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A B S T R A C T  
 

 

In today's highly competitive industrial environment due to fast technology development, quality 

practitioners will have to detect out-of-control situations and take actions whenever is necessary as 

soon as possible. Accordingly, new statistical procedures have been enhanced incessantly both to 
handle high yield processes along with looking for methods of minimizing all quality cost. CCC-r 

(Cumulative Count Conforming-rarely) chart, the extended method of CCC charts, is commonly 

applied when nonconforming items are rarely observed. Since the values of the parameters used for the 
design of the charts' control parameters are usually unknown in practice, the practitioners need to 

estimate them by using an in-control retrospective sample. It has been shown that parameter estimation 

affects the control charts' properties severely. This study develops a model based on estimation costs 
and Average Number of Inspected Items for CCC-r chart when nonconforming fraction is unknown. 

The unknown parameters estimated based on different values of sample sizes and sensitivity analysis 
was performed. 

doi: 10.5829/idosi.ije.2017.30.02b.12 
 

 
1. INTRODUCTION1 
 

As one of the basic Statistical Process Control (SPC) 

tools, control chart has an important role to maintain 

process stability. Quality practitioners use control charts 

to draw conclusions about the state of the process and 

monitor performance to retain control situation in the 

production process. 

The control chart conclusions depended on whether 

the applied monitoring approach is a phase I or phase II 

method. In phase I, historical data of the process is 

analyzed to understand the variation of the process over 

time, to evaluate the process stability, and to estimate 

the in-control parameters. In phase II, the process is 

monitored in real-time to quickly detect shifts from the 

baseline established in phase I [1]. As highlighted by 

Szarka and Woodall [2], the sampled items in high yield 

processes are often represented by a Bernoulli process; 

that is, the items are independently classified as 
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conforming or nonconforming. In addition, Szarka and 

Woodall [2] stated that the in-control value of p, p0, is 

typically assumed to be known. However, accurate 

parameter estimation for such processes is very difficult 

and may require a larger sample size than available in 

practice. Psarakis et al. [3] emphasized that a key factor 

on designing reliable control charts with estimated 

parameters is the accuracy of the process parameter 

estimators obtained during the phase I implementation 

of charts. There are several measures employed to 

evaluate the efficiency of the proposed estimators. Also, 

Psarakis et al. [3] proved that the most reliable control 

charts are based on the most efficient and robust 

parameter estimators, especially in cases where 

normality assumption is violated and diffused or 

localized disturbances are present. Moreover, since 

parameter estimation has an impact on the in-control 

and out-of-control performance of control charts, thus 

the performance of each estimated chart has to be 

evaluated. Many researchers have studied the effects of 

estimation on control chart performance. Jones et al. [4], 

Chakraborti [5], Testik [6], and Ryu and Wan [7] 
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studied variable control charts with estimated 

parameters. Yang et al. [8] and Chakraborti and Human 

[9] reported the effects of parameter estimation on 

attribute control charts. Jensen et al. [10] analyzed the 

effect of parameter estimation on control charts and 

concluded that the effect of parameter estimation on 

control chart properties should not be ignored. Shepherd 

et al. [11] presented a comparison of the in-control ARL 

(average run length) properties of the attribute chart for 

Markov-dependent data with known and estimated 

parameters. Lee and Lee [12] evaluated the performance 

of Shewhart chart with estimated parameters in terms of 

the average of median run length (AMRL) and the 

standard deviation of MRL (SDMRL) metrics. Since the 

run length distribution is skewed when the process is 

either in-control or out-of-control, the median run length 

(MRL) can be used as alternative measure instead of the 

ARL. Saleh et al. [13] studied the effect of the phase I 

estimation error on the cumulative sum (CUSUM) chart. 

They designed the CUSUM chart by adjusting the 

control limits using a bootstrap-based design technique. 

To reduce the effect of estimation error on the chart's 

performance  

However, accurate parameter estimation for high 

yield processes is very difficult and may require a larger 

sample size than that available in practice. 

High-quality or high-yield processes refer to those 

production or processes which are capable of producing 

defective items rarely and have a very low 

nonconforming proportion. In these states, traditional 

statistical process control tools had been found 

inadequate to provide the obligatory decision support 

mechanisms to evaluate the process. Bersimis et al. [14] 

expressed that this is because of the rules used in these 

charts. So, if a small or moderate shift occurs in these 

processes, then the out-of-control fraction of non-

conforming items will still be very small, and as a 

consequence, it is highly probable that no defective 

items will be observed in the inspected sample. 

Therefore, for small or moderate shifts in 

nonconforming fraction, standard p or np charts are 

incapable to diagnose a change in a high quality process 

because there are a small number of nonconforming 

items, and usually a high number of conforming items 

are detected before a nonconforming one.  

Due to the properties of zero defect processes, the 

high yield control chart, also known as the Cumulative 

Conformance Count (CCC) chart or Geometric chart, 

has gained wide application in the industry. This chart 

first introduced by Calvin [15], counts the number of 

conforming items produced between successive 

nonconforming ones. It has been known for its ability to 

detect improvements in high yield production processes 

while overcoming the problem of possible false alarms 

experienced by the Shewhart chart when a defective 

item rarely occurs. Zhang et al. [16] suggested an 

improved technique for high-quality processes under 

group inspection and concept of control charts for high-

quality process under sampling inspection. Chen et al. 

[7] offered a CCC control chart with variable sampling 

intervals and control limits. Their numerical 

comparisons showed that the performance of the CCC 

control chart could be improved by some modifications.  

In recent years, attention to rising sensitivity of 

control charts considerably increased because of 

technology improvements. An alternative strategy to 

enhance sensitivity is to monitor the cumulative count 

of items produced until a fixed number ''r'' of 

nonconforming items are observed. This chart is called 

CCC-r control chart and it has better performance in 

finding the shifts of the non-conforming proportion in 

high-quality processes. The idea of CCC-r control chart 

has been proposed by Xie et al. [17] and further 

discussed by Sun and Zhang [18]. The cumulative count 

of conforming items will follow the Negative Binomial 

distribution, which is a generalization of the Geometric 

distribution.  

Yang et al. [8] proved that an accurate parameter 

estimation might require a large sample size in the high-

quality processes. They studied the effect of sample size 

and run length distribution on the CCC chart with 

estimated control limits. Zhang et al. [1] presented 

geometric charts with estimated parameters and they 

used the standard deviation of the average run length 

and the standard deviation of the average number of 

inspected items to show that much larger sample sizes 

in phase I are needed in practice than the sample size 

implied by previous researches. Chiu and Tsai [19] 

explored the impact of estimated nonconforming 

fraction, p0, on a one-sided CCC control chart. They 

have shown that values of conditional probability of a 

false alarm rate, conditional average run length, and 

standard deviation are close to the nominal values for a 

large sample. Zhang et al. [20] investigated the effect of 

performance of CCC chart with variable sampling 

intervals with estimated control limits. The best design 

parameters of CCC chart with variable sampling 

intervals with known process nonconforming rate p0 are 

determined when such nonconforming fraction is 

estimated with Bayesian estimator. Yang et al. [8] 

recommended taking a historical sample of size m from 

the Bernoulli process and using the maximum 

likelihood estimator for p0. Zhang et al. [1] and Lee et 

al. [21] proposed the Bayesian estimator. Tang and 

Cheong [22] proposed another sampling scheme based 

on observing a specified number of nonconforming 

items. As a result, the size of the phase I sample is a 

negative binomial random variable. Rakitzis and 

Costagliola [23] investigated the performance of 

Shewhart-type control charts for zero-inflated processes 

with estimated parameters and proposed practical 

guidelines for the statistical design of the examined 

charts, when the size of the preliminary sample is 

predetermined. 
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An efficient implementation of a control chart 

requires the optimal selection of its design parameters, 

the appropriate sample size, sampling frequency, and 

control limits. They can be selected according to an 

economic-statistical objective before applying the 

classical control methods so that minimum cost in 

production cycle is obtained. 

Several methods are proposed for the economic 

design of control charts. Duncan [24] was the first to 

present a mathematical model for the design of control 

charts achieving a pure economic objective function 

based on the minimization of a total cost per hour. 

Yilmaz and Burnak [25] discussed about importance of 

cost consideration. Furthermore, they explained that any 

activities in production and quality control should be put 

into the context of cost saving. In most researches only 

one objective function named cost function is 

minimized subject to statistical constraints which is not 

an effective method for economic-statistical design of 

control charts. Moghaddam et al. [26] generalized a 

multi objective model for designing CCC control chart 

where optimal values of sampling interval and the lower 

control limit are obtained such that cost function as well 

as out of control average run length are minimized, 

while in-control average run length is considered as a 

statistical constraint. 

Nowadays, in using control chart, economic factors 

must be taken into account to achieve optimum level for 

designing the charts. From the economic view, all 

quality costs such as those related to sampling, testing, 

investigating out of control signals, eliminating special 

cases, and rectifying the process are influenced by 

process parameters. 

With respect to the literature review, it is important 

to consider control costs in determining chart 

parameters so that control chart could be operating in an 

optimum condition and production process costs is 

minimized specifically in high quality production.  

Since reaching to a defective need to investigating 

many samples in high quality processes and it leads to 

additional time and cost, so it’s been tried to estimate 

non-conforming fraction in a way such that inspection’s 

cost would be in the minimum value in this research. 

In addition, there is an error in estimating non-

conforming fraction of the process, and this causes 

additional cost. The Average Number of Inspected items 

is used as performance measure in order to analyze the 

accuracy of estimation. Therefore, with considering 

formulation of CCC-r control chart, the purpose of this 

study is to estimate parameters by considering 

estimation related costs, which have not been addressed 

in previous studies. At first, the probability distribution 

of estimators is developed and then the Upper control 

limit and Lower control limit of the CCC-r chart are 

calculated based on estimation of non-conforming 

fraction. Then, a cost scheme is designed by considering 

investigation cost of samples and estimation error cost 

based on Average Number of Inspected items. In this 

scheme, the needed sample size to estimate the non-

conforming fraction is obtained when the objective 

function is in its optimum value.  

This paper is organized as fallows. Firstly, the 

formulations of CCC-r control chart will be reviewed, 

and estimation of non-conforming fraction is discussed. 

Secondly, a cost scheme to obtain the optimum sample 

size is explained. Then, a numerical example and 

sensitivity analysis of the model will be given in section 

four. At last, the conclusion is presented. 

 

 
2. REVIEW OF CCC-r CONTROL CHART 
 
The idea of CCC chart can be extended for process 

monitoring by considering the number of items 

inspected until a fixed number of nonconforming items 

are observed. This control chart is called the cumulative 

count of conforming chart (CCC-r chart). In a CCC-r 

chart, the number of items until the detection of rth 

nonconforming item (x) is plotted to monitor the 

nonconforming fraction of the process, 𝑝0. If the value 

𝑝0 ∈ (0.1) is known, x is a random variable of negative 

binomial distribution. The probability mass function 

(pmf) and the cumulative distribution function (cdf) are 

presented by Xie et al. [27] as follows: 

𝑓𝑟.𝑝0
(𝑥) =  (𝑥−1

𝑟−1
)(1 − 𝑝0)𝑥−𝑟𝑝0

𝑟 ; 𝑓𝑜𝑟 𝑥 = 𝑟. 𝑟 + 1. …  (1) 

𝐹𝑟.𝑝0
(𝑛) = 𝑝(𝑥 ≤ 𝑛) =

 ∑ (𝑖−1
𝑟−1

)𝑛
𝑖=𝑟 (1 − 𝑝0)𝑖−𝑟𝑝0

𝑟  ; 𝑓𝑜𝑟 𝑛 = 𝑟. 𝑟 + 1. … 
(2) 

when r is equal to one (the case of CCC chart) then the 

distribution reduces to geometric probability 

distribution.  

For an acceptable risk of false alarm, 𝛼, Xie et al. 

[28] explained that the upper control limit, UCL and the 

lower control limit, LCL of the CCC-r chart could be 

obtained as the solutions of the following equations: 

𝐹(𝑈𝐶𝐿 − 1. 𝑟. 𝑝0) = ∑ (𝑖−1
𝑟−1

)𝑝0
𝑟𝑈𝐶𝐿−1

𝑖=𝑟 = 1 −
𝛼  

2
  (3) 

And:  

𝐹(𝐿𝐶𝐿. 𝑟. 𝑝0) = ∑ (𝑖−1
𝑟−1

)𝑝0
𝑟𝐿𝐶𝐿

𝑖=𝑟 (1 − 𝑝0)𝑖−𝑟 =
𝛼

2
  (4) 

While the centerline, CL, is given as the solution of 

following equation 

𝐹(𝐶𝐿. 𝑟. 𝑝0) = ∑ (𝑖−1
𝑟−1

)𝑝0
𝑟𝐶𝐿

𝑖=𝑟 (1 − 𝑝0)𝑖−𝑟 =
1

2
  (5) 

As is clear from the above equations, the control limits 

of the CCC-r chart increase when process fraction 

nonconforming, 𝑝0, approaches zero. The control limits 

of the CCC-r charts with a large r, are much larger than 

that small r for the same value of 𝑝0 level. The 

probability of not observing any signal in two-sided 

CCC-r chart is denoted by 𝛽(𝑝0): 
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𝛽(𝑝0) = 𝑝(𝐿𝐶𝐿 < 𝑥 < 𝑈𝐶𝐿 |𝑝0) =

 ∑ (𝑖−1
𝑟−1

)𝑝0
𝑟𝑈𝐶𝐿−1

𝑖=𝐿𝐶𝐿+1 (1 − 𝑝0)𝑖−𝑟                
(6) 

Average run length (ARL), which represents the 

average number of samples taken until the occurrence of 

one signal can be calculated: 

𝐴𝑅𝐿 =  
1

1−𝛽(𝑝0)
=

1

1− ∑ (𝑖−1
𝑟−1

)𝑝0
𝑟𝑈𝐶𝐿−1

𝑖=𝐿𝐶𝐿+1 (1−𝑝0)𝑖−𝑟
  (7) 

It is obvious that ARL is the mean value of Geometric 

distribution with success probability of  1 − 𝛽(𝑝0). In 

addition to that, the average number of items inspected 

(ANI) is a different performance measure of control 

charts. Moreover, we can emphasize that ANI is more 

informative than ARL in high quality processes because 

the ANI counts the number of items inspected whereas 

the ARL does not. ANI can be determined as: 

𝐴𝑁𝐼 =  
𝑟

𝑝0
𝐴𝑅𝐿 = 

𝑟

𝑝0
∗

1

1− ∑ (𝑖−1
𝑟−1

)𝑝0
𝑟𝑈𝐶𝐿−1

𝑖=𝐿𝐶𝐿+1 (1−𝑝0)𝑖−𝑟  
  (8) 

where 
𝑟

𝑝0
 is equal to the expected number of sample size 

in each stage that correspond to the mean value of 

negative binomial distribution. 

 

 

2. 1. CCC-r Chart with Estimated Parameters      
The control limits of the traditional CCC-r chart in 

Equation (3) and (4) are based on assumption that the in 

control non-conforming fraction, 𝑝0 ,is known.  
If the value of 𝑝0 is unknown, then we must estimate 

it by using initial sampling in the Phase I of quality 

control plan. Assume that M items are inspected and L 

items are found to be non-conforming. If x is defined as 

the nonconformity proportion the posterior probability 

of random variable x, is obtained as following: 

𝑓(𝑥|𝑀. 𝐿) =
𝑔(𝑀.𝐿|𝑥)𝑓(𝑥)

𝑔(𝑀.𝐿)
=

𝑔(𝑀.𝐿|𝑥)𝑓(𝑥)

∫ 𝑔(𝑀.𝐿|𝑧)𝑓(𝑧)𝑑𝑧
1

0

=

(𝑀
𝐿 )𝑥𝐿(1−𝑥)𝑀−𝐿

(𝑀
𝐿 )𝑧𝐿(1−𝑧)𝑀−𝐿

=
(𝑀

𝐿 )𝑥𝐿(1−𝑥)𝑀−𝐿

(𝑀
𝐿 )

Γ(𝐿+1)Γ(𝑀−𝐿+1)

Γ(𝑀+2)

                     =

(𝑀+1)!

𝐿!(𝑀−𝐿)!
𝑥𝐿(1 − 𝑥)𝑀−𝐿 

(9) 

Thus, the value of nonconforming fraction can be 

estimated as following, 

𝑝0̂ = ∫ 𝑥. 𝑓(𝑥|𝑀. 𝐿) 𝑑𝑥 =
𝐿+1

𝑀+2
  (10) 

when the value of 𝑝0 is unknown, then we apply 𝑝0̂ as 

an estimator, where L is the number of nonconforming 

items among M items sampled and L is a binomial 

random variable with parameters M and 𝑝0. 

Consequently, by applying an estimation for 𝑝0, control 

limits of CCC-r chart will change. The estimated 

control limits for two-sided CCC-r chart are obtained 

as: 

∑ (𝑖−1
𝑟−1

)(
𝐿+1

𝑀+2
)𝑟𝑈𝐶𝐿−1̂

𝑖=𝑟 (1 − (
𝐿+1

𝑀+2
))

𝑖−𝑟
= 1 −

𝛼

2
  (11) 

∑ (𝑖−1
𝑟−1

)(
𝐿+1

𝑀+2
)𝑟𝐿𝐶�̂�

𝑖=𝑟 (1 − (
𝐿+1

𝑀+2
))

𝑖−𝑟
=

𝛼

2
  (12) 

𝑈𝐶�̂� is upper control limit when the value of 

nonconforming fraction is unknown and 𝐿𝐶�̂� is lower 

control limit. 

Since the estimated parameter is utilized to design 

economic CCC-r chart based on ANI which is used as 

performance measure, thus first probability of not 

observing any signal on the chart when non-conforming 

fraction has been estimated must be briefly explained. 

Since 𝑝0̂ is estimated by 
𝐿+1

𝑀+2
, thus 𝛽(𝑝0) is a function of 

a total items sampled M and the number of non-

conforming items L. The properties of CCC-r control 

chart were derived conditionally on the estimated 

value 𝑝0̂. If x was defined as the number of inspected 

items until, the detection of rth nonconforming item then 

𝛽(𝑝0) can be written as: 

𝛽(𝑝0. 𝑀|𝐿) = 𝑝(𝐿𝐶�̂� < 𝑥 < 𝑈𝐶�̂� |𝐿) =

 (∑ (𝑖−1
𝑟−1

) 𝑝0̂
𝑟𝑈𝐶𝐿−1̂

𝑖=𝐿𝐶�̂�
(1 −  𝑝0̂)𝑖−𝑟|𝐿)  

(13) 

Equation (13) is equal to the conditional probability 

of not observing any signal in the case of  an unknown 

parameter  𝑝0 which is conditioned on a value of the 

random variable L. The expected value of conditional 

probability in Equation (13) by considering binomial 

distribution of L can be stated as:  

𝐸(𝛽(𝑝0. 𝑀|𝐿)) =

 {
0              𝑖𝑓 𝐿 = 0 𝑜𝑟 𝐿 = 𝑀

∑ 𝑝(𝐿𝐶�̂� < 𝑥 < 𝑈𝐶�̂� |𝐿 = 𝑙) ∗ 𝑝(𝐿 = 𝑙)𝑀
𝑙=0

 

= {
0              𝑖𝑓 𝐿 = 0 𝑜𝑟 𝐿 = 𝑀

∑ (∑ (𝑖−1

𝑟−1
) 𝑝0̂

𝑟𝑈𝐶𝐿−1̂
𝑖=𝐿𝐶𝐿+1̂ (1 −  𝑝0̂)𝑖−𝑟 ∗ (𝑀

𝑙
)𝑝0

𝑙 . (1 − 𝑝0)𝑀−𝑙)𝑀
𝑙=0

 

(14) 

The expected value of probability of not observing any 

signal on the chart is denoted by 𝐸(𝛽(𝑝0. 𝑀|𝐿)) when 

non-conforming fraction is estimated. As expressed 

before and considering an unknown non-conforming 

fraction, it can be demonstrated that 𝐴𝑁𝐼̂  is equal to 

expected number of items inspected in each sampling 

stage (𝐸 (
𝑟

𝑝0̂
))  multiplied by expected number of 

sampling stages or 𝐴𝑅𝐿 (𝐴𝑅�̂� =  
1

1− 𝐸(𝛽(𝑝0.𝑀|𝐿))
 ). 𝐸 (

𝑟

𝑝0̂
) is 

obtained as following: 

𝐸 (
𝑟

𝑝0̂
) = ∑ 𝐸 (

𝑟

𝑝0̂
|𝐿 = 𝑙) ∗ 𝑝(𝐿 = 𝑙)𝑀

𝑙=0 = ∑
𝑟

𝑙+1

𝑀+2

 𝑀
𝑙=0 ∗

(𝑀
𝑙

). 𝑝0
𝑙 . (1 − 𝑝0)𝑀−𝑙                                                     

(15) 

Thus:  

𝐴𝑁𝐼̂ = 𝐸 (
𝑟

𝑝0̂
) ∗ 𝐴𝑅𝐿 = ∑

𝑟
𝑙+1

𝑀+2

 𝑀
𝑙=0 (𝑀

𝑙
). 𝑝0

𝑙 . (1 −

𝑝0)𝑀−𝑙 ∗  
1

1− 𝐸(𝛽(𝑝0.𝑀|𝐿))
                                                            

(16) 

With respect to previous discussions, there is an optimal 

choice of M, which minimizes the expected total cost 

and provides best estimator in control chart. The 
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formulations of a cost scheme for determining the 

optimal value of M is explained in the next section. 

 
 
3. AN AOOROCH TO OBTAIN REQUIRED SAMPLE 
SIZE IN PARAMETER ESTIMATION 
 
As mentioned in introduction section, a large sample 

size is needed in order to estimate unknown parameters 

in high quality related control charts. This large sample 

is leading to high estimation costs which has not been 

studied in previous studies, and consequently in this 

research a new cost function is introduced which could 

estimate parameters at the least level of cost.  

The proposed model is made up two different parts. 

One part is for estimation error of non-conforming 

fraction and the other is for the size of investigated 

samples. The cost parameters of the model are as 

following:  

1- The cost  𝐶𝑒𝑠𝑡  is required to consider the 

estimation error: Since average number of inspected 

items will be used to examine chart performance, thus 

its estimation error should be considered with a 

particular cost. The cost of estimation error is multiplied 

with error term (𝐴𝑁𝐼̂ − 𝐴𝑁𝐼𝑝0
) where 𝐴𝑁𝐼̂  is the 

estimated value, which is used in proposed control 

chart. 𝐴𝑁𝐼𝑝0
 is true value of ANI and is calculated 

based on 𝛽(𝑝0) in Equation (8). 

2- The cost 𝐶𝑖𝑛𝑣 is required to consider the cost of 

inspection in the investigated sample: It is needed to 

inspect M items to find L which is the number of 

nonconforming items for estimating the value of  𝑝0. 

Therefore, the cost to inspect all M items should be 

considered.  

Subsequently, total cost function based on the 

average number of inspected items as the performance 

measure of CCC-r control chart is as following: 

𝑇𝐶 = 𝐶𝑒𝑠𝑡(𝐴𝑁𝐼̂ − 𝐴𝑁𝐼𝑝0
) + 𝑀𝐶𝑖𝑛𝑣  (17) 

To illustrate the proposed cost function, some numerical 

examples are solved in next section. 

 

 

4. PERFORMANCE STUDY 
 
When the sample of size M will be in optimum value, 

then the total cost approaches its minimum value. With 

this presumption, the sample size M is assumed as 

decision variable in this paper to reach the minimum 

cost in the process. A grid search procedure written in 

Visual Basic is used to determine the optimal value of 

decision variable in proposed approach. The optimal 

value of M, which is experimented in a fixed range of 5 

to 120 is obtained by considering a specified value for 

the acceptable risk of false alarm to determine control 

limits, 𝐶𝑖𝑛𝑣 and 𝐶𝑒𝑠𝑡 as fixed costs. The fixed 

parameters are stated in Table 1. For all values of M in 

each experiment, the following steps are repeated.  

Firstly, the estimation of non-conforming fraction 

and chart control limits are calculated. Then, the values 

of 𝐴𝑁𝐼̂  and 𝐴𝑁𝐼𝑝0
are evaluated based on real values of 

control chart parameters and estimation parameters. 

Finally, the total cost function is obtained according to 

fixed costs. Finally, the minimum total cost is achieved 

by comparing all values of total cost functions in each 

iteration.  

When the non-conforming fraction is estimated 

precisely, the estimation error statement would be 

minimum value and estimation of nonconforming 

fraction will be closer to its real value. 

 

4. 1. Sensitivity Analysis        According to Table 1 

and specified fixed range of M, we survey on optimal 

condition for different values of p0 and r so that the 

parameters in each experiment would be changed 

separately. Table 2 can be used to analyze the sensitivity 

of the model to the variation of various parameters. In 

this table, six different values are considered for r. For 

each value of r, different values of nonconforming 

fractions are experimented when acceptable risk of false 

alarm is constant. 
As shown in Table 2, when r is fixed by increasing 

the value of  𝑝0, the value of M decreases; thus, a lower 

value of sample size is needed for larger value of 𝑝0. 

Also, in this condition, the value of cost function 

decreases by increasing the value of 𝑝0. By variations of 

r when the value of 𝑝0 is fixed, increasing the value of r 

leads to the reduction of M and cost function value. 

Also in this case, the value of 𝑝0̂ is closer to true 

nonconforming fraction when r is lower. Similarly, it 

can be seen that estimated values are more precise for 

larger values of nonconformity fraction.  

 

 

5. CONCLUSION 
 
In this paper, detailed description of CCC-r control 

chart, which is a suitable type of control chart for high 

yield processes, was studied. The properties of a two-

sided control chart with unknown non-conforming 

fraction were investigated. The probability of non-

conforming estimators was developed based on sample 

size and negative binomial sampling scheme. It was 

denoted that the estimated values affected the upper and 

lower control limits.  
 

 

TABLE 1. Fixed parameters 

Parameter Value 

Fixed costs 
𝐶𝑒𝑠𝑡 100 

𝐶𝑖𝑛𝑣 5 

α 0.0027 
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TABLE 2. Parameter estimation in different experiments 

Exp. No. p0 
Chart parameters Decision variable 

Estimated p0 Total cost 
LCL UCL r Optimum M 

1 0.006 1 1098 1 86 0.006772459 15391938055 

2 0.008 1 823 1 69 0.008091835 5114445741 

3 0.009 1 731 1 63 0.00870416 3243794317 

4 0.01 1 658 1 59 0.009060385 2156752927 

5 0.02 1 328 1 34 0.013976038 142219294.1 

6 0.04 1 162 1 19 0.021924724 9001904.468 

7 0.05 1 129 1 16 0.024451482 3679185.401 

8 0.006 10 1479 2 63 0.010530012 8.39E+11 

9 0.008 8 1110 2 50 0.012870051 3.72E+11 

10 0.009 7 986 2 46 0.013745067 2.89E+11 

11 0.01 6 886 2 42 0.014901346 2.45E+11 

12 0.02 4 441 2 22 0.022350546 20122354427 

13 0.04 2 219 2 15 0.031887434 2290033325 

14 0.05 2 175 2 12 0.038597149 674130944 

15 0.006 37 1806 3 67 0.009683641 2.50E+12 

16 0.008 28 1355 3 53 0.001187835 1.31E+12 

17 0.009 25 1204 3 46 0.01345067 9.90E+11 

18 0.01 23 1083 3 42 0.014901364 7.26E+11 

19 0.02 12 539 3 23 0.02513891 1.84E+11 

20 0.04 7 267 3 13 0.039213424 992538416 

21 0.05 6 213 3 11 0.042753853 3855330466 

22 0.006 79 2107 4 72 0.008761 5.00E+12 

23 0.008 60 1582 4 55 0.0112789 2.612E+12 

24 0.009 53 1405 4 49 0.012590382 2.064E+12 

25 0.01 48 1263 4 44 0.01396981 1.58E+12 

26 0.02 25 630 4 24 0.023683859 2.74E+12 

27 0.04 13 313 4 12 0.049213424 36694756578 

28 0.05 111 249 4 10 0.043753853 143235268 

29 0.006 134 2392 5 78 0.007817142 6.73E+12 

30 0.008 101 1795 5 59 0.009712234 4.31E+12 

31 0.009 90 1595 5 53 0.011260068 3.29E+12 

32 0.01 81 1434 5 48 0.012345803 2.61E+11 

33 0.02 42 715 5 26 0.022350546 4.53E+12 

34 0.04 22 355 5 13 0.039213424 58824370158 

35 0.05 18 283 5 11 0.043753853 26875557453 

36 0.006 198 2664 6 100 0.009049871 1.12E+13 

37 0.008 149 2001 6 63 0.009275172 6.40E+12 

38 0.009 133 1777 6 56 0.010391941 4.83E+12 

39 0.01 120 1598 6 51 0.011301057 3.79E+12 

40 0.02 61 796 6 28 0.021121266 7.26E+12 

41 0.04 32 396 6 14 0.039213424 9306250519 

42 0.05 26 316 6 12 0.043753853 44110445325 
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Since the cost parameters is not taken into account in 

previous studies for parameter estimation and this could 

be an important issue in high quality processes because 

of low defective samples, thus a cost function is 

developed in this research. We tried to minimize the 

summation of cost of estimation error and cost of 

inspecting required samples to estimate unknown 

parameters. In order to evaluate performance of the 

estimator, Average Number of Inspected items is used 

as performance measure in proposed function. Due to 

the importance of sample size in high quality processes, 

it is considered as the decision variable in the cost 

function. The variations of the estimated non-

conforming fraction and sample size are studied in 

various conditions of control chart parameters.  

As expected, the results of sensitivity analysis show 

that cost function increases when nonconforming 

fraction decreases, so when non-conforming fraction is 

low, the cost of estimation would be very high. The 

increasing non-conforming fraction has an inverse effect 

on optimal value of the sample size as expected. 

Moreover, for fixed values of non-conforming fraction, 

the optimal value of sample size decreases as the value 

of r increases. Therefore, when the value of r increases 

then the value of optimal sample size decreases which 

leads to increase the sensitivity of CCC-r control chart.  

Further research on this topic may include 

evaluating the performance of proposed model when 

different estimators are used. On the other hand, it could 

be beneficial to apply this proposed estimators and cost 

function on the performance of all types of control 

charts when nonconforming fraction is low. 
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 هچكيد
 

 
اند، متخصصین کیفیت  های صنعتی بسیار رقابتی امروز که به واسطه پیشرفت سریع تکنولوژی ایجاد شدهدر محیط

 ،کنند. در نتیجه در صورت نیاز، در زمان مناسب اقدام به عمل می هایی را که خارج از کنترل بوده شناسایی وموقعیت

های کیفیت را به  هایی که هزینهو همچنین برای یافتن روش ،کیفیت های باهای آماری جدید برای رسیدگی به فرایندروش

ای از نمودار کنترلی  که حالت توسعه یافته   CCC-rاست. نمودار کنترلی  رسانند، به صورت پیوسته ارتقا یافته حداقل می

CCC که مقادیر  شود. به دلیل این میهای معیوب بسیار کمی مشاهده گیرد که نمونه است، زمانی مورد استفاده قرار می

پارامترهای مورد استفاده در طراحی پارامترهای نمودار کنترلی در واقعیت نامعلوم است، متخصصین کیفیت باید این مقادیر 

است که براورد پارامتر تاثیر زیادی بر روی  های تحت کنترل گذشته براورد نمایند. نشان داده شده را بر اساس نمونه

های براورد و میانگین اقلام بازرسی شده در زمان  نمودار کنترل دارد. در این مطالعه مدلی براساس هزینهخصوصیات 

است. پارامترهای نامعلوم براساس مقادیر  ارائه شده CCC-rنامعلوم بودن نسبت اقلام معیوب در نمودارهای کنترلی 

 شود. د انجام میمختلف اندازه نمونه براورد شده و تحلیل حساسیت در این مور
doi: 10.5829/idosi.ije.2017.30.02b.12 

 

 

 


