lot size 

increases and by declining the safety stock level to zero, 

the model changes to the purchasing policy. Therefore, 

when the corrective repair time decreases, the 

possibility to meet the demand using on-hand inventory, 

increases. So, the manufacturer prefers to use 

purchasing to avoid possible shortages, instead of 

keeping the safety stock with higher costs in the long 

term. 

 

 

 
Figure 6. Variation of optimal values of decision variables 

with respect to 𝜇𝑟 

 

 
TABLE 5. Behavior of decision variables by changing machine failure rate in all policies 

λ 
Simultaneous policy Safety stock policy Purchasing policy 

𝑸∗ 𝑸′∗
 𝑺𝒇

∗  𝑪∗(𝑸, 𝑸′, 𝑺𝒇) 𝑸∗ 𝑺𝒇
∗  𝑪∗(𝑸, 𝑺𝒇) 𝑸∗ 𝑸′∗

 𝑪∗(𝑸, 𝑸′) 

0.1 839.8 232.1 0 8871.3 964.8 0 8991.7 839.8 232.1 8871.3 

0.3 890.4 261.5 0 9036.6 1048.5 0 9239.8 890.4 261.5 9036.6 

0.4 916.5 271.7 0.2 9115.5 877.9 59.9 9343.6 917.2 271.7 9115.5 

0.5 733 272.9 56.7 9176.3 734.2 105.8 9410.6 944.8 280.3 9192.1 

0.6 615.9 273.9 90.9 9217.1 636.2 135.7 9459.1 973.5 287.7 9266.7 

0.7 533 274.8 113.9 9247.4 562.8 157.1 9497 1003 294.2 9339.3 

0.8 469.5 275.5 130.6 9271.3 503.7 173.3 9527.9 1033.5 300.2 9410 

0.9 417.3 275.9 143.6 9291 453.3 186.2 9553.8 1064.9 305.7 9478.8 

1.2 292.5 278.1 170 9334 324.9 213.5 9611.8 1163.2 320.6 9674.1 
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6. CONCLUTION 

 
The classical economic production models assume that 

the production facilities always are failure-free. 

However, in practical situations, they usually are 

failure-prone. Since failures are unavoidable, the 

production manager should have practical solutions to 

deal with such disruptions. Proactive measures such as 

inspection, keeping safety stock and recently outside 

supplying have been carried out in this field to mitigate 

machine breakdowns consequences. In this study, we 

presented a new strategy and considered the joint 

implementation of keeping safety stock and outside 

supplying on a failure prone production-inventory 

system. We also incorporate preventive maintenance, as 

an option to confront machine failure. The superiority of 

our model to the existing models in the literature is the 

manufacturer's capability to simultaneous use of the 

safety stock and outside purchasing. Actually, by 

changing the production conditions and increasing or 

decreasing the model parameters, the manufacturer has 

the flexibility to choose the optimal values of safety 

stock and order quantity to optimize the expected total 

cost of the system. For evaluating the performance of 

the proposed model, we have compared our 

simultaneous policy with the model with just purchasing 

policy or the safety stock policy, separately. The 

analysis conducted shows that the simultaneous policy 

always imposes a less expected cost to the system than 

two other policies.  For example, the manufacturer can 

benefit from the safety stock for less expensive items; 

while for more expensive items he/she can choose the 

purchasing policy as the basis to cope with shortages 

during production disruption. As a future research, 

studying on the effects of the supplier reliability or lead-

time on the purchasing price could be developed. 

Furthermore, effect of carbon emission costs on the 

expected total cost and the effect of collaborating with 

an external supplier to reduce it could be interesting for 

the future research. 
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APPENDIX 

 
Appendix A. Formulation of E (T) and E (TC) for purchasing policy  
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Appendix B. Formulation of E (T) and E (TC) for safety stock policy  
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 چکیده

 

در این مقاله، یک مدل تولید اقتصادی تحت شرایط خرابی ماشین و دو نوع تعمیر اضطراری و پیشگیرانه ارائه شده و تاثیر  

کمبود همزمان نگهداری موجودی اطمینان و تامین از بیرون بر روی مسئله مورد مطالعه قرار گرفته است. جهت مقابله با 

منتج از طولانی شدن زمان تعمیر فرض شده است که علاوه بر نگهداری موجودی اطمینان، تولیدد کننده، شرایط خرید از 

تواند با تعیین  دهد که: تولیدکننده چطور میباشد. مطالعه پیش رو به این سوال پاسخ میکننده خارجی را نیز دارا مییک تامین

مدل معرفی شده با ی، سفارش خرید و موجودی اطمینان، هزینه مورد انتظار سیستم را کمینه کند. مقادیر بهینه انباشته تولید

باشد، بطور جداگانه مقایسه شده است. شرایطی که تولید کننده تنها قادر به استفاده از موجودی اطمینان یا تامین از بیرون می

همزمان هنگامی که سیستم مستعد مواجهه با کمبود است، بهبود دهد که استفاده از سیاست نتایج آنالیز حساسیت نشان می

 بیشتری بر عملکرد سیستم نسبت به دو سیاست دیگر دارد.  
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