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A B S T R A C T  
 

 

The steady-state fully-developed laminar flow of non-Newtonian power-law fluids is examined in a 

circular microchannel with slip boundary condition and under an imposed constant wall heat flux. 
Effects of slip as well as the hydrodynamic and thermal key parameters on heat transfer and entropy 

generation are investigated. The results reveal that increasing the Brinkman number and the flow 
behavior index both lead to increasing the entropy generation and decreasing the Nusselt number. In 

heating process, the temperature difference between the fluid and the wall decreases as the slip 

coefficient increases; similar trend may or may not be observed for cooling process, determined by the 
range of the slip coefficient as well as the Brinkman number. An increase in the slip coefficient leads 

to an increase in both the Nusselt number and the Bejan number, whereas it gives rise to a decrease in 

entropy generation. For each particular value of the slip coefficient, the Nusselt number approaches a 
specific value as the Brinkman number and/or the flow behavior index increases. An increase in the 

flow behavior index or a decrease in the slip coefficient results in incrementing the average entropy 

generation. 
doi: 10.5829/ije.2017.30.07a.15 

 

 
1. INTRODUCTION1 
 

For liquid flows in macro scale, no-slip boundary 

condition on solid surface is widely assumed, which 

may not be always correct in micro and nano fluidic 

systems. Recent experimental studies of microflows 

revealed that boundary conditions at the channel wall 

depend on both flow length scale and surface properties. 

Hydrophobic smooth surfaces such as in 

polydimethylsiloxane (PDMS materials) made channels 

[1-3]. Analysis of heat and fluid flow at microscale is of 

great importance not only for playing a key rule in the 

biological systems, but also for its application in cooling 

of electronic equipments [4]. Liquid slip can occur even 

when the continuum hypothesis is perfectly valid [5]. It 

is well studied that boundary slip is often characterized 

by slip length, which is defined as the distance between 

the surface and the point inside the surface at which the 

extrapolated velocity of the fluid equals to zero. Liquid 

molecules exist in a state of continual collision. Their 

behavior is completely different from that of gases and 
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is significantly more complex; the molecular theory of 

liquids is not as well developed as that for gases. There 

are no parameters such as Knudsen number to help in 

determining the regime in which a liquid might be [6]. 

Afonso et al. [7] performed analytic solution for 

viscoelastic fluids under the mixed influence of 

electrokinetic and pressure forces in micron sized ducts. 

Ashorynejad et al. [8] used Parameterized Perturbation 

Method to obtain the solution of momentum and heat 

transfer equations of non-Newtonian fluid flow in 

channel with porous wall. They found that the 

increment in the Reynolds number has similar effects on 

velocity components, both of them increased. Chiu and 

cheng [9] performed an analytical model for 

electrokinetic flow of power-law fluid through a slit 

channel. Thay observed that in the presence of an 

applied pressure gradient, the power-law rheology 

becomes more influential on the flow, despite the 

Newtonian depletion layer. Bharti et al. [10] studied 

numerically the electroviscous effect of power-law 

fluids through a uniform cylindrical microchannel by 

solving the Poisson-Boltzmann and momentum 

equation. Dehkordi and Mohammadi [11] performed a 

numerical investigation on the transient behavior of a 
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fully-developed flow of a laminar power-law fluid, 

taking into account the effect of viscous dissipation. 

Barkhordari and Etemad [12] conducted a numerical 

study on convective heat transfer of non-Newtonian 

fluid flows in microchannels at both constant 

temperature and constant heat flux boundary conditions 

in the absence of viscous dissipation. Their 

computational results showed that a change in the slip 

coefficient decreased Poiseuille number while 

increasing local Nusselt number. Tyagi [13] performed 

a wide study on the effect of viscous dissipation on the 

fully developed laminar forced convection in cylindrical 

tubes with an arbitrary cross-section and uniform wall 

temperature. Rao and Rajagopal [14] investigated the 

consequences of slip at the wall on the flow of a linearly 

viscous fluid in a channel. Since there are many 

practical applications related to non-Newtonian fluids, 

the assessment of the heat transfer characteristics is vital 

for accomplishing successful thermal designs. An 

analysis of laminar forced convection in a pipe for a 

Newtonian fluid with constant properties was performed 

by Aydin [15]. The temperature distribution and Nusselt 

number were analytically determined as a function of 

the Brinkman number by taking the viscous dissipation 

into account. Tso et al. [16] investigated the effect of 

viscous dissipation on the heat transfer for a power-law 

fluid between fixed parallel plates and compared the 

heat transfer for pseudo-plastic and dilatant fluids. 

Lawal [17] performed an analytical study of forced 

convection heat transfer of power-law fluids in four 

geometric shapes including trapezoidal, triangular, 

circular and square ducts. Hung [18, 19] investigated an 

analytical study on the forced convection laminar fully-

developed flow of constant property nanofluids in 

microchannels. Chen et al. [20] studied heat transfer 

characteristics of power-law fluid flow in a 

microchannel and presented dimensionless temperature 

distributions and fully developed Nusselt numbers for 

different parameters such as flow behavior index, ratio 

of Debye length to half channel height, ratio of Joule 

heating to surface heat flux, and Brinkman number. 

Moghadam [21, 22] recently studied the electrokinetic 

flow and associated heat transfer of Newtonian fluids in 

microchannels with different shapes and under various 

imposed external body forces. Also, Moghadam [23] 

presented an analytical analysis on non-Newtonian 

power-law fluids in a circular microchannel to get 

analytical expressions for velocity and temperature 

profiles, the friction coefficient, and the fully-developed 

Nusselt number in the electroosmotic flow. Mohammadi 

and Moghadam [24] performed an analytic analysis on 

thermal characteristics of Bingham plastic fluids in 

circular microchannels; they obtained closed-form 

expressions for important variables in related heat 

transfer and entropy generation. Also, Sarabandi and 

Moghadam [25] examined flow and heat transfer of 

power-law fluids in circular microchannels. Larrode et 

al. [26] studied the influence of rarefaction on heat 

transfer in circular tubes for slip flow. Moghadam and 

Akbarzadeh [27] studied the effect of alternating current 

electric field on electroosmotic flow of non-Newtonian 

power-law fluids in microchannels. Also, two-fluid 

electroosmotic flow in a microchannel has been 

examined by Moghadam [28]. Bejan [29-31] has 

focused on the different reasons behind entropy 

generation in applied thermal engineering. He also 

presented entropy generation minimization (EGM) in 

different cases, compared them together and discussed 

its derivations and applications in a vast coverage of 

applied thermal engineering. Mah et al. [32] studied the 

effect of viscous dissipation on entropy generation in 

laminar fully-developed forced convection for a 

nanofluid (water-alumina) and compared the results for 

two models. Entropy generation for a non-Newtonian 

fluid in microchannels was studied by Tan and chen 

[33], Hung [34] and Mahmud and Fraser [35, 36]. They 

analyzed the effects of viscous dissipation and non-

Newtonian behavior on entropy generation for a forced 

convective heat transfer in a microchannel between 

parallel plates for a power-law fluid. Mahmud and 

Fraser [37] represented a comparison study for power-

law fluids for two geometries. The entropy generation 

rate in a purely electroosmotic flow of a non-Newtonian 

fluid in a parallel flat plate microchannel was studied by 

Escandon et al. [38].  
 

 

2. PROBLEM DESCRIPTION 
 
Hydrodynamically and thermally developed flow of 

power-law non-Newtonian fluids with constant 

properties are analyzed under an imposed wall heat flux 

in a circular microchannel (Figure 1). 

The steady-state fully-developed flow of a power-

law fluid is considered in a circular microchannel [38, 

39]: 

n

z
dV p

r m r
r dr z
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Figure1. Schematic of the physical model 
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where, m and n  are the consistency factor and the 

power-law index, respectively; 
0

r  is the channel radius 

and 
s

V  is the slip velocity on the wall. The slip boundary 

condition can be implemented via the slightly more 

intuitive idea of a slip length. If the fluid velocity at the 

boundary is non-zero, the slip-length is simply the 

extrapolation of the (linear) velocity gradient to zero, 

beyond the boundary condition is evaluated at the 

surface in which l  is called the slip-length and subscript 

s  stands for the fluid properties at the surface [40]. In 

additin, another slip boundary condition applicable to 

non-Newtonian fluids is the non-linear Navier slip 

boundary condition, at which the wall velocity is 

proportional to the velocity gradient  
o

s z r r
V l dV dr


   

[41]. The following dimensionless quantities: 

2

2

* sz
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o o m m
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m o z
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o m

VVr z
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r r V V

V r dVl p
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r V m dr
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 
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(2) 

are now introduced to nondimensionalize the 

momentum equation and its boundary conditions (1): 

n
d dV P

R Re R
dR dR Z

   
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(3b) 

in which, Re  is Reynolds number, L  is dimensionless 

slip length, and   is slip coefficient. Solution of 

Equation (3) is: 

1
1

1
1 2

n
n

n
n Re P

V R
n Z


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  (4) 

where, the Reynolds number for power-law fluids is 

defined as: 

(2 )

Re
n n

z hV D

m


  (5) 

The critical Reynolds number for power-law fluids 

defined as follows [42]: 
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(6) 

For a fixed volumetric flow rate  
1

0

1 2VRdR  , the 

dimensionless average velocity 
m

V  may be obtained; 

and with the help of Equation (4), we have: 

 
2 3 1

1

n
P n

Z Re n


  
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  (7) 

Hence, the dimensionless velocity distribution in 

Equation (4) is written as: 

 
1
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1
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(8) 

The dimensionless slip boundary condition becomes: 

 

 1
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(9) 

Poiseuille number is a dimensionless parameter that 

indicates the resistance between fluid and microchannel 

wall, and is expressed as: 

RePo f   (10) 

in which, f is Darcy friction coefficient [43]: 

( )

2

2
orz r r

z

f
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
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
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(11) 

Using Equations (2), (5), and (11), the Poiseuille 

number for Power-law fluids is derived as: 

1 3 1
2

n

n n
Po

n
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  
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(12) 

For fully-developed flow of a constant-property liquid 

in a circular microchannel, the energy equation is 

expressed as [38, 39]: 

1n

z
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(13) 

where, T  is temperature,  , 
p

C and k  are the fluid 

density, specific heat, and thermal conductivity, 

respectively [23]. The thermal boundary conditions in 

non-dimensional form are: 

0
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(14) 

where, q   is the wall heat flux. The bulk temperature 

m
T  is defined as [43]: 

 2

0
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2

m
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m z

o m
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;

z z

T V T r dr
r V
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Integrating Equation (13) over the cross-sectional area 

[32]: 

1
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(16) 

and utilizing Equations (14) and (15), we get: 
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(17) 

The dimensionless temperature and the Brinkman 

number (the relative importance of viscous heat 

generation to external heating) are defined as follows: 

 
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The positive and negative values of Br  refer to wall 

heating (fluid is being heated) and wall cooling (fluid is 

being cooled), respectively. The energy Equation (13) in 

non-dimensional form becomes: 

 
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The dimensionless thermal boundary conditions are: 
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Solution of Equation (19) with respect to (20) is: 
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Nusselt number is analytically obtained as: 
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(22) 

For Newtonian fluids in the case of no-slip condition, 

Equation (22) reduces to   768 176 768Br , which is in 

agreement with the result given in literature [31]. Also, 

when 0Br  , the common value 4.36Nu   is 

obtained. 

In cooling process (negative values of the wall heat 

flux), there is a critical Brinkman number in which the 

Nusselt number tends to infinity: 
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In general, entropy generation constitutes of two terms 

which are respectively due to thermal irreversibility and 

hydrodynamic irreversibility. Volumetric rate of entropy 

generation is [29]: 
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(24) 

If the following dimensionless entropy generation is as 

below: 

2

gen o

s

S r
N

k


   (25) 

as well as Equations (2) and (18) are substituted into 

Equation (24), the dimensionless total entropy 

generation is obtained: 
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(26) 

where  
h w

q D kT   is the dimensionless heat flux 

and 
p m h

Pe c V D k  is the Peclet number. The 

dimensionless entropy generation due to conductive 

heat transfer is correspondingly expressed as: 
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(27) 

Also, the dimensionless form of entropy generation 

contributed by fluid friction is written as: 
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(28) 

The average dimensionless entropy generation is 

defined as: 
1

0

1
2

c

s s c s

Ac

N N dA N RdR
A

  
  

(29) 

 
 

3. RESULTS AND DISCUSSION 
 
Effects of slip and viscous dissipation on heat transfer 

characteristics of fully-developed power-law fluid flows 

are studied in circular microchannels under an imposed 

constant wall heat flux. Figure 2a shows dimensionless 
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velocity profiles for 0 5n .  and different values of  . 

With increasing  , fluid velocity increases at the wall 

and decreases at the centerline; while, in contrast to no-

slip condition, velocity gradient decreases at these 

regions. For large values of  , a plug-like velocity 

distribution is observed. Figure 2b represents 

dimensionless velocity distributions for 0.3   and 

various values of n . The core represents increased 

velocity with n , while its velocity gradient decreases. 

The velocity profile of pseudoplastic fluids become 

more uniform with n , while the opposite is true for 

dilatant fluids.  

Figure 3 shows the Poiseuille number versus power-

law index at different values of slip velocity. For a fixed 

slip velocity, with increase power-law index, Poiseuille 

number increases. Indeed, with increase power-law 

index, the value of velocity gradient at the wall 

decreases; but on the other hand, apparent viscosity of 

the fluid increases and since viscosity of the dilatant 

fluids are more than pseudo-plastic fluids, friction for 

dilatant fluids will be greater than pseudo-plastic fluids. 
 

 

 
(a) 

 
(b) 

Figure 2. Dimensionless velocity profiles for various values 

of (a)   (b) n  

In addition, with increasing slip velocity at the wall, 

Poiseuille number decreases because cohesion of the 

fluid in touch with the wall drastically reduces and so 

this process causes decreases of the friction between 

fluid and wall.  

Figure 4 illustrates dimensionless temperature 

distributions for 0 5n . and 1.5n  , and  various 

values of   for two cases of the brinkman number 

(heating process). With increasing  , the 

dimensionless bulk fluid temperature increases. Since 

the surface velocity gradient and also viscous 

dissipation decrease; hence, a reduction in the 

temperature difference between the fluid and the wall is 

observed. With increasing Br , the temperature 

difference between the fluid and the surface is 

enhanced, due to viscous dissipation. It is clear that the 

overall behavior of dilatant fluids is similar to 

pseudoplastic fluids, but the former has much greater 

dimensionless temperatures. 

In the absence of viscous dissipation (Figures 4a 

and 4c), the temperature field is more dominated by the 

advection mechanism. Moreover, viscous dissipation 

increases with increasing n ; hence, for non-zero values 

of the Brinkman number (Figure 4d), the dimensionless 

temperature for dilatant fluids is higher than 

pseudoplastic fluids.  
 

 

 
Figure 3. Poiseuille number versus power-law index 

 

 
(a) 



1059                 A. H. Sarabandi and A. Jabari Moghadam / IJE TRANSACTIONS A: Basics  Vol. 30, No. 7, (July 2017)   1054-1065 
 

 
(b) 

 
(c) 

 
(d) 

Figure 4. Dimensionless temperature profiles for various 

values of  ; (a),(b) pseudoplastics fluids and (c),(d) dilatant 

fluids 

 

 
The temperature distributions of shear-thinning and 

shear-thickening fluids for various values of   are 

shown in Figures 5a and 5b for cooling process 

 0 5Br .  . Negative dimensionless temperature 

always exist near the wall (the near-wall fluid 

temperature is higher than the surface temperature). For 

sufficiently large values of the slip coefficient, negative 

values of the dimensionless temperature are observed 

throughout the flow field; to be exact, there is a radial 

heat flux from the centerline towards the wall. 
 
 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Figure 5. Dimensionless temperature profiles for various 

values of   and n  for (a) pseudoplastics fluids, (b) dilatant 

fluids; (c) 0.5Br  , (d) 0.5Br    

 

 
In fact, with increasing slip coefficient, viscous 

dissipation decreases and critical Brinkman number 

increases; the dimensionless temperature will be 

negative. 

As the slip coefficient reduces, positive values of the 

dimensionless temperature can be seen in the central 

portion of the channel (the core); i.e., the fluid 

temperature is smaller than the wall temperature. For 

heating process (Figure 5c), an increase in n  leads to a 

decrease in the dimensionless bulk fluid temperature 

(larger dimensionless mean temperature with negative 

sign). This effect is especially significant for shear-

thickening fluids. In cooling process (Figure 5d), for 

sufficiently high values of n , however, the fluid 

temperature (in the broad central area) is less than the 

wall temperature (positive values of the dimensionless 

temperature); because the advection mechanism 

dominates in this region and also for dilatant fluids the 

viscous dissipation effect at the wall is more than 

pseudoplastic fluids. Therefore, the wall temperature for 

dilatant fluids is higher than pseudoplastic fluids. 

Figures 6a and 6b show the Nusselt number as a 

function of the flow behavior index n , at various values 

of   for two different cases of the Brinkman number. 

The Nusselt number decreases with increasing n , 

because the smaller the value of n , the greater is the 

fluid velocity near the wall (see Figure 2b). However, if 

viscous dissipation is taken into account, this reduction 

is more tangible, so the Nusselt number is further 

reduced. In the case of 0Br  , for sufficiently large 

values of n , Nusselt number almost appreaches a 

constant value; because when there is no viscous 

dissipation, changes in the dimensionless temperature is 

not significant; so Nusselt number remains 

approximately constant. Nusselt number increases with 

 ; this is due to the liquid slip in the wall-liquid 

interface which leads to higher velocity near the wall 

and hence to greater convection heat transfer. As can be 

seen in Figures 6c and 6d, Nusselt number is severely 

reduced (with negative sign) with increasing n  and 

asymptotically converges to zero; because with 

increasing n , the bulk fluid temperature reduces. 
 

 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Figure 6. Nusselt number versus n  and  ; (a) Br=0; (b) 

Br=1; (c) n=0.5 ; (d) n=1.5 

 

 
Some singularity points in Nusselt number are also 

observed in Figure 6d for each  ; where, the mean 

fluid temperature reaches the wall temperature. For one 

particular value of the power law index in which 

1cBr   , a steep increase in Nusselt number is 

observed; the wall-fluid temperature difference 

decreases rapidly until it comes to a change of sign. 

Beyond the singular point, Nusselt number decreases 

rapidly. 

Figure 7 shows that there are singular points in Nu  

for each  , in which, the bulk fluid temperature 

approaches the wall temperature  Nu  . 

It is noted that in higher values of  , the 

singularities occur at larger Br , because viscous 

dissipation at the wall and the fluid temperature 

decreases with  . Therefore, in higher values of 

Brinkman number, the bulk fluid temperature 

approaches to the wall temperature. These singular 

points, for instance, occur at 10 047Br .   ( 0 8333. 

) and 6 654Br .   ( 0 7857.  ) for 0.5n   and 

1.5n  , respectively. These singularities will be close 

to each other for smaller values of  . Nusselt number 

decreases for  1
c

Br Br   ; and a sharp decline is 

observed at the critical Brinkman number in which the 

temperature differences rapidly goes to zero until it 

comes to a change of sign. A rapid and gradual decline 

in the Nusselt number are observed, respectively, in the 

range of 0
c

Br Br   and 0 1Br   (heating process). 

Related to Figure 8, an increase in   results in a 

reduction of the surface velocity gradient and also a 

reduction in the rate of thermal irreversibility for both 

shear-thinning and shear-thickening fluids. 

 
(a) 

 
(b) 

Figure 7. Nusselt number versus Br for different values of 

; (a) n=0.5, (b) n=1.5 

 

 

Actually entropy generation due to heat transfer 

depends on both axial and radial diffusion. However, it 

is much more affected by radial diffusion.  
 

 

 
(a) 
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(b) 

 
(c) 

 
(d) 

Figure 8. Dimensionless entropy generation from heat transfer 

for various values of   and n; (a) n=0.5, (b) n=1.5; (c) Br=0, 

(d) Br=0.5 

 

 

An increase in the flow behavior index (also Brinkman 

number) leads to enhance the dimensionless radial 

temperature gradient and also the dimensionless entropy 

generation due to heat transfer.  

In Figure 9, with increasing  , the dimensionless 

entropy generation due to fluid friction is reduced; 

because with increase of  , the velocity gradient at the 

wall and therefore the viscous dissipation are decreased 

for both dilatant and pseudoplastic fluids.  
 

 

 

 
(a) 

 
(b) 

 
(c) 
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(d) 

Figure 9. Dimensionless entropy generation from fluid 

friction for various values of   and n; (a) n=0.5, (b) n=1.5; (c) 

Br=0, (d) Br=0.5 

 

 

 

The maximum value of 
FF

N occurs at the wall (because 

of maximum velocity gradient) and is zero at the 

centerline. 

Also, higher values of Br (for constant n ) result in 

higher values of 
FF

N , since viscous dissipation at the 

wall increases with Br . 

 

 

4. CONCLUDING REMARKS 
 

According to this analytic study, Brinkman number, slip 

coefficient and flow behavior index mainly affect the 

flow field. The conclusions are: 

i. The wall velocity gradient decreases with 

increasing the slip coefficient, resulting in 

smaller values of viscous heating. 

ii. Pseudoplastics exhibit lower velocities than 

dilatants near the centerline (the opposite 

behavior is observed near the wall). A plug-like 

velocity distribution may be attained for 

sufficiently small values of the flow behavior 

index (at a fixed mass flow rate). 

iii. Poiseuille number decreases when slip velocity 

increases at the wall which is due to the 

reduction of friction between fluid and wall of 

the microchannel. Also, Poiseuille number for 

dilatant fluids is more than pseudoplastic 

(because of the higher apparanrt viscosity of 

dilatant fluids).  

iv. In heating mode, the fluid-wall temperature 

difference decreases with the slip coefficient (for 

a fixed n ); similar behavior may not be 

observed in cooling. 

v. Effect of increasing the flow behavior index is to 

broaden temperature profiles for both surface 

heating and cooling, resulting in enlarging the 

temperature difference between the fluid and the 

wall. 

vi. In cooling mode, the bulk fluid temperature may 

be greater or smaller than the wall temperature 

depending on the value of the flow behavior 

index as well as the slip coefficient. For 

sufficiently large values of the slip coefficient or 

sufficiently small values of the flow behavior 

index, the bulk fluid temperature is greater than 

the wall temperature. 

vii. The higher value of the Brinkman number, the 

lesser will be the conduction of heat produced by 

viscous dissipation and hence larger the 

temperature rise. 

viii. The fully-developed Nusselt number increases 

with the slip coefficient (and decreases with the 

flow behavior index and the Brinkman number) 

in heating mode. 

ix. Variations of Nu  with Br as well as n  exhibit 

singularities which occur in the cooling range; in 

these singular points, the Nusselt number tends 

to infinity. The critical Brinkman number 

associated with this particular situation depends 

on the flow behavior index and the slip 

coefficient. 

x. When viscous dissipation is negligible, for 

sufficiently large values of the power-law index, 

the Nusselt number remains almost unchanged 

with the flow behavior index. 

xi. The critical Brinkman number decreases with 

increasing power-law index, while it increases 

with the slip coefficient. 

xii. Entropy generation is enhanced by decreasing 

the slip coefficient or increasing the power-law 

index. Dilatants are more irreversibility than 

pseudoplastics. 

xiii. Total entropy generation increases with 

increasing both power-law index and Brinkman 

number, whereas decreases with the existence of 

slip condition. 

xiv. For shear-thickening fluids, the rate of entropy 

generation from fluid friction is more than that of 

entropy generation from heat transfer; while the 

reverse is true for shear-thinning fluids. 
 

 

4. REFERENCES 
 

1. Byun, D., Kim, J., Ko, H.S. and Park, H.C., "Direct 
measurement of slip flows in superhydrophobic microchannels 

with transverse grooves", Physics of Fluids,  Vol. 20, No. 11, 

(2008), 113601. 

2. Tretheway, D.C. and Meinhart, C.D., "A generating mechanism 

for apparent fluid slip in hydrophobic microchannels", Physics 

of Fluids,  Vol. 16, No. 5, (2004), 1509-1515. 



A. H. Sarabandi and A. Jabari Moghadam / IJE TRANSACTIONS A: Basics  Vol. 30, No. 7, (July 2017)   1054-1065              1064 
 

3. Chun, M.-S. and Lee, S., "Flow imaging of dilute colloidal 

suspension in pdms-based microfluidic chip using fluorescence 
microscopy", Colloids and Surfaces A: Physicochemical and 

Engineering Aspects,  Vol. 267, No. 1, (2005), 86-94. 

4. Sparrow, E. and Haji‐Sheikh, A., "Velocity profile and other 
local quantities in free‐molecule tube flow", The Physics of 

Fluids,  Vol. 7, No. 8, (1964), 1256-1261. 

5. Roy, P., Anand, N. and Banerjee, D., "Liquid slip and heat 
transfer in rotating rectangular microchannels", International 

Journal of Heat and Mass Transfer,  Vol. 62, (2013), 184-199. 

6. Wu, Y., Cai, M., Li, Z., Song, X., Wang, H., Pei, X. and Zhou, 
F., "Slip flow of diverse liquids on robust superomniphobic 

surfaces", Journal of Colloid and Interface Science,  Vol. 414, 
(2014), 9-13. 

7. Afonso, A., Alves, M. and Pinho, F., "Analytical solution of 

mixed electro-osmotic/pressure driven flows of viscoelastic 
fluids in microchannels", Journal of Non-Newtonian Fluid 

Mechanics,  Vol. 159, No. 1, (2009), 50-63. 

8. Ashorynejad, H., Javaherdeh, K., Sheikholeslami, M. and Ganji, 
D., "Investigation of the heat transfer of a non-newtonian fluid 

flow in an axisymmetric channel with porous wall using 

parameterized perturbation method (PPM)", Journal of the 

Franklin Institute,  Vol. 351, No. 2, (2014), 701-712. 

9. Ng, C.-O. and Qi, C., "Electroosmotic flow of a power-law fluid 

in a non-uniform microchannel", Journal of Non-Newtonian 

Fluid Mechanics,  Vol. 208, No., (2014), 118-125. 

10. Bharti, R.P., Harvie, D.J. and Davidson, M.R., "Electroviscous 

effects in steady fully developed flow of a power-law liquid 
through a cylindrical microchannel", International Journal of 

Heat and Fluid Flow,  Vol. 30, No. 4, (2009), 804-811. 

11. Dehkordi, A.M. and Mohammadi, A.A., "Transient forced 

convection with viscous dissipation to power-law fluids in 

thermal entrance region of circular ducts with constant wall heat 

flux", Energy Conversion and Management,  Vol. 50, No. 4, 
(2009), 1062-1068. 

12. Barkhordari, M. and Etemad, S.G., "Numerical study of slip 

flow heat transfer of non-newtonian fluids in circular 
microchannels", International Journal of Heat and Fluid Flow,  

Vol. 28, No. 5, (2007), 1027-1033. 

13. Tyagi, V., "Laminar forced convection of a dissipative fluid in a 
channel", ASME J. Heat Transfer,  Vol. 88, No. 2, (1966), 161-

167. 

14. Rao, I. and Rajagopal, K., "The effect of the slip boundary 
condition on the flow of fluids in a channel", Acta Mechanica,  

Vol. 135, No. 3, (1999), 113-126. 

15. Aydin, O., "Effects of viscous dissipation on the heat transfer in 
forced pipe flow. Part 1: Both hydrodynamically and thermally 

fully developed flow", Energy Conversion and Management,  

Vol. 46, No. 5, (2005), 757-769. 

16. Tso, C., Sheela-Francisca, J. and Hung, Y.-M., "Viscous 

dissipation effects of power-law fluid flow within parallel plates 

with constant heat fluxes", Journal of Non-Newtonian Fluid 

Mechanics,  Vol. 165, No. 11, (2010), 625-630. 

17. Lawal, A. and Mujumdar, A., "The effects of viscous dissipation 

on heat transfer to power law fluids in arbitrary cross-sectional 
ducts", Warme-und Stoffübertragung,  Vol. 27, No. 7, (1992), 

437-446. 

18. Hung, Y.M., "Analytical study on forced convection of 
nanofluids with viscous dissipation in microchannels", Heat 

Transfer Engineering,  Vol. 31, No. 14, (2010), 1184-1192. 

19. Hung, Y.-M., "A comparative study of viscous dissipation effect 
on entropy generation in single-phase liquid flow in 

microchannels", International Journal of Thermal Sciences,  

Vol. 48, No. 5, (2009), 1026-1035. 

20. Chen, G. and Tso, C., "Effects of viscous dissipation on forced 

convective heat transfer in a channel embedded in a power-law 
fluid saturated porous medium", International Communications 

in Heat and Mass Transfer,  Vol. 38, No. 1, (2011), 57-62. 

21. Moghadam, A.J., "Thermal characteristics of time-periodic 
electroosmotic flow in a circular microchannel", Heat and Mass 

Transfer,  Vol. 51, No. 10, (2015), 1461-1473. 

22. Moghadam, A.J., "Exact solution of electroviscous flow and heat 
transfer in a semi-annular microcapillary", Journal of Heat 

Transfer,  Vol. 138, No. 1, (2016), 011702. 

23. Moghadam, A.J., "Electrokinetic-driven flow and heat transfer 
of a non-newtonian fluid in a circular microchannel", Journal of 

Heat Transfer,  Vol. 135, No. 2, (2013), 021705. 

24. Mohammadi, M.-R. and Moghadam, A.J., "Heat transfer and 

entropy generation analysis of bingham plastic fluids in circular 

microchannels", Journal of Thermal Science and Engineering 

Applications,  Vol. 7, No. 4, (2015), 041019. 

25. Sarabandi, A.-H. and Moghadam, A.J., "Thermal analysis of 

power-law fluid flow in a circular microchannel", Journal of 

Heat Transfer,  Vol. 139, No. 3, (2017), 032401. 

26. Larrodé, F.E., Housiadas, C. and Drossinos, Y., "Slip-flow heat 

transfer in circular tubes", International Journal of Heat and 

Mass Transfer,  Vol. 43, No. 15, (2000), 2669-2680. 

27. Moghadam, A.J. and Akbarzadeh, P., "Time-periodic 

electroosmotic flow of non-newtonian fluids in microchannels", 

International Journal of Engineering-Transactions B: 

Applications,  Vol. 29, No. 5, (2016), 706-712. 

28. Moghadam, A.J., "Two-fluid electrokinetic flow in a circular 
microchannel (research note)", International Journal of 

Engineering-Transactions A: Basics,  Vol. 29, No. 10, (2016), 

1469-1474. 

29. Bejan, A., "Entropy generation through heat and fluid flow, 

Wiley,  (1982). 

30. Bejan, A., "A study of entropy generation in fundamental 
convective heat transfer", Journal of Heat Transfer,  Vol. 101, 

No. 4, (1979), 718-725. 

31. Bejan, A., "Entropy generation minimization: The new 
thermodynamics of finite‐size devices and finite‐time 

processes", Journal of Applied Physics,  Vol. 79, No. 3, (1996), 

1191-1218. 

32. Mah, W.H., Hung, Y.M. and Guo, N., "Entropy generation of 

viscous dissipative nanofluid flow in microchannels", 

International Journal of Heat and Mass Transfer,  Vol. 55, 
No. 15, (2012), 4169-4182. 

33. Tan, L. and Chen, G., "Analysis of entropy generation for a 

power-law fluid in microchannels", ASME Paper No. 

MNHMT2013-22159,  (2013). 

34. Hung, Y.-M., "Viscous dissipation effect on entropy generation 

for non-newtonian fluids in microchannels", International 

Communications in Heat and Mass Transfer,  Vol. 35, No. 9, 

(2008), 1125-1129. 

35. Mahmud, S. and Fraser, R.A., "Second law analysis of forced 
convection in a circular duct for non-newtonian fluids", Energy,  

Vol. 31, No. 12, (2006), 2226-2244. 

36. Mahmud, S. and Fraser, R.A., "Inherent irreversibility of 
channel and pipe flows for non-newtonian fluids", International 

Communications in Heat and Mass Transfer,  Vol. 29, No. 5, 

(2002), 577-587. 

37. Mahmud, S. and Fraser, R.A., "The second law analysis in 

fundamental convective heat transfer problems", International 

Journal of Thermal Sciences,  Vol. 42, No. 2, (2003), 177-186. 

38. Escandón, J., Bautista, O. and Méndez, F., "Entropy generation 

in purely electroosmotic flows of non-newtonian fluids in a 

microchannel", Energy,  Vol. 55, (2013), 486-496. 



1065                 A. H. Sarabandi and A. Jabari Moghadam / IJE TRANSACTIONS A: Basics  Vol. 30, No. 7, (July 2017)   1054-1065 
 

39. Bird, R.B., Stewart, W.E. and Lightfoot, E.N., "Transport 

phenomena, John Wiley & Sons,  (2007). 

40. Chhabra, R.P. and Richardson, J.F., "Non-newtonian flow and 

applied rheology: Engineering applications, Butterworth-

Heinemann,  (2011). 

41. Ferrás, L.L., Nóbrega, J.M. and Pinho, F.T., "Analytical 

solutions for channel flows of phan-thien–tanner and giesekus 

fluids under slip", Journal of Non-Newtonian Fluid 

Mechanics,  Vol. 171, (2012), 97-105. 

42. Pereira, G., "Effect of variable slip boundary conditions on flows 

of pressure driven non-newtonian fluids", Journal of Non-

Newtonian Fluid Mechanics,  Vol. 157, No. 3, (2009), 197-206. 

43. Tan, D. and Liu, Y., "Combined effects of streaming potential 

and wall slip on flow and heat transfer in microchannels", 
International Communications in Heat and Mass Transfer,  

Vol. 53, (2014), 39-42. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Slip Velocity in Flow and Heat Transfer of Non-newtonian Fluids in Microchannels 
 

A. H. Sarabandi, A. Jabari Moghadam 
 
Mechanical Engineering Department, Shahrood University of Technolgy, Shahrud, Iran 

 
 

P A P E R  I N F O   

 
 

Paper history: 
Received 22 December 2016 
Received in revised form 02 March 2017 
Accepted 21 April 2017 

 
 

Keywords:  
Heat Transfer 
Non-Newtonian Fluids 
Slip 
Brinkman Number 
Analytic Solution 
Entropy Generation 
Nusselt Number 
 
 
 

 هچكيد
 

 

جریان آرام توسعه یافته حالت پایدار سیالات غیرنیوتنی مدل پاورلا در میکروکانال گرد با شرط سرعت لغزشی و در 

شود. اثر لغزش و نیز پارامترهای کلیدی هیدرودینامیکی و گرمایی بر روی انتقال گرما وضعیت شار ثابت دیوار بررسی می

آید که افزایش عدد برینکمن و شاخص رفتاری جریان، هردو به گردد. از نتایج چنین برمیو تولید انتروپی مطالعه می

شوند. در فرآیند گرمایش، اختلاف دمای بین سیال و دیوار، با افزایش ر میافزایش تولید انتروپی و کاهش عدد ناسلت منج

یابد؛ روند مشابهی ممکن است برای فرآیند سرمایش مشاهده گردد، که به محدوده ضریب لغزش ضریب لغزش کاهش می

گردد، جر میو نیز عدد برینکمن بستگی دارد. افزایش ضریب لغزش، هم به افزایش عدد ناسلت و هم عدد بیژن من

شود. به ازای مقدار بخصوصی از ضریب لغزش، با افزایش عدد برینکمن و یا که موجب کاهش تولید انتروپی میدرحالی

کند. افزایش شاخص رفتاری جریان یا کاهش ضریب لغزش، شاخص رفتاری جریان، عدد ناسلت به مقدار خاصی میل می

 شود.سبب زیادشدن میانگین تولید انتروپی می
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