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A B S T R A C T  
 

 

One of the most famous methods to predict the stiffness of short fiber composites is micromechanical 

modeling. In this study, a Representative Volume Element (RVE) of a beech wood flour natural 
composite has been designed and the orientation averaging approach has been utilized to predict its 

stiffness tensor. The novelty of this work is in finding the proper fiber orientation distribution function 

to increase the precision of the stiffness prediction of this kind of natural composites. The predicted 
results for stiffness with the micromechanical modeling are compared to the experimental test results 

and FEM results of beech wood flour/polypropylene composite. 
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1. INTRODUCTION1 
 

Natural fiber composite (NFC) is a kind of composite 

material which is reinforced with fibers from natural or 

renewable resources and they may come from plants, 

animals or minerals and like other composite materials, 

NFC materials consist of at least two main phases: 

matrix and reinforcement constituents [1]. NFCs are not 

newly invented ones and they have been utilized in 

ancient civilizations in different forms like thatch in old 

Persia which consists of clay as matrix phase and dried 

stems of wheat or similar plants, called straw as 

reinforcement phase [2]. In this study, investigation of 

wood plastic composites (WPCs) is just the case. In 

recent years, interest has turned to the development of 

WPCs. WPC is sort of natural fiber composite which 

wood fibers are used as a reinforcement or filler in a 

plastic matrix. They have many advantages over 

synthetic fibers, such as abundant supply and 

accessibility to the raw materials, low cost, 

biodegradability, high specific properties, low 

abrasiveness and low health hazards. However, like all 

other engineering materials they have got some 
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disadvantages, generally stem from hygroscopic and 

polar nature of wood. One of the most important things 

in designing any engineering product is having the 

knowledge of their mechanical properties in order to go 

through a successful designing procedure to produce an 

appropriate and efficient engineered product. Therefore, 

predicting the mechanical properties of engineering 

materials is very important to avoid occurring 

catastrophic consequences. The objective of this study 

is to predict one of the most important mechanical 

properties of WPC called stiffness by using 

micromechanical model available for anticipating the 

stiffness tensors of short fiber composites in literature 

known as orientation averaging. However, there are 

some other micromechanical models in literature which 

the most utilized and famous ones are ROM, IROM, 

Halpin-Tsai, Cox model, and Bowder-Bader model [3]. 

ROM is very simple model using fiber and matrix sum 

of volume weighted properties to predict composite 

property [3]. To calculate the elastic modulus of the 

composite material, Voigt assumed that both the matrix 

and fiber experience the same strain. This model works 

extremely well for aligned continuous fiber composites 

where the basic assumption of equal strain in the two 

components is correct [1-4].  
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The elastic modulus of the composite in the two-

direction is determined by assuming that the applied 

transverse stress is equal in both the fiber and the 

matrix, this assumption was first used by Reuss and this 

rule is known as IROM [4]. Hirsh model is a 

combination of ROM and IROM. The Halpin-Tsai 

model considers matrix to-fiber property ratio instead of 

sum of volume-weighted properties [3]. The Cox model 

suggests that stress in fiber is proportional to the 

difference between fiber strain and the strain that matrix 

would have if there were no fibers [5, 6].  

The above models are generally used for predicting 

the Young’s modulus of short fiber reinforced 

composites but they are not as precise as orientation 

averaging which has been employed in this work in high 

volume fraction of fiber, the model that considers 

orientation of fibers embedded in matrix. This approach 

was first introduced to the scientific society by Advani 

and Tucker [7]. They proposed an extension of the 

laminate analogy of Halpin-Pagano, such that the elastic 

constants of a short fiber composite with any given fiber 

orientation distribution can be obtained by averaging the 

elastic constants of a composite with fully aligned fibers 

weighted by the fiber orientation distribution [7]. 

Nassehi et al. [8] presented a numerical method for 

the determination of an effective modules for coated 

glass fibers used in phenolic composites. Okafor et al. 

[9] applied taguchi robust design for obtimazation of 

hardness strengths response of plantain fibres reinforced 

polyester matrix composites. Heidari and Chuopani [10] 

presented a new method to determine the fracture 

properties and strain energy release rate for Carbon- 

Polyester composite. 
 

 

2. MATERIALS  
 

The composite specimens studied in this investigation 

are made from polypropylene as matrix component and 

beech wood flour as reinforcement constituent. The 

beech wood used in this study as reinforcement was 

unmodified wood with no thermal treatment, provided 

from beech trees grown in northern Iran with modulus 

of elasticity at 13.25 GPa [11]. These woods were kept 

under sunlight for two weeks to get dried as much as 

possible. Once the wood got dried, the naturally dried 

woods were disintegrated and turned into wood flour 

with the average length of 30 micron for wood particles. 

The polypropylene used in this study was the 

production of Arak petrochemical Company with 

modulus of elasticity at 800 MPa according to ASTM 

D790-10 and the poisson’s ratio 0.4. 

The two main techniques for manufacturing WPCs 

are injection molding and extrusion. Normally, a 

physical mixture of wood components, plastic and 

additives is dry blended and compounded on an 

extruder to achieve WPC granules prior to injection 

molding or extrusion. In injection molding, the granules 

are melted and injected into a mold to give the detail its 

final shape [2]. The same procedure has been done in 

this study. Test samples were produced by injection 

molding under pressure of 90 bar and the speed of 

45rpm. The compound which used for feeding the 

injection molding process was granulated PP and beech 

wood flour roving, prepared by counter-rotating twin 

screw extruder with the ratio of the barrel length to the 

screw diameter (L/D) of 16. This technique is the most 

commonly used method to manufacture WPCs because 

the screw geometry of extruders performs all of the 

elementary steps of producing these materials such as 

conveying, pumping, melting and blending. The volume 

fractions of beech wood flour amounted to 40, 50 and 

60%. However, the dispersion and proper mixing the 

polypropylene throughout the beech wood flour can be 

a major processing problem, especially in high volume 

fraction of wood flour which is investigated in this 

study. Existence of this amount of wood in test samples 

can lead to an inadequate compounding of matrix and 

reinforcement components which causes poor wetting 

of wood particles and creation of voids. To overcome 

this problem, the certain percentage of stearic acid (SA) 

as dispersion agent and Maleic anhydride modified 

polypropylene (MAPP) as coupling agents, have been 

used in the specimens manufacturing process [12]. The 

final result of this process will be a bar of rectangular 

cross section using as test sample which will undergo 

three-point bending test in order to determine its 

stiffness. Dimension information of test samples are 

shown in Table 1. 

 

 

3. MECHANICAL TESTS 

 
Bending tests were conducted in a properly calibrated 

three-point bending apparatus, with a span length of 70 

mm, equipped with a deflection measuring device 

shown in Figure 1. A bar of rectangular cross section 

with dimensions according to Table 1, rests on two 

supports and is loaded by means of a loading nose 

midway between the supports. Modulus of elasticity of 

test samples was measured in accordance with ASTM 

D790-10 by Equation (1) [13]. 

3

B 3

L m
E =

4bd

  (1) 

 

 

TABLE 1. Bending test sample dimensions 

Dimensions mm 

Width (b) 12.76 

Depth (d) 5 

Gauge length (L) 70 
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where EB, L, b, d, and m are modulus of elasticity in 

bending, support span or gauge length, width and depth 

of beam tested, and slope of the tangent to the initial 

straight-line portion of the load-deflection curve of 

deflection, respectively. The experimental modulus of 

elasticity for different volume fraction of wood flour is 

tabulated in Table 2 as follows: 

 

 

4. MODELING PROCEDURE 

 
The modeling procedure of an RVE of wood flour 

composite is presented in this section. In this procedure, 

RVEs for volume fractions of 40%, 50%, and 60% have 

been made. Once designing of the RVEs for different 

volume fractions of interest are completed, they will go 

through some particular loading scenarios to determine 

their technical constants of elasticity via strain energy 

stored in the whole RVE [14] (Figure 2). 

where in Figures 2a, b, c, d, and e are corresponding 

loading modes for evaluating longitudinal modulus E1, 

transverse modulus E2=E3, shear modulus in the plane 

of isotropy G23, shear modulus  G12, and Poisson’s ratio 

12  , respectively. These constants will be subsequently 

used to calculate the material stiffness tensor for uni-

directionally aligned short-fiber composites in 

accordance with Equation (5) which is the basis of 

future orientation averaging calculations. 

 

 

 
Figure 1. Three-point bending apparatus used in this study 

for calculating modulus of elasticity of test samples 

 

 
TABLE 2. Experimental values of modulus of elasticity for 

beech wood flour composites with different volume fractions 

of wood flour 

Wood flour volume fraction (%) EB (GPa) 

40 1.81 

50 2.57 

60 3.43 

 
Figure 2. Schematic of five different loading scenarios in 

order to make an assessment of elasticity parameters of an 

RVE: E1 (a). E2=E3(b). G23 (c). G12 (d). 12  (e). [14] 

 

 

The RVE consists of wood flour which completely 

embedded in a block of matrix. The flour considered as 

a cylinder with height of 30 micron and aspect ratio 1.5. 

Dimensions of matrix block is determined in a way that 

volume fraction of wood flour is satisfied [14]. The 

geometry characteristics of designed RVE are shown in 

Figure 3. 

Therefore the volume fraction of the RVE will be 

calculated by Equation (2) as follows: 

2

2

πr h
VF= ×100

a l
  (2) 

where in Equation (2), VF, r, h, a, and l are volume 

fraction of wood flour in percent, radius and length of 

wood flour in micron, width and length of block of 

matrix in micron as shown in Figure 3, respectively. 

In Table 3, all of the equations which are necessary 

to assess elasticity constants are given. In Table 3, V is 

the total volume of the RVE and U is the strain energy 

acquired from FE analysis. 

 

4. 1. Orientation Averaging             Existing methods 

for predicting elastic properties of short-fiber polymer 

composites from fiber orientation tensors are based on 

the orientation function which is the average of a 

transversely isotropic stiffness tensor. 

 

 
Figure 3. Cross sectional view of the RVE and its 

components dimensions 
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TABLE 3. Equations for assessing elasticity constants via 

strain energy procured from FEA  

E1 
2
1σ V

2U
  

E2 
2
2σ V

2U
 

G23 
2

2 3

σ V
( )

2U
      

G12 
2
12σ V

2U
 

12 
1 1

2 32
2

1
( )

2 2 2

E E U

E
  


      

23 
2

23

1
2

E

G
   

 

 

These evaluations focus solely on average properties 

and have yet to include a quantitative measure of 

property variation. Recognizing the statistical nature of 

fiber orientations within the composite commonly 

defined through the fiber orientation distribution 

function [15]. In this investigation, finding an 

appropriate fiber orientation distribution function in 

order to assess a good estimation of wood flour 

reinforced composites is considered as a main scope. 

Hence, the orientation averaging approach will be 

presented in subsection 4.1.1. In subsection 4.1.2, the 

preferred orientation distribution function which results 

the best answers compared with experimental results is 

introduced. 
 

4. 1. 1. Orientation Averaging Procedure         This 

method was first time validated by Gusev et al. [16] 

through analyzing of composites with relatively low 

volume fraction of fiber about 15%, for some variant 

orientation states, the result of the mentioned study was 

that orientation averaging suggests precise prediction in 

engineering scales. The fundamental idea of the 

approach is presented: the fiber orientation is fully 

outlined by the direction unit vector p, shown in Figure 

4 [17]. 

1p =sin(θ) cos(φ)   

(3) 2p =sin(θ) sin(φ)  

3p =cos(θ)  

An infinite series of orientation tensors delineates the 

orientation of a whole set of fibers. Because the fiber 

positioning is repeated, meaning a fiber oriented at 

angles (φ,θ) is identical from another one with angles 

(φ+π,θ+π), due to symmetry considerations, only the 

even second and fourth order tensors a2, a4 are pertinent. 

These are interpreted as: 

 
Figure 4. A fiber along a unit directional vector p [15] 

 

 

2π π

ij i j i j
0 0

a =<p p >= p p Ψ(φ,θ) sin(θ)dθdφ   

(4) 
2π π

ijkl i j k l i j k l
0 0

a =<p p p p >= p p p p Ψ(φ,θ) sin(θ)dθdφ   

where, ( , )   is the probability distribution function 

or in the other sense of the word, fiber orientation 

distribution function, identifying the fiber orientations 

in the composite [17]. This function should fulfil 

orthogonality condition as mentioned in Equation (4) 

[17]: 

2π π

l
0 0

Ψ(φ,θ) sin(θ)dθdφ=1   (5) 

The elastic tensor property, <C>, of a random fiber 

composite can be obtained by averaging a transversely 

isotropic tensor property of an aligned fiber composite,  

C  (Equation (5)), over all directions, weighted by 

orientation distribution function as Equation (6) [15]: 

12 12
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 
 
 
 
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 
 
 
 
 
 
 
  

 

(6) 

<C> = Ψ(p)dp  (7) 

According to [15], Equation (6) could be disintegrated 

in three distinguishable terms as Equation (7): 

0 2 4[ ] [ ] [ ] [ ]C C C C            (8) 

where, 0[ ]C  , 2[ ]C  and 4[ ]C   are tensors in 

matrix form which are presented in Equations (9), (11) 

and (14), respectively: 
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(9) 

where, coefficients 0ξ  and 0η  are defined as [15]: 

11 12 22 550

1
(3 4 8 8 )

15
C C C C      

(10) 

11 12 22 550

1
( 8 4 )

15
C C C C      

where, mn[C ] , m, n ∈ {1,2, … ,6}, is the (m,n) 

component of the uni-directional stiffness matrix 2[ ]C   

from Equation (7). 2[ ]C  in Equation (11) is: 

2 2 2 23 2 13 2 12 2

2 2 2 23 2 13 2 12 2

2 2 2 23 2 13 2 12 2

2
23 2 23 2 23 2 2 12 2 13 2

13 2 13 2 13 2 12 2 2 23 2

12 2 12 2 12 2 13 2 23 2 2

Aτ Bε -Cε 3a ε a ε a ε

Bε Cτ -Aε a ε 3a ε a ε

-Cε -Aε -Bτ a ε a ε 3a ε
C =

3a ε a ε a ε -Aη 3a η 3a η

a ε 3a ε a ε 3a η -Cη 3a η

a ε a ε 3a ε 3a η 3a η Bη

 
 
 
 
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


 
(11) 

11

11 22

22

A=3a -1

B=3a +3a -2

C=3a -1

 (12) 

where, the coefficients  2 ,  2 , and  2  are given as: 

11 12 22 552

6
ξ = (3C +C -4C +2C )

42
 

(13) 

11 12 22 23 552

1
η = (2C -4C -5C +7C +6C )

42
 

2
2

2ξ
τ =

3
 

2 2 2

1
ε = (ξ -6η )

3
 

And finally 4[ ]C   will be given as Equation (14) in 

tensor form for the sake of conciseness as follows: 

 

 

4

4

1

7

1

3

ijkl
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C
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
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 
 
   
 

 
(14) 

where, mn , m, n {1,2, … ,6}, is kronecker delta and  

4 is defined as Equation (15). 

11 12 22 554 2 4C C C C      (15) 

4. 1. 2. Fiber Orientation Distribution Function    

The function of the form 2 2Ψ(θ, )=csin θ.cosn n  from 

[18] is chosen as fiber orientation distribution function, 

where n ∈N. Notice that n=0 yields the isotropic case, 

which fibers are randomly oriented all over the RVE. 

As the n increases the fiber orientation tends to orient 

along the x axis which results higher stiffness. This 

direction (x) agrees with the direction which melted 

WPC flows during the injection molding process. The 

constant c is chosen to satisfy the normalization 

condition [18].  
 

4. 2. Boundary Conditions            For the purpose of 

obtaining elastic constants of the RVE, it should go 

under some loading scenarios which have been 

described in detail in [14]. This loading modes can 

categorized in two basic groups which are loading under 

normal stresses e.g. 
1

0
xσ  and loading under shear 

stresses e.g. 
1 2

0
x x . The boundary conditions according 

to these basic types of loading are presented in 

subsequent subsections. 
 

4. 2. 1. Subjected to 
1

0
xσ           Consider the RVE 

shown in Figure 5. The boundary conditions must be set 

in such a way that the compatibility of the unit cell with 

neighboring cells in the infinite composite could be 

satisfied. For the loading case under normal stresses, in 

the absence of shear loading, the bottom edge of the 

RVE (x1-axis) was not allowed to move in the x2-

direction and the left edge (x2-axis) was not allowed to 

move in the x1-direction (Figure 5) [19, 20]. 
The right edge can have an equal amount of the 

displacement in x1-direction and the top edge can have 

an equal displacement in x2-direction, so the nodes on 

right edge must be coupled in the x3-direction. 

Similarly, the nodes Therefore, appropriate boundary 

conditions on the various edges of the RVE can be 

considered as [21]: 

on the top edge must be coupled in the x1-direction 

[19]. 
 

 

 
Figure 5. A sample unit cell for illustration of imposing 

boundary conditions 
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11 1

0
xx =0 x =a

u =0  and  u = aε  

(16) 
2 22

0
x =b xx =0

v =0  and  v = bε  

3 33

0
x =c xx =0

w =0  and  w = cε  

where a, b, and c (which is not shown in Figure 5) are 

the three dimensions of the RVE shown in Figure 5 and 

u,  , w, 
1

0
xε , 

2

0
xε , and 

3

0
xε are corresponding 

displacements and strains  along x1, x2 and x3 directions 

respectively [21].  

 

4. 2. 2. Subjected to 
2 3

0
x x            The nature of shear 

stresses is slightly more complicated than their direct 

counterparts. As summary, all boundary conditions for 

the unit cell under macroscopic stress 
2 3

0
x x  are as 

follows [21]: 

1 1x =0 x =a
u = u = 0  

(17) 
2 2 2 2x =0 x =0 x =b x =b

u =  w =  u =  w = 0  

2 33 3 3 3

0
x xx =0 x =0 x =c x =c

u = v =u =0  and   v =cγ  

The matrix is assumed to be perfectly bonded to the 

fibers throughout the analysis. This requires satisfaction 

of the continuity of displacements and reciprocity of 

traction at the fiber-matrix interface: 

f mu =u  , f mt +t 0  (18) 

where, superscript f and m denote fiber and matrix, 

respectively, and u and t are the displacement and 

traction vectors on the interface [19, 20]. 

 

 

5. RESULTS AND DISCUSSIONS  

 
RVEs of interested volume fractions have been 

generated. A FEA (finite element analysis) was carried 

out using the FEA code and Proper boundary conditions 

have been imposed on RVEs in accordance with section 

4. Consequently, stiffness tensors of beech wood flour 

composite specimens have been estimated using 

orientation averaging scheme by appropriate orientation 

distribution functions. In order to acquire these stiffness 

tensors, primarily, as mentioned before, an RVE of 

interested volume fraction of fiber goes through a 

loading scenario, demonstrated by Figure 2. Once this 

stage is done, all of C components will be computed by 

FEA code. By using orientation averaging scheme and 

evaluating 0[ ]C  , 2[ ]C  , and 4[ ]C  according to 

Equations 8, 10 and 12, and adding up these procured 

results commensurate with Equation (7), the final 

stiffness tensors which are exploited for prognosticating 

mechanical properties of WPC are acquired.  

Three different orientation distribution functions 

which are discriminated with each other by their n 

values (Table 4), have been evaluated in this study and 

corresponding stiffness tensors were calculated and the 

orientation distribution function with best answer fitting 

to the experimental results is selected as a best function 

to predict stiffness properties of wood flour composites. 

C3D8R, C3D6, and C3D4 elements have been 

employed for FE analysis and finer meshing strategy is 

used at the places which loads are exerted. 

One of the best features of this method is benefiting 

from orthodox orientation distribution functions to have 

a relatively impeccable anticipation of WPC mechanical 

property. There are so many functions which may fulfill 

conditions like orthogonality condition but few of them 

can result in an accurate answer as a corollary of a right 

decision of choosing appropriate functions. It is 

conceivable that finding suitable function in WPCs with 

low volume fraction of fiber, is not a major problem. In 

these amount of volume fractions of fiber, even 

selecting isotropic distribution of fibers in matrix, might 

result in good prediction, but in higher volume of 

fractions, like more than 40% of wood, the issue is 

completely different. As the volume fraction of fiber 

elevates, discrepancy between experimental and 

predictions answers ascends. Most of FEA methods like 

Random Sequential Adsorption and Monte Carlo codes 

fail to have an accurate prediction in such high volume 

fractions. Therefore, finding a method to compensate 

this lacuna is in a great interest. 

The most important facet which is obvious in 

selecting n=0 (considered as isotropic distribution of 

wood particles in matrix) for orientation distribution 

function, is a considerable relative error which increases 

more and more as volume fraction of wood increases, 

compared to functions with higher n (n=1, n=2). By 

choosing with higher value of n, the accuracy of the 

answers gets better and the best predicted value is 

acquired at n=2, with lowest relative error in highest 

volume fraction of wood at 60%. 

 
 
TABLE 4. Orientation distribution functions as a function of 

n 

n 
2 2Ψ(θ, )=Csin θ.cosn n   

0 
1

4
 

1 
2 23

sin θ.cos
4π

  

2 
4 45

sin θ.cos
4π

  
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The strain energy density of different loading modes, 

according to [14] is obtained as mentioned before and 

the stiffness tensors components for different volume 

fractions and different fiber orientation distribution 

functions are presented in Tables 5, 6, and 7. 
Predicted Young’s modulus were obtained by 

orientation averaging, employing three different 

orientation distribution functions presented in Table 3, 

are shown in Table 8 in comparison with experimental 

results. As it is obvious from Table 8. isotropic 

distribution of flour in matrix (n=0) yields farthest 

answers, compared to experimental results. 

 

 
TABLE 5. Stiffness tensors components for the volume 

fractions of interest with
1

Ψ(θ, )=
4π

    

VF (60%) VF (50%) VF (40%) Cijkl (GPa) 

3.91 3.27 2.75 1111 

1.70 1.62 1.52 1122 

1.70 1.62 1.52 1133 

1.70 1.62 1.52 2211 

3.91 3.27 2.75 2222 

1.70 1.62 1.52 2233 

1.70 1.62 1.52 3311 

1.70 1.62 1.52 3322 

3.91 3.27 2.75 3333 

1.10 0.82 0.61 2323 

1.10 0.82 0.61 3131 

1.10 0.82 0.61 1212 

 

 
TABLE 6. Stiffness tensors components for the volume 

fractions of interest with 2 23
Ψ(θ, )= sin θ.cos

4π
    

VF (60%) VF (50%) VF (40%) Cijkl (GPa) 

4.14 3.41 2.82 1111 

1.73 1.64 1.54 1122 

1.73 1.64 1.54 1133 

1.73 1.64 1.54 2211 

3.79 3.20 2.71 2222 

1.64 1.58 1.49 2233 

1.73 1.64 1.54 3311 

1.64 1.58 1.49 3322 

3.79 3.20 2.71 3333 

1.07 0.80 0.60 2323 

1.12 0.83 0.61 3131 

1.12 0.83 0.61 1212 

TABLE 7. Stiffness tensors components for the volume 

fractions of interest with 4 45
Ψ(θ, )= sin θ.cos

4π
    

VF (60%) VF (50%) VF (40%) Cijkl (GPa) 

4.40 3.54 2.91 1111 

1.66 1.61 1.51 1122 

1.66 1.61 1.51 1133 

1.66 1.61 1.51 2211 

3.80 3.20 2.72 2222 

1.64 1.57 1.42 2233 

1.66 1.61 1.51 3311 

1.64 1.57 1.48 3322 

3.80 3.20 2.72 3333 

1.07 0.81 0.61 2323 

1.04 0.79 0.58 3131 

1.04 0.79 0.58 1212 

 

 

TABLE 8. Predicted Young’s modulus of beech wood flour-

PP composites, using different fiber orientation distribution 

functions as a function of volume fraction in comparison with 

experimental data 

Beech wood flour 

volume fraction (%) 
n 

Predicted 

E (GPa) 

Experimental 

E (GPa) 

Relative 

Error (%) 

40 

0 1.67 1.81 -7.73 

1 1.71 1.81 -5.52 

2 1.80 1.81 -0.55 

50 

0 2.20 2.57 -14.40 

1 2.28 2.57 -11.30 

2 2.46 2.57 -4.30 

60 

0 2.88 3.43 -16.03 

1 3.02 3.43 -11.95 

2 3.39 3.43 -1.17 

 

 
With this distribution of flour in matrix, as volume 

fraction of flour increases, the less precision in 

predicting of Young’s modulus is obtained. This can be 

related to creating of voids within the matrix as flour 

volume fraction ascends. As the value of n increases to 

one, the predicted stiffness increases, as expected, 

because fibers tends to have orientation along melt flow 

in compression molding procedure, therefore better 

answers in comparison with the case n=0 are obtained. 

The best predicted Young’s modulus is acquired by 

choosing n=2 for fiber distribution orientation function. 

This means that fiber distribution function

4 45
Ψ(θ, )= sin θ.cos

4π
   is the best function in estimating 

of Young’s modulus of wood flour composites and can 

be highly trusted with maximum precision in industrial 
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applications. Regarding all these facts, predicting 

stiffness property of short fiber composites with 

satisfactory precision in high volume fraction of fiber 

will be reachable but choosing a good fiber distribution 

function which results good prediction is going to be a 

major challenge. Hence, further study should be done 

on variant WPC samples in order to defining the best 

fiber distribution functions which result the best 

answers fitting experimental results with lowest 

discrepancies. Afterwards the best fiber distribution 

functions which yields best answers can be collected 

and clustered in a handbook. 
 

 

6. CONCLUSION 
 

Orientation averaging approach has been employed in 

order to predict the stiffness properties of beech wood 

flour-PP composites. An RVE of interested volume 

fraction was generated and FE analysis was performed 

in order to evaluate stiffness tensors, according to the 

three different fiber distribution functions. By 

considering isotropic distribution of the wood flour in 

matrix, the predicted Young’s moduli do not have 

enough precision to estimate the stiffness of WPC 

specimens. Choosing n=0 for fiber distribution function 

has another consequence which compromises the 

precision of the answers compared to the experimental 

results in higher volume fractions of wood flour. Hence, 

as the volume fraction of wood flour increases, the 

distance between predicted and experimental results 

rises, resulting greater relative error. It has been shown 

that the 4 45
Ψ(θ, )= sin θ.cos

4π
   results the best answers 

in comparison with experimental data in predicting 

stiffness property of beech wood flour-PP composites. 

Another aspect of selecting this fiber distribution 

function is its precision in finding better answers as 

volume fraction of wood flour escalates in such a way 

that relative error can be neglected in comparison with 

isotropic distribution of the wood flour. 
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 هچكيد
 

 
های الیاف کوتاه استفاده از مدلسازی  بینی خواص الاستیک و خرابی در کامپوزیت های مطرح برای پیش یکی از روش

-چوبسازی رفتار کامپوزیت طبیعی الیاف کوتاه  باشد. در این مقاله یک المان نماینده برای مدل میکرومکانیکی می

بینی ماتریس سفتی کامپوزیت استفاده شده است.  گیری جهتی برای پیش پلاستیک در نظر گرفته شده است و روش میانگین

باشد که منجر به افزایش دقت  نوآوری این روش بدست آوردن یک تابع مناسب بعنوان تابع توزیع راستای الیاف می

بینی شده برای ماتریس سفتی که با استفاده از  باشد. نتایج پیش یعی میهای طب پیشبینی ماتریس سفتی در اینگونه کامپوزیت

پلی -سازی المان محدود برای کامپوزیت چوب مدلسازی میکرومکانیکی بدست آمده است با نتایج تست تجربی و مدل

 پروپیلن مقایسه شده است.
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