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A B S T R A C T  
 

 

Using the sampled data of a desired pattern is a common technique in pattern synthesizing of array factor 

(AF) of antenna arrays. Based on the obtained data matrix, Least Square Method (LSM) is used to 

calculate the exciting coefficient of array elements. The most important parameter, which involves the 
accuracy and complexity of calculation, is the sampling rate of the desired pattern. Classical Least Square 

Method (CLSM) uses a linear combination of the samples, which provides low accuracy. In this paper, 

a new method is proposed by introducing a correction factor (CF) to increase the accuracy of the pattern 
estimation, while the design complexity is not increased basically. A normalized error between the 

desired and estimated pattern is considered and its variation versus CF is investigated.  It is shown that 

for an optimum value of correction factor, CFopt, the defined error is minimum. The proposed method 
is examined for a few well-known arrays and the obtained results are reported and compared with those 

of classical LSM. It is shown that the introduced method accurately estimates the required pattern of 

array factors of equally spaced linear arrays (EALAs). 

doi: 10.5829/ije.2019.32.11b.13 
 

 
1. INTRODUCTION1 

Generally, an antenna as a single element radiator does 

not provide suitable patterns. To obtain high gain and to 

provide beam steering capabilities, an array of antennas 

is required to concentrate the main beam of the antenna 

along one or a few preferred directions [1]. The most 

common form of antenna arrays is an equally spaced 

linear phased array (ESLA) antenna, in which each 

element has designated amplitude and a specified phase 

difference with its adjacent one. The main beam of the 

array is formed by phase difference and in turn, the array 

pattern is shaped. This may be achieved by steering the 

main beam toward the desired direction using an 

electronically steerable mechanism [2-4].  

The concept of array pattern synthesis, which adapts 

the required patterns has been initiated by researchers. 

Nowadays, in spite of long research on this subject, still, 

it is an interesting challenge for researchers and a variety 

of algorithms including stochastic and analytical methods 

has been reported in the literature [5, 6]. 
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A common type of antenna array pattern synthesis 

method is producing a pattern, which holds the main 

beam toward the required direction for a specified value 

of beam  width, while Side Lobe Level (SLL) is kept small 

to prevent interference with other radiating sources [7-

10].  

Linear array antennas are grouped into two main 

categories including equal and unequal space between 

elements of the array [11, 12]. Patterns synthesis 

techniques using Least Square Methods (LSM) has been 

developed for both categories, which avoids the 

computational problems associated with the direct 

calculation of a linear equations system and is used 

widely in a variety of engineering problems [13, 14]. This 

technique formulates the problem for an ESLA a set of 

M equations with N unknowns, whereas M is the number 

of the sampled data of the desired pattern and N is the 

number of the array element. In the case of M=N, the 

solution is unique. Using sampled data of a required 

pattern, a set of linear equation system is obtained in 

pattern synthesizing. The obtained equations consist of 
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an equal number of equations and unknown values, 

meanwhile, the obtained excitation coefficients of 

antenna array do not have enough accuracy. In other 

words, by changing the number of sampled points of the 

array, the accuracy of the solution is changed. Therefore, 

a suitable technique has to be used to increase the 

accuracy of the synthesized pattern. 

In this paper, a correction factor is defined in pattern 

synthesizing using sampled data of the desired pattern. 

Using this parameter, the variation of array parameters is 

controlled to obtain an accurate pattern using LSM. The 

results show that the accuracy of the synthesized pattern 

is considerably enhanced compared to those of classical 

LSM. A MATLAB based script is written to implement 

the required procedure for investigated examples. 
 
 

2. SYNTHESIZING PROCEDURE 
 

It is assumed that the number of elements formed an 

array, which is oriented along the z-axis is N. The nth 

element has weight an. The output of a linear phased array 

is given by Equation (1), in which ψ is the phase 

difference between adjacent elements. 
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To obtain sampled data of the desired pattern, 

commonly uniform sampling is used by a rate of ∆. It is 

well known from Nyquist theorem that the sampling rate 

has to be satisfied in Equation (2), in which λ, d, and L 

are wavelengths, the distance between array elements and 

total array length respectively. 
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The samples of the desired pattern are taken at M 

points (g1, g2,…, gM) and form a column vector, given by 

the right-hand-side of the matrix Equation (3). 
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 (3) 

Each row of the above matrix equation depends on the 

pattern function with unknown values of an, which are 

excitation coefficients of the antenna array. Equation (3) 

is written in matrix form by Equation (4), in which 

coefficient matrix A is an M×N matrix, whereas x and G 

are N×1 and M×1 column vectors respectively. 

=Ax G  (4) 

In the case of M=N and if A is a non-singular matrix, 

the solution of (3) is unique and is given by (5), in which 

the obtained excitation coefficients do not assure the 

rebuilding of the original pattern with acceptable 

accuracy. 

1−
=x A G  (5) 

However, in most of the practical applications, the linear 

system of equations provides no unique solution, due to 

the unequal number of rows and columns of the 

coefficient matrix A. In other words, the number of 

columns spans only a part of M-dimensional space. In the 

case of M>N, while there are more equations than the 

number of unknowns, which is called an over-determined 

condition, there is no exact vector to satisfy Ax=G. In 

classical LSM with an M×N matrix A and M×1 input 

vector G, it is required to obtain x̂ with N×1 elements to 

minimize the error vector as defined in Equation (6) [15]. 

= −e G Ax  (6) 

In the case of e=0, there is an exact solution, which 

satisfies Ax=G. To obtain an expression for x̂ using the 

norm of the error vector given by Equation (7a), in which 

the norm of e is defined in (7b), we have 

2

E = −G Ax  (7a) 

T( ) ( )− = − −Ax G Αx G Αx G  (7b) 

In Equation (7b), (Ax-G)T is the transpose of (Ax-G). 

The best solution for x̂  is given by the normal equation

ˆ
T T

=A Ax A G . In the case of left-invertible A, then 

Equation (8) is the unique solution of the LSM procedure 

[14]. 

1

ˆ ( )
T T−

=x A A A G  (8) 

It should be noted that CLSM with the solution (8) will 

be successful, whereas independent variable  and 

dependent variable gi have a linear relationship; but 

according to Equation (1), this condition is not provided. 

The system with M=N is sensitive to noise and 

computational error happens; but systems with M>N or 

M<N, have lower sensitivity to these errors. The value of 

M depends on many factors such as complexity of the 

model, statistical power and computational errors. The 

key factor in determining M is the desired power of the 

model in linear LSM [15]. However, there is not a clear 

relationship between M and the normalized error. On the 

other hand, from Nyquist theorem, the number of 

samples affects the accuracy of solutions. To obtain a 

reasonable result, a correction factor CF is defined as 

Equation (9a), in which  is given by (9b), which is the 

upper limit of the Nyquist sampling rate. 

( 1)
CF

M



− 
 (9a) 
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According to (9a), the minimum value of CF have to be 

greater than zero. In a practical case, the minimum is 

designated by CFmin. To specify the number of samples 

M, the maximum value of CF has to be determined and it 

is nominated by CFmax. By specifying CFmin and CFmax, 

the sampling rate M is determined using (10a).  

max min 1
CF CF

M
−

= +


 (10a) 

The above equation is rewritten by Equation (10b), by 

combining (9a) and (9b). 

max min

CF
CF CF


=

− + 
 (10b) 

It is well-known that the array factor in Equation (1) 

is a periodic function of  with a period of 2. In most 

practical applications, only one-half of the period is 

enough for calculating the array pattern. As a result, the 

desired pattern can be sampled by CF steps in domain, 

which is the polar angle in the spherical system with 

respect to z- axis, where the array elements are located. 

Hence, the sampling rate of the desired pattern is 

obtained using Equations (11a) to (11c), in which i and 

f are the initial and final sampled points.  

0i =  (11a) 

f =  (11b) 

step CF =   (11c) 

Using the above procedure, Equation (3) is rewritten and 

given by Equation (12a), in which o is the progressive 

phase shift. 

 =A x G  (12a) 
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 ( ) cos oh g kd  = +  (12d) 

The error value,
2

E = −G Ax , is decreased by increasing 

the correction factor. To find the best value of CF, the 

correction factor has to be changed in a specific interval 

and the optimum value of correction factor, CFopt, is 

determined, whereas minimum error is obtained. 

Moreover, the sampling rate is obtained using Equation 

(13). 

( 1) optM CF


 =

−
 (13) 

According to Equation (9), the minimum value of CF 

has to be close to zero but not zero. In this paper, 

CFmin=0.1 is selected. On the other hand, CFmax can not 

be selected a specified value for all arrays. It is chosen 

based on a trade-off between calculation complexity and 

the required accuracy. Our simulation studies show that 

high values of CF do not improve the accuracy of array 

coefficients of the array elements. However, it is needed 

to choose a minimum value for CFmax, for example, 

CFmax1.5. 

An important point in our proposed method is that the 

initial sampling rate is not distinct. In other words, the 

sampling rate for any desired pattern depends on its 

specific characteristics. In the next section, the 

introduced process is applied to synthesize the pattern of 

various arrays and the performance of the proposed 

method is investigated. 

 

 

3. RESULTS AND DISCUSSIONS 
 

In this section, a few comprehensive examples are carried 

out to design the array factor of well know arrays based 

on the proposed method in the previous section and the 

obtained array patterns are compared with classical LSM. 

The effects of CF values are also studied on the accuracy 

of the obtained patterns.  

For the first example, a uniform array with 26 number 

of elements is considered. Distance between elements is 

assumed to be half of the wavelength. Figure (1) shows 

the desired pattern, synthesized pattern using the 

proposed method and synthesized pattern using classical 

LSM for comparison. Our study shows that CFopt=2.61 

provides the lowest value of the error vector e and the 

sampling rate corresponding to CFopt leads to the best 

outcome. The CLSM method with Nyquist sampling rate 

doesn’t provide reasonable accuracy. 

A Dolph-Tschebyscheff array with 19 numbers of 

elements is studied as the second example. Distance 

between elements is set to quarter wavelength, which 

provides SLL= −18 dB. Figure 2 depicts the synthesized 

array factors using different methods. It can be seen that 

classical LLSM does not present a reasonable result. 

However, using our method and changing CF, the best  
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results are obtained using CFopt=1.88. In this case, a very 

low difference is obtained between the synthesized 

pattern with CFopt and the desired array factor.  

A broadside Taylor one parameter array using 20 

elements is considered as the third example. Distance 

between elements is quarter wavelength and the first SLL 

is set to −20 dB. The desired and synthesized patterns are 

depicted in Figure 3. In this example, the best result is 

obtained in the case of CFopt=2.29. For this value of CF, 

the main lobe of the desired pattern and the two first SLL 

for desired and synthesized patterns are matched very 

well. However, for the third lobe side lobe, there is a 

small deviation between the desired and that of the 

synthesized pattern, but our proposed technique provides 

good accuracy. 

For the next example, a dual main lobe array with 

d=λ/2, N=13, and SLL of −15 dB is investigated, in which 

the main lobes are directed toward 600 and 1200. Figure 

4 shows the results of the obtained patterns using 

different methods. It can be seen that using our proposed 

method with CFopt=1.98, the desired pattern with lower 

error than that of classical LSM is provided.  

 

 

 
Figure 1. The synthesized patterns of a 26 elements uniform 

array 

 

 
Figure 2. The synthesized patterns of a Tschebyscheff array 

 
Figure 3. The synthesized patterns of a Taylor array with 

one parameter 
 

 

Synthesizing a pulsed shaped pattern is examined as 

the fifth example and the results are plotted in Figure 5. 

The array is contained 30 elements of equally spaced with 

d=0.25. It is supposed that the desired pattern provides 

flat-top shaped-beam in range of 75 up to 105. Also, 

along with the other angles, the normalized amplitude 

pattern has to be equal or less than 0.2. It can be seen that 

both methods, the proposed method, and classical LSM, 

present nearly the same results. For this pattern, the 

correction factor has to be close to that of Nyquist 

theorem. So, the result of our proposed method meets the 

results of classical LSM.  

An array with a null in the broadside direction is 

investigated as the sixth example. This array is used in a 

variety of applications such as mono-pulse radar, in 

which null of pattern provides a very narrow angular 

width compared to that of the main beam. Characteristics 

of this array include d = 0.5 and, N=13. As it can be seen 

in Figure 6, the results of the proposed procedure with 

CFopt = 1.98 is much better than the results of classical 

LSM with CF=1. The main lobes are matched very well 

together. A small deviation is seen in SLL but still, the 

proposed method has low error compared to that of 

classical LSM. 

An array with an asymmetrical pattern as shown in 

Figure 7 with d=0.75, N=17, left SLL of −25 dB and 

right SLL of −20 dB is investigated as the final example. 

It can be seen that classical LSM with CF=1 and our 

proposed method with CFopt=2.43 anticipate the desired 

pattern very well in the region of the main lobe. However, 

the synthesized pattern in sidelobe regions is near to the 

desired pattern except for the first lobe. Moreover, 

classical LSM provides low accuracy for this type of 

array factor. It should be said that asymmetrical arrays 

have complex excitation. 

As mentioned before, by selecting a proper value of 

CF; the  accuracy  of  the  synthesized  pattern  is highly 
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Figure 4. The synthesized patterns of a dual-beam array 

 

 

 
Figure 5. The synthesized patterns of a pulse-shaped array 

 

 

 
Figure 6. The synthesized patterns of a uniform difference 

array 
 

 

improved. To demonstrate the accuracy of the presented 

method, a parametric study is carried out and the 

normalized error of the proposed method is studied 

versus the correction factor. The results are plotted in 

Figure 8 for all presented examples in this paper. It can 

be seen that by increasing CF, the normalized error of 

solution is significantly reduced up to CFopt. However, 

further increasing CF from to CFopt, the accuracy of the 

synthesized pattern is not improved.  

Table 1 summarize the optimum number of 

equations, which is required to obtain the minimum error 

for all the mentioned examples. It can be seen that for a 

few arrays the number of equations is lower than that of 

the number of unknown values. The required time to 

synthesis including the dynamic range ratio is also listed 

in this table for all examples. 

 

 

 
Figure 7. The synthesized patterns of an asymmetrical array 

 

 

 
Figure 8. The normalized error versus correction factor for 

all examples 
 

 
TABLE 1. The optimum number of equations, simulated time 

and DRR for all investigated examples 

Example # CFopt N M Time(s) DRR 

1 2.61 26 31 5.02 1.0 

2 1.88 19 16 1.01 69.1 

3 2.29 20 14 1.29 12.04 

4 1.98 13 20 1.47 45.1 

5 0.97 30 48 2.80 1e3 

6 1.98 13 20 0.92 27.5 

7 2.43 17 32 2.54 4.1 
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The obtained magnitude and phase values of 

excitation coefficients of all examples versus element 

index n are shown in Figures 9 and 10 respectively. 

 

 

 Figure 9. The obtained magnitude of an for all examples 

 

 

 Figure 10. The obtained phase of an for all examples
 

 
 
4. CONCLUSION 
 
Equally spaced linear array antennas (ESLAs) play an 

important role in communication systems such as modern 

tracking devices and radars. The study of array pattern 

synthesis methods has been a traditional subject and an 

interesting challenge for many years. Classical LSM 

based on the sampled data of the desired pattern is a well-

known technique to synthesize the pattern of an ELSA. 

Using this method, the number of sampled points of the 

desired pattern represents the number of equations, which 

determine the accuracy of the constructed pattern. To 

increase the accuracy of the estimated pattern with lower 

error than that of classical LSM, the sampling rate has to 

be increased leading to increase calculation complexity. 

In this paper, a new method based on LSM is proposed 

using a correction factor to minimize the error between 

the desired and synthesized pattern. Using the optimum 

value of the correction factor CFopt would improve the 

accuracy of the required pattern. A few comprehensive 

examples of well-known arrays are carried out to validate 

the accuracy of the proposed method. The obtained 

results demonstrate that the introduced method can be 

used to synthesize the array factor of equally spaced 

linear arrays with reasonable accuracy. 

 

 

5. REFERENCES 
 

1. Balanis, C.A., "Antenna theory: Analysis and design, John wiley 

& sons,  (2016). 

2. Udawat, A., Sharma, P. and Katiyal, S., "Optimization 

capabilities of lms and smi algorithm for smart antenna systems", 
International Journal of Engineering- Transactions B: 

Applications,  Vol. 26, No. 11, (2013), 1393-1400. 

3. Arab, M.G. and Daryabeigi, E., "An optimal selection of 

induction heating capacitance by genetic algorithm considering 

dissipation loss caused by esr", International Journal of 

Engineering- Transactions B: Applications, Vol. 24, No. 1, 

(2011), 19-26. 

4. Ravipudi, J.L. and Neebha, M., "Synthesis of linear antenna 
arrays using jaya, self-adaptive jaya and chaotic jaya algorithms", 

AEU-International Journal of Electronics and 

Communications,  Vol. 92, (2018), 54-63. 

5. Chatterjee, A., Mondal, T., Patanvariya, D.G. and Jagannath, 

R.P.K., "Fractal-based design and fabrication of low-sidelobe 

antenna array", AEU-International Journal of Electronics and 

Communications,  Vol. 83, (2018), 549-557. 

6. Das, A., Mandal, D., Ghoshal, S. and Kar, R., "Concentric circular 

antenna array synthesis for side lobe suppression using moth 

flame optimization", AEU-International Journal of Electronics 

and Communications,  Vol. 86, (2018), 177-184. 

7. Alijani, M.G., Neshati, M.H. and Boozari, M., "Side lobe level 
reduction of any type of linear equally spaced array using the 

method of convolution", Progress In Electromagnetics 

Research,  Vol. 66, (2017), 79-84. 

8. Wang, X., Zhou, Y. and Wang, Y., "An improved antenna array 

pattern synthesis method using fast fourier transforms", 

International Journal of Antennas and Propagation,  Vol. 2015, 

(2015), 1-9. 

9. Wang, Y., He, X., Wang, J., Berezin, S. and Mathis, W., "Antenna 

array pattern synthesis via coordinate descent method", Journal 

of Electromagnetic Analysis and Applications, Vol. 7, No. 5, 

(2015), 168-177. 

10. Singh, U. and Salgotra, R., "Pattern synthesis of linear antenna 
arrays using enhanced flower pollination algorithm", 

International Journal of Antennas and Propagation,  Vol. 2017, 

(2017), 1-11. 

11. Mahanti, G.K., Pathak, N.N. and Mahanti, P.K., "Synthesis of 

thinned linear antenna arrays with fixed sidelobe level using real-

coded genetic algorithm", Progress In Electromagnetics 

Research,  Vol. 75, (2007), 319-328. 

12. Lanza Diego, M., Perez Lopez, J.R. and Basterrechea, J., 

"Synthesis of planar arrays using a modified particle swarm 
optimization algorithm by introducing a selection operator and 

elitism", Progress In Electromagnetics Research,  Vol. 93, 

(2009), 145-160. 

13. Alijani, M.G. and Neshati, M.H., "A new closed-form expression 

for dispersion characteristics of fundamental mode of siw by least 

squares method", Applied Computational Electromagnetics 

Society Journal,  Vol. 30, No. 8, (2015), 930-933. 



1626                                 M. G. H. Alijani et al. / IJE TRANSACTIONS B: Applications  Vol. 32, No. 11, (November 2019)   1620-1626 
 

14. Alijani, M.G. and Neshati, M.H., "Development a new array 
factor synthesizing technique by pattern integration and least 

square method", IEEE Transactions on Antennas and 

Propagation,  Vol. 66, No. 12, (2018), 6869-6874. 

15. Strang, G., Strang, G., Strang, G. and Strang, G., "Introduction to 
linear algebra, Wellesley-Cambridge Press Wellesley, MA,  Vol. 

3,  (1993).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Development a New Technique Based on Least Square Method to Synthesize the 

Pattern of Equally Space Linear Arrays  
 

M. G. H. Alijani, M. H. Neshati 
 
Electrical Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran 

 
 

P A P E R  I N F O   

 
 

Paper history: 
Received 8 May 2019 
Received in revised form 19 July 2019 
Accepted 12 September 2019 

 
 

Keywords:  
Antenna Array  
Least Square Method  
Radiation Pattern 
Pattern Synthesis 
 
 
 
 
 
 

 چکیده 

 

 

ها است. بر اساس های نمونه برداری شده از الگوی تشعشعی مورد نیاز، روش معمول در طرح و ترکیب آرایه  استفاده از داده 

های نمونه برداری شده از الگوی تشعشعی مورد نظر، روش حداقل مربعات برای تعیین ضرایب تحریک  حاوی داده ماتریس 

شود. نرخ نمونه برداری مشخصه بسیار مهمی است که در دقت و میزان محاسبات موثر است. روش معمول  ها استفاده می آرایه 

شود، بهره می برد. در این مقاله، با تعریف پارامتر ضریب  را شامل می ها که دقت پایینی حداقل مربعات، از ترکیب خطی نمونه 

تصحیح، روش جدیدی پیشنهاد شده است تا دقت نتیجه نهایی افزایش یافته و در عین حال میزان محاسبات به طور چشمگیری  

گرفته شده و مقدار تغییرات شعی تخمینی در نظر  ع شین الگوی تشعشعی مطلوب و الگوی ت افزایش پیدا نکند. خطای تراز شده ب 

خطا برحسب ضریب تصحیح مورد بررسی قرار گرفته است. نشان داده شده است که به ازای ضریب تصحیح بهینه، مقدار خطا 

دست آمده با نتایج  های شناخته شده مورد بررسی قرار گرفته و نتایج به  شود. روش پیشنهادی برای تعدادی از آرایه   می   کمینه 

شود که روش پیشنهادی به درستی الگوی تشعشعی مورد  روش معمول حداقل مربعات مقایسه شده است. مشاهده می حاصل از  

 نیاز برای آرایه با فواصل برابر را طراحی می کند.

doi: 10.5829/ije.2019.32.11b.13 
 

 
 


