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ABSTRACT

Mobile cloud computing (MCC) is a new technology that has been developed to overcome the
restrictions of smart mobile devices (e.g. battery, processing power, storage capacity, etc.) to send a part
of the program (with complex computing) to the cloud server (CS). In this paper, we study a multi-cell
with multi-input and multi-output (MIMO) system in which the cell-interior users request service for
their processing from a common CS. Also, the problem of the optimum offloading is considered as an
optimization problem with optimization parameters including communication resources (such as
bandwidth, transmit power and backhaul link capacity) and computational resources (such as the
capacity of cloud server) in the downlink network. The main goal is to minimize the total energy
consumption by mobile users (MUSs) for processing with the delay limitation for each use. This issue
leads to a non-convex problem and to solve the problem, we use successive convex approximation (SCA)
method. We finally show that the joint optimization of these parameters leads to reducing the energy
consumption of the network with simulation examples.

doi: 10.5829/ije.2019.32.11b.14

1. INTRODUCTION?

With the increment of technology in mobile devices,
popular applications are daily offered to network users
which will be more complex and demand heavy
computation. Despite enhancing technology in mobile
devices and their applications, there are some challenges
in their resources such as storage capacity, battery
lifetime and computational capacity which restricts the
application’s usage. Recently, mobile cloud computing
(MCC) has been suggested as an efficient solution to
overcome the restriction in mobile devices to benefit
from cloud computing (CC) potential in mobile
computing (MC) [1-4]. It can be said that MCC is a
combination of CC and MC [5]. Employing this method,
we can send a part of the program which has complicated
computing and difficult calculations, to the cloud server
(CS) [6]. The advantage of employing this method is to
diminish the amount of energy consumption by mobile
users (MUs), which improve the battery lifetime and
computing speed [7, 8]. Moreover, using this type of
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processing, MUs do not require to upgrade their mobile
devices in terms of hardware and software.

Barbarossa et al. [9] studied a technique for the joint
allocation of communication and computation resources
in the single-user mode. Besides, the optimal resources
allocation in the network is generalized as multi-user
form by Barbarossa et al. [9]. Unlike the consideration of
centralized structure for CS in literature [9, 10];
Barbarossa et al. [11], Chen [12] consider that the CS has
a decentralized structure and they solve the problem of
optimal resources allocation via game theory methods.

Nouri et al. [13] proposed an offloading framework
which reduces the total cost of the network and
formulated the task offloading problem as a joint
optimization of the computational and communicational
resources. In contrast, Sardellitti et al. [14] tried to assign
the optimal bandwidth to MUs who request services from
the CS, as well as computational resources. Furthermore,
MUs can perform a part of their computing on their
devices. After modeling the system in the form of an
optimization problem, we observe that the problem has a
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non-convex form. Considering a logical and simplistic
assumption for solving the problem, we employ a method
called successive convex approximation (SCA) in this
paper. Extensive simulation studies demonstrate the
energy efficiency improvement of our proposed method
and the superior performance over several existed
schemes.

This paper is organized as follows. In section 2, we
provide our system model and formulate the problem of
the optimal resources allocation in mathematical form. In
section 3, we discuss the proposed algorithm and solve
the problem. In section 4, we provide the results using
some simulation examples and finally, we conclude the
paper in section 5.

2.SYSTEM MODEL

Figure 1. shows the proposed model which is considered
a multi-cell network with multi-input multi-output
(MIMO) including N cell. Moreover, there are M MUs

and a base station (BS) in each cell where all BSs are
connected to a common server with limited resources.
Note that these servers provide computing and storage
resources to MUs which is called CSes.

We assume that the backhaul capacity between BS
and CS is limited. In addition, MUs in each cell have
orthogonal spectral resources, i.e., there is no intra-cell
interference between MUs in each cell. However, the
effect of the inter-cell interference is considered between
MUs of cells with different spectral resources.

Also, we indicate all MUs with the set of
N £{m m=1..,M,n=1.,N_} in which m_ denotes

the MU which uses the spectral resource m incell n. We
also consider the number of the transmitted and received
antennasas N, and N , respectively.
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Figure 1. Proposed system model

We denote the application that each MU wants to run as
APP, ={V, .B, 72>} where V, is required CPU-

cycle to run the program. In addition, B, and 7,

indicate data bits (which includes transmitted code and
additional data) and the upper bound of acceptable delay
for running the application of each MU, respectively. We
define the parameter 4, - as the processing percentage of
each MU that transmits to the cloud server.

Therefore, the total delay of each MU will incur for
receiving the service is given by:

T (0):(1—&“n )z'r[n (o) + 2, 7ot (o), )
where 7, () is the amount of caused delay to process

the program local condition. Furthermore, 7o () in (1)

mn
denotes the total caused delay for receiving the service
from the CS which can be expressed as follows:

exe

A _ul bh dl
T =T T Tm TTm T )

where r;'n indicates the value of caused delay in

transmitting data from MU m, tothe BS. 7% () isthe
delay value that is consumed for computing the program
in the CS and 7, () is the caused delay in the backhaul
between BS and CS in the downlink direction. Finally,
7o (s) denotes the delay value for sending the

transmitted processing results from the CS to the typical
MU. Furthermore, energy consumption by each MU to
receive the service is given by:

e, (0)="1n (eh (o) +em (¢)+(1- 4, Jen (). (3

where efn'n (e) and en (¢) denote the energy that is

transmitted and received data between typical MU and
BS by MU m,, in the uplink and downlink directions,

respectively. In addition, e () is the energy

consumption in the CS condition.
The main purpose of this model is to minimize the total
amount of energy consumption by MUs to receive the
service with the delay limit constraint. In the sequel, we
compute the values of the energy and delay and express
the model in mathematical form.

2. 1. Local Processing If we denote the
computational capability of each MU in terms of the

CPU-cycle per second by fm’" , the required time for local
computing APP_ in each MU can be derived as
follows:
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Vo
f/"'mnEN’ (4)

m

7, () =

n

In addition, the required energy for computing can be
expressed as:

en, () =%V, (f,)m, N, ()

in which x is the effective capacitance of switch which
depends on the structure of each MU [15].

2. 2. Uplink Transmission We assume that the
transmitted signal from each MU is denoted by X;'n
where XY ~ON(0,Q) ) and Q) =E[Xuxu"].
Moreover, we express the feasible set of all covariance
matrices Q. as follows:

Q) 2 {Qr“n'” ec Q! 20r@QY) < Pr:'"} 6)

where P;'n expresses the maximum power of each MU

in the uplink direction. The data transmission rate of the
MU m, in terms of bits/seconds is given by:

r, =w, log,det(l+H, R, (Q" w,)H Q) (7)
where

Rl;:n (Qlilmn W rLr|1I,, ) 2w :nln Nl + Z Hj,,anilr Hlj-lr n (8)

jreN r=n

in which RY (Q" w ) is the covariance matrix of the

disturbance (noise plus inter-cell interference) in cell n
and m™ spectral resource. In addition, H_ is the

channel matrix between MU m_ and the tagged BS
while H, isthe channel matrix between the interference

MU j, and the BS in cell n in the uplink case. N,
denotes the power spectral density of the noise and w ;'

denotes the bandwidth that is allocated to the MU m,, in
the uplink case. We also have:

u oA Mo\

-my = ((QL:' )j:l)rzl,r;:n l (9)
The required time for transmitting B! data bits from MU
to the BS can be expressed as:

Bl
I I I m,
o (Qn, Q% Wh )= "

m,

B! (10)

“w log,det(1+H! RY Q" wi)H, Q)

m,.ntmy

The energy consumption of the MU for transmitting data
in the uplink case is given by:

en (Qn, Q% Wi ) =tr (Qy o2 (@ Q% wi)
_ By () (1)
7w;'” log, det(1+H: RY Q" w')H, Q)

m,.n'tm,

2.3.ComputingInCS  We assume that the value of
the CS computation capacity in terms of the CPU-cycle
per second is equal to F°*“. Furthermore, f°¢ >0

indicates the percentage of the total CS capacity which is
assigned to the MU m_ , then 3 fS <1 Therefore, the

required duration to run the CPU-cycle for MU m_ is
given by:

4
7y (fm, ) = = (12)

2. 4. Backhaul Link Transmission We consider
that the backhaul link capacity between the BS and CS is
limited and the value of the capacity in terms of bits per

second is denoted by Cr‘j' . Moreover, c,‘#n >0is the

percentage of these resources that are allocated to the MU

m, in the uplink direction, so »" ¢, <1. Therefore,
m,eN

the delay value of each MU will incur on a Backhaul link

can be calculated as :

|
Tbh (CLI| )_ an
m, m, _Cul Cul :
m,~n

(13)

2. 5. Downlink Transmission Note that the delay
and energy consumption of outcome from the CS to the
MU are neglected in this model since the size of the
outcome details is much smaller than the size of the input
data (B B, ) that is similar to much existing research.

2. 6. Problem Statement In Form Of Optimization
Problem At first, for simplicity, we gathered the
optimization variables in vector S as follows:

S (Q“' ! floct feloud e ,x), (14)
where

Q"E(Qn, ), . W EWL), .,

Ll U M) M (15)

CUI é(cﬂ" )mneN ' ;\‘é(lm" )m,,eN '
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The optimal offloading problem can be expressed as an
optimization problem in the form of minimizing the total
energy consumption by all MUs with the delay constraint
as follows:

tot ul ul g local
BT QWL

min
Qul ,W“I Iflac;«xl vfcloud ,CUI ,
= 3 (Al @' W) +(1- 4, )€l (1))
m,eN

s.t.
CL (1= ), + A T <TR, VM, €N

C2. Y wy <W' wi >0,Vm eN
m,eN
C3. ) fr<1,fr>0,vm eN

m,eN

C4. 0< f, <f™ vm eN
C5. > ¢y <1,cy 20 ,vm eN

mn
m,eN

C6. er:WIn € Q;'ﬂ ,vm, eN
C7.4, € [0,1] ,¥m, eN P1

Where C1 denotes the delay value for receiving the
service for MU in which should be less than the upper
bound of the acceptable delay for each MU. In addition,
C2 indicates the restriction of the network bandwidth.
C3 and C4 denote the computation resources limitation
of the CS and local condition, respectively. Moreover,
C5 is the limitation of the backhaul link between BS and
CS in the uplink direction. The problem P1lis a non-
convex optimization problem and the reason for the non-
convexity of the problem is the fact that the objective
function and C1 are not convex. In the following, we
evaluate the non-convex problem using SCA method.

3. PROBLEM SOLVING VIA SCA METHOD

with regards to the non-convexity of the objective
function and C1, the problem P1lis non-convex.
Therefore, we use the SCA scheme [16] to solve the
optimization problem. In this method, to derive a result,
we employ an iterative algorithm that obtains a convex
approximation for the non-convex expression in each
iteration. It is worth to mention that the obtained
approximations should satisfy the mentioned conditions
in [16]. We next derive a convex approximation for the
objective function and constraint C1 so that satisfy the
conditions where mentioned in [16].

3. 1. Convex Approximation Of The Objective
Function We consider the feasible set K such that
all functionsin P 1lare well defined on it. It must be noted
that such a set always exists. If we denote the convex
approximation of the objective function
E”(@Q"w" f*") around the point s(Vv) as

E* (S .S (V)), the approximation is obtained as:

Etot(s S (V)): Emt(s S (V))
+ Y B, (Q.Q%, W f, S (V))

m,eN

(16)

where
E,, (Q4 Q% wi £, S(V))=..
K(1= 2, (V)N (F ) + 5= 2, WV, (Fr (\/))2
B;_lm"tr(Q“m‘" (v))
e 4 (V)log, det(1+H: R (Q" (V)wi (V)H, Q) (V))
B, 4, (V)ir(Q))
e 4 (V)log, det(1+H: R (Q" (V)wi (V)H, Q) (V))
. L (r(@ (1) @
w log, det(1+H] RY(Q", (V)w! (V)H, Q) (V)
. B, 4, (V)tr (Qfﬂ'" (v))
w, (V)log, det(l +HE R Q' (V)W OH, QL (V))
. B, 4, (V)tr (Qfﬂ'" (v))
wy (V)log, det(1+H, Ry @, (V)w, (V)H, Q)
+ Y (Ve B (4).Q Q0 (V) )

JpeN .p#n

and
E*(S.S(V))=(s -5 (V) §(s~S (V). (18)

where the matrix é" is a diagonal matrix with non-
negative elements that can be determined as:

& Sdiag (e & 1801 ams 1 €11 €,)- (19)

in which <A,B>éRe{tr(A“B)}. In (16), the second
expression of the right-hand side is wused for
convexification of the objective function and
E(S ,S(V)) is added to make E, strongly convex.

3. 2. Convex Approximation Of C1 In order to
calculate the convex approximation of C1, we first
rewrite it as follows:

A N L

Vo,

I, (28, i i 0 )+ (1 4y, ) (19)

m

Bnl'l lm Bf:\ ﬂ’m VT] j“m m
= I:m . +C;|HC:]" +fn(]:nFCIoud +(1_imn)f o

m, m

n

ul
™ . If we indicate the first-order
)

m,

Now, we define ; (0)2

Taylor series approximation as J (), we observe that



N. Nouri and A. Entezari / [JE TRANSACTIONS B: Applications Vol. 32, No. 11, (November 2019) 1627-1633 1631

! -
Bn, has a convex form. Therefore, regarding,

I (%)

2
3=1[a+1j i[ah%j vaz0b >0 (20)
b 2 b 2 b

the right side of this equality is the differential of two
convex functions. Accordingly, with linearizing the
concave part of (20), i.e., the left side of (20), we can
obtain a locally tight convex upper bound as [16]:

2
O e RIS

By employing (21) in each term of (19), we can obtain the
desired convex upper bound for (19).It can be easily seen
that the evaluated approximations for the objective
function and C1 satisfies the conditions mentioned in
[16]. Calculating these approximations and substituting
them, the convex approximation of C1 is derived and is
denoted by 7 (e). Now, we are ready to solve the

problem P1.

3. 2. Convex Approximation of Problem
Calculating the convex approximations of the objective
function and C1 around the feasible point S(V), we can
solve the problem using SCA iterative algorithm instead
of solving the problem P 1.
opt _ H —tot
S - QU wh floal o cut E (S ’S (V))
s.t.
CL % (S,S(V))<zp™,vm, eN
C2~C6 of P1 P2

where S " denote the final result of the problem. The
SCA method is summarized in Algorithm 1.

Algorithm 1: SCA Solution for P2

Initialization: S (0) e K; 7(V)e(0,1]; V=0,

1: If S (V) satisfies the termination criterion, stop.
2: Compute s (v)from pP2.

3:Sets (V+1) =5 (V)+7(V)(S™(V)-S (V).

4: SetV «—V+1, and return to step 1.

Output; S ®tmm — (Q“' iyt flocal feloud aul ,i) )

In this algorithm, s (0) is the initial point that is selected

from the feasible region of the problem, i.e., K. Also,
s (v) denotes the optimal result in iteration V. The

stopping criteria of the algorithm is
|[E(S(V+1))-E®(S(V)) <4 in which & determines the

algorithm accuracy. Furthermore, » determines the
algorithm step where »(V)=(1-ay(V-1))7(V-1),

#(0)<(01] and ae[o,lJ.

7(0)

4.SIMULATION RESULTS

We consider a network with two cells that there are two
MUs in each cell, i.e., M =N_=2. We assume that the

number of the transmitted and received antennas are two
(Ng =N, =2). The other simulation parameters are

W =10 MHz, C' =10Mbits/s , F€**¢ 10" CPU-cycle
per sec, \, =2640x Bn'qn CPU-cycle/sec and B has a

uniform distribution in (0.1,1] Mbits.

Figure 3. shows the value of the total energy consumption
in the network according to algorithm iteration. As
observed in Figure 3., when MUs use partial offloading
to receive the service, the value of the energy
consumption is lower than the other items.

Figure 4. shows the value of the total network energy
consumption in terms of the upper bound of the
acceptable MUs delay. As expected, the amount of
energy consumption reduces with the increment of the
delay upper bound. However, if the upper bound is very
small, the value of energy consumption increases
proportionately.

Figure 5. illustrates the total network energy
consumption according to the upper bound of the
acceptable MUs delay in three modes: local processing,
cloud processing and joint processing (the combination
of the cloud and local processing). As shown in Figure
5., by the joint allocation of resources in partial
processing, the value of the total network energy
consumption is significantly diminished compared to the
local and cloud processing. For example, with T =0.15

sec, the value of the energy consumption is reduced to
about 65% and 35% compared to the local processing and
cloud processing, respectively.
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Figure 3. The total network energy consumption in terms of

algorithm iteration
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Figure 5. Comparison of total network energy consumption
in the local, cloud and hybrid processing.

5. CONCLUSIONS

In this paper, we investigated the optimal allocation of
the resources in a multi-cell network with MIMO. The
assigned  resources were communication and
computational resources. The main goal of this model
was to minimize the value of energy consumption with
delay constraint. We expressed the problem of the
resources optimal allocation in the form of the
optimization problem in mathematical form. Since the
problem was non-convex, we employed the SCA
iterative algorithm for solving the problem. We assumed
that the backhaul link capacity between BSs and CS was
restricted and the MUs could send a part of the processing
for computing. The simulation results showed that the
jointly resources optimal allocation led to lower energy
consumption. Also, the delay value was significantly
reduced. Furthermore, the number of MUs was able to
receive the service from CS, was increased.
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