Thermal Analysis of Friction Stir Welding (FSW) with a Complex Curved Welding Seam

Document Type: Special Issue Advances in Materials and Mechanical Engineering

Authors

1 1MOE Key Lab for Liquid-Solid Structure Evolution and Materials Processing, Institute of Materials Joining, Shandong University, 17923, Jingshi Road, Jinan, 250061, People's Republic of China

2 Department of Mechanical Engineering, Faculty of Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Perak Darul Ridzuan, Malaysia

3 MOE Key Lab for Liquid-Solid Structure Evolution and Materials Processing, Institute of Materials Joining, Shandong University, 17923, Jingshi Road, Jinan, 250061, People's Republic of China

Abstract

Friction stir welding (FSW) is defined as a green technology, because the consumption of energy during this process is less than other methods. In addition, there is no gas, filler material or other consumables in FSW. It should be noted that, complex curved shapes are now commonly used in different industries for having lightweight structures. According to the descriptions, several investigations into the potential benefits of adopting FSW in the production and joining different materials are being undertaken. The work presented in this paper is focused on thermal behavior of the curved FSW and its benefits for the green technology. Due to the robust nature of FSW process aluminum 6061-T6 alloy has been selected as the welding material. The results showed that, total peak temperature value of 300°C happened at time, t = 3 s at plunge stage (outside of the welding seam). Meanwhile, at dwell stage (between t = 3 s to t = 5 s), there is a stable situation in the amount of the generated heat from the plastic deformation as well as the contact shear stress at the tool-workpiece contact interfaces, thus the interfacial temperature is found to be stable. By the end of the dwelling step, total generated heat is stable to the maximum value of 300°C. At the step time of t = 12.8 s, the temperature is distributed asymmetrically across the workpiece until the time step of 19.6 s which at this point the asymmetric contour expanded in the stir zone.

Keywords

Main Subjects