
IJE TRANSACTIONS B: Applications Vol. 31, No. 11, (November2018) 1838-1845

Please cite this article as: M. Tajamolian, M. Ghasemzadeh, A Versioning Approach to VM Live Migration, International Journal of Engineering
(IJE), IJE TRANSACTIONS B: Applications Vol. 31, No. 11, (November 2018) 1838-1845

International Journal of Engineering

J o u r n a l H o m e p a g e : w w w . i j e . i r

A Versioning Approach to VM Live Migration

M. Tajamolian, M. Ghasemzadeh*

Computer Engineering Department, Yazd University, Yazd, Iran

P A P E R I N F O

Paper history:
Received 10 July2018
Received in revised form 27 Septemebr 2018
Accepted 26 October 2018

Keywords:
Virtual Machine Live Migration
Pre-Copy & Post-Copy
QAVNS
Quadruple Adaptive Version Numbering
Scheme
Informational Object
Cloud Computing

A B S T R A C T

In the context of virtual machines live migration, two strategies called “pre-copy” and “post-copy”
have already been presented; but each of these strategies works well only in some circumstances. In

this paper, we have a brief presentation of QAVNS and then introduce a new approach which is based

on the concept of "informational object", assigning QAVNS-scheme-revision number, and observing
the changes. In this approach, the total virtual machine memory is considered as a QAVNS

informational object that is constantly changing. In this regard, we have defined some criteria and

presented an algorithm by which the hypervisor can detect the current behavior of the virtual machine,
and automatically select the virtual machine migration strategy from the two pre-copy and post-copy

options. We evaluated the implementation & simulation platforms considering the state of the art

available technologies, mostly CloudSim, SimGrid and DartCSim+. Formal analysis shows that
applying the proposed scheme and the proposed algorithm can significantly improve the live migration

process of virtual machines.

doi: 10.5829/ije.2018.31.11b.06

1. INTRODUCTION1

Technologies that use virtual machines, especially cloud

computing, play the most important role in the currently

being used IT infrastructures. In this regard,virtual

machine live migration has been one of the significant

issues in the related research works.

Various methods have been proposed for live

migration of virtual machines, which have strengths and

weaknesses relative to each other and will be referred to

in the third part of the article. Based on the concept of

the "Informational Object" and "the Adaptive Version

Numbering Scheme" for tracking the changes in the

informational objects which is presented in the fourth

part of the article, we have tried to propose a new

approach to the issue of choosing the best method for

VM live migration and providing criteria for it.

The article is organized as follows: In the following

section, some of the basic concepts are briefly cited. In

the third section, we will review the research

background in the field of virtual migration of virtual

*Corresponding Author's Email: m.ghasemzadeh@yazd.ac.ir (M.
Ghasemzadeh)

machine memory. In section 4, an adaptive numeric

mapping scheme is introduced to track changes in

information objects. In section 5,our proposed approach

is presented in detail. In section 6, we have explained

the implementation of our proposed approach and

presented an algorithm. In section 7, the analysis of the

proposed algorithm is discussed. Finally in section 8,

conclusions and suggestions for further research are

presented.

2. BASIC CONCEPTS

One of the key issues in cloud computing is the ability

to maintain a workload balancing on different cloud-

based servers. In this regard, various strategies have

been proposed, such as "task migration" from one

machine to another [1]. But in many cases, only the

migration of tasks can not solve the problem of load

imbalance and requires the entire machine's migration.

Here, the concepts of "virtual machines" and "live

migration" have been remedied [2].

Due to the growing importance of technologies that

use virtual machines (especially cloud computing), and

1839 M. Tajamolian and M. Ghasemzadeh/ IJE TRANSACTIONS B: Applications Vol. 31, No. 11, (November 2018) 1838-1845

to achieve the following benefits, the use of virtual

machines has become a defacto standard in information

technology infrastructure [3-7]:

• More performance in usage of hardware resources

• Rise in system stability

• Energy saving

• Reduce the amount of physical space consumed in

data centers

• Set up experimental environments

• Increase software lifecycle

• Faster delivery of infrastructure and servers

• Decrease dependencies on specific hardware

• Easier management of servers and services, and

costs reduction

• Facilitate backup, restore, and snapshots

• Increase the percentage of server active time

(continuity of service)

• Improved exposure to critical situations

• Easier migration to cloud computing

"Virtual Machine Migration" means that a snapshot of

an operating system running on a virtual machine, along

with all processes, system status and memory, network

communications, storage devices, and other related

items from a hardware platform (known as a host

machine) is transferred to another hardware platform

and then will continue to run it on the new machine.

Migration process is done in a similar manner to the

virtual machine suspension process, except that instead

of storing the virtual machine status in status image

files, this information is transferred via the network to

another hardware machine and the task of rebuilding the

virtual machine will be performed on the destination

machine (instead of the origin machine). The term "Live

Migration" means that the virtual machine chosen for

migration, without being powered off or even suspended

for a long time, at the same time as it is actively

engaged in answering received requests, is transferred

from one machine to another machine which is a

separate hardware.

The most common way for a virtual machine to be

transferred from a hardware platform to another

hardware platform without full stopping its guest

operating system is a process as follows:

1. Stopping step: Suspend the virtual machine in the

source physical machine.

2. Copy step: Transferring memory pages and virtual

machine status information, from the physical source

machine to the destination machine.

3. Restart step: The virtual machine starts operating in

the destination physical machine.

Some researchers have called this process "Naive

Method" [8].

As the aforementioned method leads to a sharp

decrease in the efficiency of the virtual machine,

researchers have always been looking for better ways.

In most researches, the virtual machine migration

process is generally divided into three stages [9]:

1. Push stage: While the source virtual machine

continues to run, its memory pages are copied to the

destination machine. Obviously, pages that change

during this step should be resent to the destination

machine again.

2. Stop and Copy stage: The virtual machine is

suspended, and other memory pages and status

information are transmitted to the destination

machine. Then the virtual machine in destination

physical machine begins and resumes the suspended

jobs.

3. Pull stage: The new virtual machine in the

destination if need to access pages of memory that

(for any reason) are not transferred previously, will

send appropriate requests for transferring of them to

the source, and receive them properly.

Choudhary et al. in their article have a very

comprehensive overview of various aspects and

concepts of this field of research, such as the various

techniques of VM live migration and their comparison,

performance issues and security issues [10]. One of the

beneficial features in CDCs2 is "Multiple VM

Migration". This means that multiple VMs begin to

migrate due to many resons such as load balancing.

3. LITERATURE REVIEW

A lot of research has been done on the virtual machines

migration. In this section, several basic and recent

researches, along with their relationship with the current

research are considered.

One of the proposed methods is "Pure demand-

migration", which was presented many years ago by

Zayas [11]. In his method, important memory pages that

are related to the process' data structures are transferred

to the destination host machine within a short "stop and

copy" stage. After that, the destination machine starts

and transfers the pages that are not transferred as soon

as first request access to them through the network

(pulling). Although this method leads to a shorter

"suspension time", but "total migration time" takes

much longer. Another critique of this method is its weak

performance. The target machine's performance won't

reach to the desired level until a high percentage of all

memory pages are transferred from the source machine

to the destination due to "page fault" requests on the

destination machine. Because, for each unsuccessful

memory page access request (page fault), one memory

page transferring should take place on the network that

results in a reduction in overall performance. Of course,

Zayas's research focused on the issue of "process

2Cloud Data Centers

M. Tajamolian and M. Ghasemzadeh/ IJE TRANSACTIONS B: Applications Vol. 31, No. 11, (November 2018) 1838-1845 1840

migration", which somehow shaped the topic of

research on "virtual machine live migration" in the next

two decades.

The most famous and widely used method is the

"pre-copy", which was first suggested by Clark et al.

[9]. In this method, the "push stage" is repeated

constantly. In other words, in the n-th iteration, those

pages of memory that have changed during the (n-1)-th

iteration, will be transferred. Of course, always there are

pages that change so quickly and continuously that they

can not be transferred by iterative pushings. These are

named "Writable Working Set" or WWS [9]. The push

stage is repeated as long as the WWS volume is reduced

to a significant degree, or that the number of iterations

of this stage exceeds a predetermined limit. Therefore,

the number of iterations that the push stage should be

repeated to a large extent depends on WWS, and it is

directly proportional to the workload of the source

virtual machine.

Hines and colleagues [12] proposed a reversal

approach to the "Pre-copy", known as the "Post-copy"

approach. In this approach, unlike the pre-copy method,

instead of first moving the memory pages from the

running source machine to the destination machine,

initially operation of source machine is suspended and

the processor state information is transferred from the

source to the destination. Then immediately virtual

machine running will proceeds at the destination just

from the point where it was suspended in the source

machine. Obviously, the destination virtual machine

needs access to the memory pages that are located at the

source and therefore, for each unsuccessful access

request to the memory pages (called Page Fault), a

request will be sent to the source machine through the

network, and that page is transferred back to the

destination machine.

To complete the post-copy method, there are four

suggested techniques that named: Demand-Paging,

Active Push, Prepaging, and Dynamic Self-Ballooning

(DSB). These techniques differentiate post-copy from

the "Pure demand-migration" approach provided by

Zayas [11] .

Surprisingly, despite the undeniable similarity of

Hines and colleagues' method in their article (named

Post-copy) to the one that proposed by Zayas, they have

not mentioned anything to him in their article! We think

that this can be considered as a kind of plagiarism and

should be blamed and criticized.

The post-copy approach seems to have attracted the

attention of researchers in this field so far, and many of

them have tried to improve it and solve its problems

and/or combine it with the pre-copy approach. As the

latest advancement in this field, can refer to a

combination of pre-copy and post-copy approaches

proposed by Sahni and his colleague [13].

Now, the undeniable importance of VM live

migration in improving the performance of cloud

computing services has proven. In recent years, research

trends in this area have led to issues such as accelerating

the migration process of virtual machine storage devices

[14], reducing the negative effects of VM migration

interference on the performance of each other [15], and

the automation and scheduling management of VMs

live migration [16]. This ongoing research is in the

domain of automation of VMs live migration too.

4. ADAPTIVE VERSION NUMBERING SCHEME

One of the important issues in live migration of virtual

machines is how to monitor the changes of virtual

machine memory in the migration process and decide on

how to migrate based on it. In this regard, having a

scheme that can efficiently displays and tracks virtual

machine memory changes as the versions of an

informational object, could be useful.

We present a "Quadruple Adaptive Version

Numbering Scheme" with multi-purpose usability.

"Adaptive" means that this scheme has the capability,

without changing its structure, to track the various

versions and editions of files, software packages, project

output documentation, designs, rules, manuals, style

sheets, drawings, graphics, administrative and legal

documents, and the other similar things in different

environments. So from now on, in this section, in order

to emphasize the multipurpose usability, we use the

term "InformationalObject" for all of the above. We

named this scheme "QAVNS" that stands for Quadruple

Adaptive Version Numbering Scheme.

In the proposed scheme, in normal mode, the

numbering is carried out using four integers, separated

by a dot (".") that respectively left to the right are

named: "Release Sequence Number" (or RSN),

"Generation Number", "Feature List Number" and

"Correction List Number".

If none of the changes made to an object are in the

form of adding and/or modifying the functionality or

content, but all are corrections and fixings, instead of

the feature list number, only the correction list number

will increase by one. For example, if after editing

11.0.7.0 a number of changes are made to correct

mistakes and fix some problems in the object, the new

version would be 12.0.7.1 and not 12.0.8.0 (that

indicates the changes are only in features and content).

Similarly, if all subsequent changes are corrections and

bug fixings, the correction list number will be updated

again and the next version will be 13.0.7.2.

If the changes made to the object in relation to the

previous version are combination of "adding and/or

modifying the functionality or content" and "correcting

and fixing bugs/drawbacks", then the feature list number

1841 M. Tajamolian and M. Ghasemzadeh/ IJE TRANSACTIONS B: Applications Vol. 31, No. 11, (November 2018) 1838-1845

is incremented by one unit and the correction list

number will be reset to "one". So for this case, we will

arrive at 28.0.8.1 after the 27.0.7.15 version.

If the changes made to the object are extensive and

fundamental, they will change the generation number.

For example, from the 235.1.14.772 will reach to

236.2.0.0. It is important to note that if the generation

number increases, the feature list number and the

correction list number must be reset to zero.

The change in the "Release Sequence Number" is

simply one unit increment in each version. This number

is in fact a sequential serial number.

So briefly, if in QAVNS we want to show the

structure of a version number as a pattern, we will have:

e0RSN.G.FF.CCC

where in:

• e0RSN represents the "Release Sequence Number"

using the "extended zero leading" technic.

• G represents the "generation number" and will not

be more than one digit in most work environments

and applications.

• FF represents the "Features List Number" and will

not be more than two digits in most work

environments and applications.

• CCC represents the "Correction List Number" and

will not exceed three digits in most workplaces and

applications.

The QAVNS has the capability to use for tracking

changes of any "informational object" in a variety of

environments, without altering its structure. Using this

scheme, we have presented a new approach for

automating the decision making of choosing the

appropriate virtual machine live migration method,

which is presented in the next section.

5. PROPOSED APPROACH AND METHOD

So far, none of the researchers in the field of virtual

machine live migration have claimed that their proposed

method is optimal for all conditions. It seems that the

optimal solution that can be relied upon in different

conditions is the combination of the methods proposed

so far. This means that depending on the different

circumstances of the system, it is decided which of the

proposed methods for the virtual machine live migration

will be used.

To achieve this, we provide some criteria for

automatically detecting the status of the virtual machine,

and hence the automated selection of the virtual

machine live migration method/algorithm.

Based on the concept of the "Informational Object"

that is presented in the previous section, we look at

virtual machine memory as an informational object that

is constantly changing, and therefore can have a

"VersionIdentifier" based on the QAVNS at any given

time.

Assume that the MST constant represents the start

time of the virtual machine live migration. This will get

its value from the public field/variable in the operating

system kernel, commonly known as "jiffies". The jiffies

field, in the form of an incremental counter, maintains

the number of machine hardware timer interrupts since

start of system:

jiffies = count (Timer Interrupts) (1)

MST = jiffies at start of migration task (2)

The mapping of QAVNS fields in the virtual machine

memory informational object is suggested as follows:

The 0RSN field in the QAVNS is known as the "Release

Sequence Number". Given the nature of the virtual

machine's memory informational object, we consider

this field as an order number that has the nature of time

and its values are extracted from machine timer

interrupts. This field represents the number of moments

that have elapsed since the start of the migration

operation. Therefore, the 0RSN field of the QAVNS is

mapped here as "Jiffies" with the JSacronym and is used

with the following definition:

(3)

The GG field in the QAVNS is known as the

"Generation Number". Given the nature of the virtual

machine memory informational object, we consider this

field to be the "Generation Number of the Virtual

Machine Operating System". Therefore, the GG field of

the QAVNS is mapped and used here as "OS Instance

Number". By definition, this field is initialized to 1 at

the moment the virtual machine live migration operation

is started. Each time the guest's operating system is

restarted during the virtual machinelive migration, its

value increases by one unit:

(4)

The FF field in the QAVNS is known as the "Feature

List Number". Given the nature of the virtual machine's

memory informational object, we consider this field to

be "indicator of the volume of changes in processes of

the virtual machine". Therefore, the FF field of the

QAVNS is mapped and used here as a "Process Change

Number" with the PCNacronym. By definition, this

field is initialized to zero at the moment the operation of

virtual machine live migration starts. With each creation

or deletion of a process under the guest's operating

system in the virtual machine, the value of itis increased

by one unit. This field is reset to zero if the previous

field (OSIN) is changed:

(5)

M. Tajamolian and M. Ghasemzadeh/ IJE TRANSACTIONS B: Applications Vol. 31, No. 11, (November 2018) 1838-1845 1842

The CCC field in the QAVNS is known as the

"Correction List Number". Given the nature of the

virtual machine's memory informational object, we

consider this field to be "number of the modified

memory pages". Therefore, the CCC field of the

QAVNS is mapped and used here as "Dirty Page Count

Number" with the DPCNacronym. By definition,this

field is initialized to zero at the moment the operation of

virtual machine live migration starts. With each

increment that occurs in the "number of modified

pages" of the virtual machine memory, its value is

increased by one unit. This field is reset to zero if the

previous field (PCN) is changed:

(6)

Therefore, the Version Identifier Scheme of the virtual

machine memory as a QAVNS-based object will be:

JS.OSIN.PCN.DPCN (7)

We add an initial step called the "Sampling Phase" to

the three steps proposed by Clark and colleagues for the

virtual machine live migration process (that is

mentioned at the end of section 2 of this article). During

this initial step, the values of the virtual machine

memory version identifier are being updated and

monitored. Determining the "Time length of the

Sampling phase" (which we call it Ts) is still an open

research topic.

6. ALGORITHM AND IMPLEMENTATION

Simulation and implementation can be used to provide

evidence of the efficiency of the proposed method. To

simulate, two general methods can be used: First, use of

simulation tools that are appropriate for examining

different methods of live migration of virtual machines.

Second, utilizing the implementation platforms to create

a specific simulation environment for this research. We

believe that the simulation tools developed for cloud

computing research can be used directly or with minor

alterations for this research.

Bahwaireth et al. [17], in their research, have pointed

to some of the most promising cloud computing

simulators: CloudSim, CloudReports, CloudExp,

iCanCloud, CloudAnalyst, and GreenCloud. Of course,

in our opinion some other items, such as TeachCloud

and GroudSim, can also be added to the list.

In Figure 1, the parts of CloudSim as discussed in

the Bahwaireth et al.'s article is illustrated.

Many other tools (including CloudReports) have

been developed based on CloudSim. Finally,

Bahwaireth and colleagues in their article introduced

iCanCloud as the top choice [17].

Figure 1. CloudSim parts and their relationships [17]

Tian et al. [18] have compared the four open source

simulation tools CloudSim, GreenCloud, iCanCloud and

CloudSched. Ultimately, the researchers do not list any

of them as the best simulation tool among the four

software and recommend using a combination of them

(depending on the optimization goals).

Additionally, Hirofuchi et al. [8] claimed that the

SimGrid toolkit as a general simulation tool for

distributed systems research, can be extended to be used

for simulation of virtual machines live migration.

According to Hirofuchi et al. [8], the simulation results

of a live migration using their proposedextension on

SimGrid are near to the results of the migration in the

real world. Their live migration tests in real world are

performed on the Grid5000, a large processing platform

and a network for IT research in France. Figure 2

illustrates the Grid5000 geographic structure.

Li and his colleagues, have implemented a toolbased

on CloudSim called DartCSim+that have ability to

overcome the three CloudSim limitations using the

changes they have made [19]. One of these limitations is

not considering network overhead on the process of

virtual machines live migration. In Figure 3, the flow of

data in such a migration, based on the results that are

reported by Li and colleagues [19] is depicted.

Figure 2. Geographic structure of the Grid5000 physical

platform in France [8]

1843 M. Tajamolian and M. Ghasemzadeh/ IJE TRANSACTIONS B: Applications Vol. 31, No. 11, (November 2018) 1838-1845

Figure 3. Data flow in virtual machine migration including

network overhead [19]

The initial results from our studies are not consistent

with the results of the research presented by Bahwaireth

et al. [17] (i.e.iCanCloud), and so we are not in a

position to validate their results. The preliminary results

of our studies indicate that CloudSim is superior to the

other options in terms of capabilities and can be a good

choice for simulating the various VM live migration

methods. In addition to the results of Li et al. [19], the

results of the research by Stamenov and his colleagues

also support the initial results of our studies [20].

We represent the virtual machine memory version

identifier at the start of the sampling phase with the

index s, and at the end of the sampling phase with the

index e. So we will have:

Version ID at the beginning of the sampling phase:

JSs.OSINs.PCNs.DPCNs (8)

Version ID at the beginning of the sampling phase:

JSe.OSINe.PCNe.DPCNe (9)

We claim that the following algorithm can

automatically detect the different operating conditions

of a virtual machine and choose the appropriate

approach for live migration properly. The pseudocode

of the proposed algorithm is as follows:

if (OSINe>OSINs) then choose “PostCopy Method”

else if (
𝐽𝑆𝑒

𝑃𝐶𝑁𝑒−𝑃𝐶𝑁𝑠
<𝑇𝑝) then choose “PostCopy

Method”

else if (
𝐽𝑆𝑒

𝐷𝑃𝐶𝑁𝑒−𝐷𝑃𝐶𝑁𝑠
<𝑇𝑑) then choose “PostCopy

Method”

else choose “PreCopy Method"

(10)

This is a deterministic algorithm that distinguishes the

status of virtual machine, that is the volume of the VM

workload plus its nature. Both of them are important,

because a light workload, carelessly leads to choose pre-

copy method. At the other hand, if the situation is about

a heavy memory write-intensive workload, then our

algorithm leads the hypervisor to select post-copy

method.

To achieve the above mentioned assessment, the

proposed algorithm uses two threshold values: Tp and

Td. Determining appropriate values of the Tp and Td

threshold constants in the above algorithm is still an

open research topic.

7. ANALYSIS

Based on researches, it has been prooved that each of

the pre-copy and post-copy approaches is more

appropriate than the other in special situations. In short,

the use of the pre-copy method provides better

performance when the processes running on the virtual

machine have more "read-intensive" behaviors.

Conversely, the use of the post-copy method provides

better efficiency when processes running on a virtual

machine are more likely to have "write-intensive"

behavior [12].

As during the sampling phase, by increasing the

value of the OSIN field, it is determined that the virtual

machine operating system is being restarted, this

analysis can be deduced that the changes to the memory

pages are repetitive and massive. This volume of change

is "level one" (meaning the highest level of changes in

memory pages), and yet it is no longer necessary to

examine other virtual machine states for choosing the

appropriate method. We call this state the "Unstable

state of the operating system of the virtual machine" and

therefore the appropriate choice in this case is the post-

copy method.

If there is no change in the OSIN field, then in the

next step, it is possible to decide based on the rate of

changes in the process set which is managed by the

operating system in a time unit (based on changes in the

PCN field). A logical inference here is that, typically, by

creating or deleting any process in a virtual machine, the

volume of changes in memory pages is more than the

situation that the same process is in its normal

operation.

If the change rate of the set of processes managed by

the VM operating system, passes through a threshold

(which we show it in the previous section with a Tp

constant), this volume of changes is "level two"

(meaning the mediocre state of the level of changes in

the memory pages). In this situation, however, it is no

longer necessary to examine other virtual machine

status to choose the appropriate method. We call this a

"Storm of birth and death of processes in a virtual

machine" and therefore the appropriate choice in this

case will be the post-copy method.

If none of the above two cases occur, then the

decision is based on the third criterion, which is the rate

of the number of modified memory pages per unit time

M. Tajamolian and M. Ghasemzadeh/ IJE TRANSACTIONS B: Applications Vol. 31, No. 11, (November 2018) 1838-1845 1844

(based on changes in the DPCN field). If the rate of

increase in the number of modified memory pages

passes through a threshold (which is shown in the

previous section with a Td constant), this volume of

changes is "third level" (meaning the lowest level of

changes in memory pages). This is a simple, yet quite

reasonable deduction, in which case it would be a good

choice for the post-copy method. The occurrence of this

state indicates that while the virtual machine's operating

system is in a steady state and also does not see the

storm of birth and death of processes, but we are faced

with a number of "write-intensive" processes that are

constantly changing the memory pages. We call this an

"Unruliness of processes" and therefore the appropriate

choice in this case will be the post-copy method, too.

Obviously, if none of the above three cases are true

for a virtual machine, the amount of changes in memory

pages is low. We call this a "Calm virtual machine with

noble processes" and so the proper choice in this case

will be the pre-copy method.

8. CONCLUSIONS AND FUTURE WORKS

In this paper, in addition to a brief presentation of an

adaptive version numbering scheme called QAVNS, we

present a new approach to automating the process of

choosing a suitable strategy for virtual machine live

migration. The proposed approach can enable systems

based on virtual machine technology and cloud

computing to automatically make decision for selecting

the best strategy and migration algorithm in terms of

workload conditions. This leads to a relative optimum

performance in the current situation.

One of the most significant concerns in this research

is whether the processing overhead of the proposed

method would outweigh its benefits or not. In order to

give a convincing answer, it is required to conduct a

detailed simulation or real implementations to find the

optimal values for the three mentioned parameters: Ts,

Tp, and Td. These investigations can be accomplished as

an extension to our research work.

9. REFERENCES

1. Singh, H., Kumar, S. and Shukla, A., "Load balancing

approaches for web servers: A survey of recent trends",
International Journal of Engineering, Vol. 31, No. 2, (2018),

263-269.

2. Rezai, H. and Speily, O., "Energy aware resource management
of cloud data centers", International Journal of Engineering-

Transactions B: Applications, Vol. 30, No. 11, (2017), 1730-

1739.

3. Ahmad, R.W., Gani, A., Hamid, S.H.A., Shiraz, M., Xia, F. and

Madani, S.A., "Virtual machine migration in cloud data centers:

A review, taxonomy, and open research issues", The Journal of

Supercomputing, Vol. 71, No. 7, (2015), 2473-2515.

4. Pop, C.B., Anghel, I., Cioara, T., Salomie, I. and Vartic, I., "A

swarm-inspired data center consolidation methodology", in

Proceedings of the 2nd International Conference on Web

Intelligence, Mining and Semantics, ACM., (2012), 41-48.

5. Beloglazov, A. and Buyya, R., "Energy efficient resource

management in virtualized cloud data centers", in Proceedings of

the 2010 10th IEEE/ACM international conference on cluster,
cloud and grid computing, IEEE Computer Society., (2010),

826-831.

6. Zhou, M., Zhang, R., Zeng, D. and Qian, W., "Services in the
cloud computing era: A survey", in Universal Communication

Symposium (IUCS), 2010 4th International, IEEE., (2010), 40-

46.

7. Mishra, R. and Jaiswal, A., "Ant colony optimization: A solution

of load balancing in cloud", International Journal of Web &

Semantic Technology, Vol. 3, No. 2, (2012), 33-50.

8. Hirofuchi, T., Lèbre, A. and Pouilloux, L., "Adding a live

migration model into simgrid: One more step toward the

simulation of infrastructure-as-a-service concerns", in Cloud

Computing Technology and Science (CloudCom), 2013 IEEE

5th International Conference on, IEEE. Vol. 1, (2013), 96-103.

9. Clark, C., Fraser, K., Hand, S., Hansen, J.G., Jul, E., Limpach,

C., Pratt, I. and Warfield, A., "Live migration of virtual

machines", in Proceedings of the 2nd Conference on Symposium
on Networked Systems Design & Implementation-Volume 2,

USENIX Association., (2005), 273-286.

10. Choudhary, A., Govil, M.C., Singh, G., Awasthi, L.K., Pilli,
E.S. and Kapil, D., "A critical survey of live virtual machine

migration techniques", Journal of Cloud Computing, Vol. 6,

No. 1, (2017), 23-36.

11. Zayas, E., "Attacking the process migration bottleneck", ACM

SIGOPS Operating Systems Review, Vol. 21, No. 5, (1987),

13-24.

12. Hines, M.R., Deshpande, U. and Gopalan, K., "Post-copy live

migration of virtual machines", ACM SIGOPS Operating

Systems Review, Vol. 43, No. 3, (2009), 14-26.

13. Sahni, S. and Varma, V., "A hybrid approach to live migration

of virtual machines", in Cloud Computing in Emerging Markets

(CCEM), IEEE International Conference on, (2012), 1-5.

14. Yang, Y., Mao, B., Jiang, H., Yang, Y., Luo, H. and Wu, S.,

"Snapmig: Accelerating vm live storage migration by leveraging

the existing vm snapshots in the cloud", IEEE Transactions on

Parallel and Distributed Systems, Vol. 29, No. 6, (2018), 1416-

1427.

15. Bloch, T., Sridaran, R. and Prashanth, C., Understanding live
migration techniques intended for resource interference

minimization in virtualized cloud environment, in Big data

analytics. 2018, Springer.487-497.

16. Kherbache, V., Madelaine, E. and Hermenier, F., "Scheduling

live migration of virtual machines", IEEE Transactions on

Cloud Computing, Vol., No. 1, (2017), 1-14.

17. Bahwaireth, K., Benkhelifa, E., Jararweh, Y. and Tawalbeh,

M.A., "Experimental comparison of simulation tools for

efficient cloud and mobile cloud computing applications",
EURASIP Journal on Information Security, Vol. 2016, No. 1,

(2016), 15-23.

18. Tian, W., Xu, M., Chen, A., Li, G., Wang, X. and Chen, Y.,
"Open-source simulators for cloud computing: Comparative

study and challenging issues", Simulation Modelling Practice

and Theory, Vol. 58, (2015), 239-254.

19. Li, X., Jiang, X., Ye, K. and Huang, P., "Dartcsim+: Enhanced

cloudsim with the power and network models integrated", in

Cloud Computing (CLOUD), IEEE Sixth International
Conference on, IEEE., (2013), 644-651.

20. Stamenov, D. and Kostoska, M., "Virtual machine migration in

cloud--techniques, challenges and cloudsim migration
simulation", (2017), 103-109.

1845 M. Tajamolian and M. Ghasemzadeh/ IJE TRANSACTIONS B: Applications Vol. 31, No. 11, (November 2018) 1838-1845

A Versioning Approach to VM Live Migration

M. Tajamolian, M. Ghasemzadeh

Computer Engineering Department, Yazd University, Yazd, Iran

P A P E R I N F O

Paper history:
Received 10 July2018
Received in revised form 27 Septemebr 2018
Accepted 26 October 2018

Keywords:
Virtual Machine Live Migration
Pre-Copy & Post-Copy
QAVNS
Quadruple Adaptive Version Numbering
Scheme
Informational Object
Cloud Computing

āºĊî¯

 āºý¿ ¡¾«wĄù ā¿Ā³ ½¹ÉwùĊüwăć ¿w¬ùIć Â£v¾¤Åv ÿ¹ć ÷wý Ăzwăć ~ĊÈ íĈ ÿÄ~ íĈ ¾ă wùv J¢Åv āºÉ Ătv½vìĉ v ¿vüĉ

Â£v¾¤Åvćwă ·¾z ½¹ ÔêåĈ v¾ÉÔĉ Ăz zĀ·Ĉ ù ôúÝĈºþív ½¹)üĉ ½ÿ¾ù ¿v Ä~ IĂõwêùć ¾z ¾Î¤¸ù< Ăýwñ½wĄ¯ ±¾Õ

ā½wúÉ½v¼ñć ¼~ èzwÖ£¾ĉ Ç½wòýwă ; Iìĉ ÿ½îĉº« ¹¾ºĉ ù Ătv½vĈøĊþí þ¤{ù ĂíĈ ÷ĀĄæù ¾z<ÉĈi £wÝĒÕvĈ;I ËwÎ¤·v

ÿ ā½wúÉIÈĉv¾ĉ w~ ÿÈĉ â£¡v¾ĊĊ ù ûjĈºÉwzv ½¹)üĉ Éwù ĂÚåw³ ÛĀú¬ù IÇÿ½üĊ ¿w¬ùć ĂzûvĀþÝ ĉì ÉĈi £wÝĒÕvĈ Ăí

~Ă¤ÅĀĊ â£ ów³ ½¹¾ĊĊ ù Ă¤å¾ñ ¾Úý ½¹ I¢ÅvĈ¹ĀÉv ½¹)üĉ Þù Iw¤Åv½ćwă½wĊ å¾Þù v½ ÷¿đĈ Āòõv ÿĈú¤ĉ½ ù Ătv½v v½ĈøĊă¹ Ăí

 ¾Ùwý¾PzPv ûj ÔÅĀ£ùĈºývĀ£ öÞå ½w¤å½Ĉ ÉwùüĊ ¿w¬ùć wÅwþÉ v½Ĉĉ ÿ ºþíĂz½ĀÕ Éwù ¡¾«wĄù ¹¾{ăv½ ½wí¹Ā·üĊ ¿w¬ùć ¿v v½

Àñ ÿ¹Ăþĉ ~ÈĊĈ í Ä~ ÿ íĈ wúý xw¸¤ývºĉv ½¹)üĉ wă¾¤Æz IĂÖzv½ć ~ā¹wĊć¿wÅ {É ÿĂĊć¿wÅ ¾·j Ăz Ă«Ā£ wz v½üĉ

½ÿwþåćăwć ËĀÎ¸z I¹Ā«Āù CloudSim, SimGrid ÿ DartCSim+ý IÀĊ ¿½vĈzwĉ ā¹Āúývøĉö´£)ôĊćwă úÅ½Ĉ

ù ûwÊýĈºă¹ ½Āòõv ÿ ±¾Õ ¿v ā¹wæ¤Åv Ăíø¤ĉ ~ć¹wĄþÊĊ ùĈºývĀ£ Éwù āºý¿ ¡¾«wĄù ºýÿ½üĊćwă ¿w¬ùć v½Ăz½ĀÕ ôzwé

Ą«Ā£Ĉ ºÊ¸z ¹Ā{Ąz.

doi: 10.5829/ije.2018.31.11b.06

