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The image content detectability and image structure preservation are closely related concepts with
undeniable role in image quality assessment. However, the most attention of image quality studies has
been paid to image structure evaluation, few of them focused on image content detectability.
Examining the image structure was firstly introduced and assessed in Structural SIMilarity (SSIM)
measure, in which, the definition of image structure is constrained to the intensity covariance between
the reference and test images. Indeed, this measure discerns the luminance changes in the pixels of the
reference and test images, by employing the low-level statistical features. But this minimal definition
of image structure does not cover the issue of image content detectability. In this study, we found that
the status of image region smoothness can reflect its structural content. So, we proposed a novel
smoothness measure based on the maximally stable extremal regions (MSER) descriptor.
Subsequently, we proposed a novel image structural similarity measure, in which the fidelity of image
region smoothness is also taken into account. Experimental results on five popular benchmark image
databases, including A57, LIVE, CSIQ, TID2008 and T1D2013, are provided, which confirm that the
proposed approach has a reasonable prediction performance compared to the state-of-the-art image
quality metrics.

doi: 10.5829/idosi.ije.2017.30.02b.03

1. INTRODUCTION

Intuitively human being is the final and sometimes the
best judge, and his/her opinion, which is often referred

Developments in media devices, besides the growing
networking technologies, have aroused extra demands
for qualitative media products. Hence the media
producers seek a way to automatically assess the quality
of produced images and videos before delivery. In
addition, in the image and video enhancement
applications, existence of a validation stage, which
assesses the quality of enhanced output is vital.
Specifically, in image enhancement procedures, gauging
the amount of image impairments, e.g., noisiness,
blockiness, blurriness, and contrast altering is a
fundamental necessary. The above two fields of
applications make the image quality assessment (IQA)
as one of the most active research areas in machine
vision.
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to as the subjective quality score, determines the quality
of image. But the subjective assessment is very time-
consuming and inefficient, and cannot be used for real-
time applications. Considerable efforts have been
performed to develop objective quality metrics to
predict the human judges automatically and provide
scores as close as possible to the subjective ones [1].

In general, the existing objective IQA measures can
be classified into three major categories according to
dependence to the reference image. Full-reference (FR)
models require the original distortion-free images
known as the reference images. These models are
widely used to evaluate the performance of image
processing algorithms and are frequently employed in
optimization procedures of image enhancement methods
[2-5]. Reduced-reference (RR) IQA methods, which
only need the quality aware features from reference
images, are useful to assess the quality of received
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images in a noisy transformation channel [6, 7]. The
third class is No-reference (NR) or blind IQA methods
which do not require the reference images or any
information from them [8-10]. These models are more
challenging due to their reference image dependency.
Among the FR IQA methods, the Structural
SIMilarity (SSIM) measure proposed in the literature
[11] can be considered as a mutation in IQA
developments. This measure employs the statistical
features of image to form its structural indicator. Let X
and y be the reference and distorted image patches, each
with M pixels, respectively. The SSIM employs the
local comparison of three components: luminance,
I(x,y), contrast, c(x,y)and structure, s(x,y) with the

following definitions:
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in which, u, oy and oy, are the image average,
variance and covariance, respectively, as below:
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and c,;, c, and c, are positive constants to avoid

instability when the denominators are very close to zero.
The general form of SSIM index is defined by pooling
the above three statistics as below:

SSIM (x, y) =1(x,Y)* ¢(x ) s(x, )" ™
By settinga = g=y =1, the resulting SSIM measure is
given by:
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Although the SSIM is an outstanding measure for its
interesting theory, low complexity and reasonable
results, its structural descriptors, i.e. image mean,
variance and covariance, are not sufficient to capture all
aspects of image structures [12]. All of the three
components in SSIM deal with image luminance and its

variations, while the HVS is also sensitive to the spatial
distributions of intensities and their deformations.
Several studies in the literature have been done to
further promote the SSIM performance by considering
more complex structural descriptors. MS-SSIM [13] is a
multi-scale version of SSIM in which the three major
components of SSIM are also applied to filtered and
down-sampled versions of images. CW-SSIM as a
complex version of SSIM in wavelet domain is more
sensitive to phase than magnitude distortions [14].
Information content weighted SSIM (IW-SSIM) [15]
incorporates the idea of weighted pooling, in which the
weights derived via image information content.
Gradient similarity (GSIM) [16], calculated the contrast
and structural similarity of reference and distorted
images based on their gradient maps. Riesz-transform
based feature similarity (RFSIM) [17] employed the
coeffients of the 1%-order and 2"-order Riesz transform,
and masked the resulted maps by the image’s edge
locations. Feature-based similarity (FSIM) used the
image phase congruency and gradient magnitude to
gauge the overall image quality [18]. The recently
proposed IDSSIM [19] divides an image into edge and
texture components, and then computes the luminance
and contrast similarity in texture component, and the
structural similarity in edge component. IDSSIMc is the
extension of IDSSIM which computes the variations of
chrominance components too.

In this paper we propose a new structural IQA
measure by considering a novel region descriptor which
takes into account the amount of image content
detectability, as one of the most essential characteristics
for IQA. The human perception of an image is very
keen to the distinguishability of the image contents.
There are also computational theories in object
recognition science that support this hypothesis [20].
Here, to assess the amount of image content
degradation, we introduce and employ a suitable
measure of image smoothness. Image global and local
smoothness are important descriptors which show the
amount of degradation in image acuity. When an image
with distinguishable contents is degraded, to the extent
that the regions’ smoothness of the original and
degraded images is identical, one should expect that the
image contents remain recognizable. Obviously, after
any blur-like distortion, the image surface will be
smooth, while additive-noise distortions have an
opposite result and make the image regions harsh. In
both cases the image content detectability will be
decreased, and subsequently a poor quality score must
be reported.

From this point of view, image distortions can be
categorized in three classes. The first class includes
distortions, which decrease the level of general and
local image smoothness by adding artifacts to pristine
image in its spatial representation. Additive noise
distortions belong to this category. The distortions of
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second class behave in opposite direction and increase
image smoothness by attenuating its details. Gaussian
blur and image denoising are examples of these
distortions. In spectral domain, these two distortion
classes are respectively called spurious high frequency
additive (SHFA) and high frequency attenuating (HFA)
distortions, due to their opposite effects on high-
frequency components of image. There are also some
kinds of distortions which have a mixed behavior. As
examples, consider distortions like JPEG blocking,
which introduce block regions with smooth body and
non-smooth boundaries; and quantization noise which
can divide originally smooth regions into some smooth
sub-regions with sharp borders.

The main contributions of this work are as follows:
First, we focus on the concept of image contents
detectability and its relation to the image smoothness
fidelity. Second, we define new image smoothness in
term of image maximally stable extremal region
(MSER), as an efficient image region descriptor. To the
best of authors’ knowledge, using of MSER descriptor
for gauging the image smoothness is unprecedented.
Third, based on the new proposed MSER-based image
smoothness, we introduced a novel image structural
similarity measure dubbed MSER-SSIM, which is
thoroughly examined by extensive experiments
conducted on five large scale databases. The results
show that our proposed measure works relatively better
than most of the other state-of-the-art 1QA metrics,
especially for SHFA distorted images. In addition, the
computational complexity of our MSER-SSIM is quite
promising.

The rest of this paper is organized as follows: In
Section 2, we introduce the maximally stable extremal
region (MSER), which will be used to propose a novel
measure of image smoothness. In Section 3, the
proposed measure is introduced. Experimental results
and discussions are provided in Section 4. Section 5
concludes this paper.

2. MAXIMALLY STABLE EXTREMAL REGIONS

The concept of Maximally Stable Extremal Regions
(MSERs) was first proposed by Matas et al. [21]. An
MSER is a stable connected component of an image,
obtained by thresholding the image at different gray
levels. Suppose 1};, be a binary thresholded version of a

gray image | in some threshold t, as below:
1 ifI(x,y)>t
t _ ,
in(x,y) {0 else

in which the threshold t < [min(1),max(1)]. The set of all
connected components of all binary images 1.,
(t=0,..,255) is the set of all extremal regions. The

©9)

extremal regions with stable size over a large range of
thresholds are maximally stable extremal regions. More
formally definition of MSER is as follow: Let image |
be a mapping 1:D— @, in which Dcz? is the spatial
domain of pixels and ®={01,...,255} include the pixel

intensity values. A region R is a connected subset of p
in terms of an adjacency (neighborhood) relation, with
an outer boundary, depicted by Bg , which is the set of

all pixels being adjacent to at least one pixel of R but
not belonging to R . A region R is an extremal region if
and only if VvpeR,qeBg:I(p)>I(g) (maximum

intensity region) or I(p)<I(g) (minimum intensity
region). Now, suppose Ry,...,Ri_1,R;,... be a sequence of
nested extremal regions, i.e. R; c R;,;. Extremal region
Rj» is maximally stable if:

o Ri-a =Ri_al ,

Q; Rl (10)

has a local minimum at i", where ol is the set

cardinality (here the number of region points) and A is
the stability parameter.

MSERs have some important properties, like
invariance to affine transformation of image intensities,
regions stability and low computational complexity,
which make them suitable for various image processing
applications like object correspondence [22], object
recognition and matching [23, 24], object tracking [25,
26], face registration [27] and Google video grouping
[28].

Obtaining the image MSERs is simple and fast.
First, image pixels are sorted on intensity using a linear
sorting algorithm. Since the pixel intensities are integer
numbers in the range [0,255], the counting sort with the
time cost O(n) would be the best choice [29]. After
pixel sorting, the connected components are formed
using efficient union-find algorithm [29] with the
computational complexity of O(nloglogn). The output is
a set of region seed points, in which, for each seed point
X, a set of neighbor points within the level set 1(x) are
assigned to form a connected region.

2. 1. MSER-based Image Smoothness The
number of MSER seed points has a direct relationship
with image smoothness, i.e. in an smooth region the
number of seed points is less than the ones on a non-
smooth region. This property of MSER in image
smoothness description is an important characteristic,
which persuades us to employ MSER as an effective
and efficient approach for image smoothness measure.
We define the MSER-based patch smoothness as below:

1 ‘MSERSeeds( p)J

SMSER(p)=1_min[ <

(11)
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in which MSERggeqs(p) denotes the set of MSER seed
points of image patch p, C:O,S‘p‘z is an adaptive

constant value greater than the number of patch seed
points, and |s| indicates the set cardinality. Clearly the

range of Spsgr(P) is within [0,1], in which the values
close to one, belong to more smooth patches. Based on
Equation (11), we define the image smoothness measure
in two globally and locally schemes. The globally
smoothness of image I, indicated by GSy;sgr (1), can be
considered as a particular case of Equation (11), in
which the whole image | is the input of function Sy;seg .
To calculate the local-based smoothness measure, we
generate a local smoothness map by partitioning the
image | into non-overlapped 16x16 patches p, and
calculating the smoothness measure of each patch using
Equation (11). Finally, the image local-based
smoothness measure is obtained as below:

1
LSmser(l) =N—p2 pet Smser(P)’ (12)
in which N, is the number of image’s patches.

2. 2. Analysis of MSER-based Image Smoothness
Here, we examine more closely on how well the

proposed image smoothness measure works.

GSyyser = 0.9653
LS MSER = 09543

GSpser =0.9640

LS MSER = 09578

GS MSER = 09369

LSyser = 0.9221

GS MSER = 08663
LS yser = 0.9004

GSMSER = 08499
LSyser =0.8884

SRR

y

GSpser =0.7811
LSyser =0.8615

GSpiser =0.7675
LSwser =0.8443

GSpser =0.9554
LSMSER = 09534

GSser =0.9466
LSMSER = 09521

GSMSER = 09330
LSyser =0.9305

GSMSER = 08451
LSyser =0.9543

GSMSER = 08213
LSyser =0.8753

GSpyser =0.7039
LSyser =0.8245

GSser = 0.6796
LSyser = 0.8241
Figure 2. (Top-left to bottom-right) The reference images of TID2013 database, arranged in descending order of GSyser -

Figure 1 shows the image ‘I23.bmp’ from TID2013
image database [30], in which some patches with
different smoothness status are selected and their
MSER-based smoothness values are sticked beside
them. It can be observed that the corresponding
smoothness values increase with increasing the patch
homogeneity and decrease by adding any primitive. The
overall smoothness of images are evaluated in Figure 2
in which the reference images of TID2013 database are
arranged in a descending order of MSER-based global
smoothness ( GSyser )-

1 4
Swser = 0.982 \

Figure 1. The reference image ‘I123.bmp’ from TID2013
database, in which the MSER-based smoothness for four
different patches are calculated and depicted

GSyyser =0.9397
LSMSER = 09277

GSpser =0.9393
LS MSER = 09453

GSMSER = 09105
LSyser =0.9304

GSMSER = 09007
LSyser =0.9164

GSMSER = 07835
=0.8821

GSMSER = 08185
LSpser =0.8616 LSmser

GSyser =0.5464
LSyser =0.7779

GSMSER = 06698
LSyser =0.8113
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It can be seen that this sorted list of images is intuitively
consistent with our perception of image smoothness, i.e.
the images in the beginning of this list have large
smooth regions, while the ones in the ending can be
considered as crowd images with small smooth regions.

Any degradation of image primitives, which alters
the image content detectability, can be monitored by
tracking the image global and local smoothnesses.
When a pristine image is polutted by an SHFA
distortion (like additive Gaussian noise (AGN), or high-
frequency noise (HFN)), the number of MSER seeds
increases. In opposite, a degraded image with HFA
distortion (like blur or jpeg2000 ringing artifact), has
less MSER seed points with respect to its pristine
image. We showed this relationship through Figure (3),
in which Figure 3(a), 3(c) and 3(e) show the reference
image ‘I15.bmp’ from the TID2013 database, and its
corresponding blurred and HFN distorted images,
respectively. Obviously, the detectability of image
contents is altered in both of the two distortions. Figure
3(b), 3(d) and 3(f) indicate the corresponding MSER
map, besides the number of region seed points. Here,
the MSER map shows the overlapping MSERs, in
which the value of each pixel is equal to the number of
overlapping extremal regions, rescaled to [0-255] for
presentation purpose. It can be seen that the HFN
distortion increases the number of region seed points
drastically, while the blur distortion, decreases it. This
emphasizes the fact that the number of image regions
obtained by MSER detector is sensitive to the image
distortions and thus can serve as a suitable
distinguishing property.

3. MSER-BASED STRUCTURAL SIMILARITY

Inspired from the adequacy evidences of the MSER-
based smoothness measure in image region description,
we define a novel image structural similarity measure,
which evaluates the image content detectability through
assessing its region smoothness provided by MSER
detector. We found that in SHFA distortions (e.g.
additive noise) the deviation of general smoothness
between reference and distorted image are
discriminative enough to cover the images differences,
but in HFA distortions (e.g. image blurring) this
deviation is not adequate and we must resort to the
image average smoothness by considering the
smoothness map. The good news is that we can
distinguish these two distortion types by image global
smoothness (i.e. for SHFA distortions, the global
smoothness of reference image is higher than the global
smoothness of degraded image, while for HFA
distortions this relation is opposite). Let x and y be the

pristine reference and distorted images. We define the

MSER-based image Content Detectability (MSER_CD)
as below:

1-[6s, -GS,| GS,>Gs,
MSER _CD(x,y) =4 2LS«LSy +Cy else )
Lsf + LS§ +Cy

in which, for simplicity, the acronyms GS, and LS,
stand for GSpser(X) and LSyser(X), respectively.

Clearly, the MSER-CD of two images, provides a scalar
value in the range of [0,1], in which the higher value
indicates more fidelity of content detectability in two
images.

Having the MSER-CD, we provide a new quality
measure that encompasses all three major components
of SSIM measure besides our novel quality factor
MSER-CD, to compensate the lack of content
detectability evaluation of SSIM. The overall proposed
quality metric is as below,

MSER _SSIM (x,y) =

Wy SSIM (X, y) + W, MSER _CD(X, ), (14)

in which the coefficients w; and w, are used to adjust

the relative importance of different components and
must be chosen to satisfy the condition w; +w, =1.

(a) Reference image (b) #Region seeds = 910

(d) #Region seeds = 44

(e) HFN distorted (f) #Region seeds = 10481
Figure 3. (from top to bottom) Left: An image and its
corresponding blurred and high-frequency noise distorted
images. Right: The corressponding MSER regions.
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3. 1. Visual Masking Property of MSER-SSIM  An
interesting property of the proposed MSER-CD, which
will be discussed here, is its visual masking property. In
MSER domain, the increasing or decreasing of seed
points depends on the intrinsic smoothness nature of the
original image. To be more concretely, increasing the
number of MSER seed points due to an SHFA distortion
in an intrinsicaly smooth region, is more than the ones
in an innately non-smooth region. In a similar way,
decreasing the number of MSER seed points resulted
from a HFA distortion in a non-smooth region is more
than the ones happened for a smooth region. This is
completely consistent with the visual masking property
of HVS, which claims that the visibility of an image
additive distortion is reduced in crowd regions. We
show this in Figure 4, in which two natural images with
different intrinsic smoothness are chosen from T1D2013
database for comparison. Figure 4(a) and 4(b) show
these two images contaminted by HFN, while Figure
4(c) and 4(d) indicate their blurred versions, besides the
corresponding SSIM and MSER_CD values. It can be
seen that, although the subjective quality scores (MOS)
of Figure 4(a) and 4(b) (and also 4(c) and 4(d)) are very
close, the corresponding SSIM values are different.
Indeed, according to SSIM, the image in Figure 4(b) is
far worse than 4(a), while MSER_CD measure
coincides with MOS, for these two distorted images. For
the blurred image pairs, the SSIM prediction is more
accurate than the previous case, but still the MSER_CD
prediction is better.

4. EXPERIMENTAL RESULTS

4. 1. Image Databases To evaluate the
performance of the proposed method we employed five
frequently used public image quality databases,

(b) MOS=5.33, SSIM=0.59
MSER_CD=0.90

(2) MOS=5.39, SSIM=0.93

(c) MOS=5.40, SSIM=0.98  (d) M0OS=5.38, SSIM=0.90
MSER_CD=0.99 MSER_CD=0.99
Figure 4. Comparison of SSIM and MSER_CD on two
natural images with different intrinsic smoothnesses (a) and

(b) HEN contaminated images, (c) and (d) blurred images

including A57 [31], CSIQ [32], LIVE [33], TID2008
[34] and TID2013. The subjective scores of the images
in TID2008 and TID2013 are in the form of MOS,
while the images in A57, LIVE and CSIQ have
subjective scores in the form of DMOS. Table 1 shows
the major characteristics of these databases.

4. 2. Performance Metrics  We used four criteria to
assess the performance of the proposed algorithm
following the literature [35]: (1) The Pearson correlation
coefficient (PCC), which measures the amount of
predictions correlation with the subjective scores, (2)
the Spearman rank order correlation (SROCC) and (3)
the Kendall rank order correlation (KROCC), which
measure both the relative monotonicity between the
predictions and subjective scores, and (4) the root mean
square error (RMSE) which validates the predictions
accuracy, like PCC. Before evaluating the performance
criteria, we applied the logistic transform suggested by
[35], to the values obtained from our proposed measure
to bring them on the same scales as the LIVE, TID2008
and TID2013's MOS, and A57 and CSIQ's DMOS
values.

4. 3. Implementation Details  Here, the proposed
MSER-SSIM measure was compared with SSIM and
SSIM-inspired 1QAs including: MSSIM, [IWSSIM,
RFSIM, GSIM, FSIM, CWSSIM and IDSSIM. In
addition some SSIM-irrelevant well-performed state-of-
the-art IQMs such as PSNR, visual information fidelity
(VIF) [36], internal generative mechanism-based quality
metric (IGM) [37] and visual signal to noise ratio
(VSNR) [31], are also incorporated in our comparison.
These 1QMs were applied using their default
implementations.

To obtain the MSER smoothness measures, we
extract the MSER descriptors of non-overlapped patches
using VLFeat open source Matlab codes [38]. The
number of MSER seed points and their neighbors can be
controlled by parameter A in Equation (10), which
defines how the stability is calculated. Other MSER
parameteres are: 1) MinArea and MaxArea, which
control the minimum and maximum area of the regions
relative to the image domain area, 2) MaxVariation,
which can make a tradeoff between the region stability
and the number of regions, and 3) MinDiversity, a
threashold indicates when two nested stable regions can
be merged together.

TABLE 1. Benchmark image datasets for IQA

1 Reference Distorted Distortion ) Image Score
Images Images Types Dimensions  Ranging

A57 3 54 6 512x512 [0-1]
LIVE 29 779 5 Various [0-100]

CsIQ 30 866 6 512x512 [0-1]

TID2008 25 1700 17 512384 [0-9]

TID2013 25 3000 24 5124384 [0-9]
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The best values for these MSER parameters, which lead
to the best SROCC performance, are as follows: A =5,
MinArea=0.05, MaxArea=0.75, MaxVariation=0.25 and
MinDiversity=0.5. In addition, we used the default
values of constants ¢, to c,, as they set in the original

SSIM, and choose the values C,=6.5 and w =0.2,
employed in Equation (13) and Equation (14),
respectively.

4. 4. Performance Evaluation We compared the
SROCC performance criterion of the proposed method
with the ones obtained by other methods on each
distortion types in TID2008 and TID2013 databases.
Among all of the existing image quality databases, the
TID2008 and TID2013 cover most of the distortion
types, i.e. 17 and 24 different types, respectively. The
distortions of TID2008 are additive Gaussian noise
(AGN), additive noise in color components (ANC),

spatially correlated noise (SCN), masked noise (MN),
high frequency noise (HFN), impulse noise (IN),
quantization noise (QN), Gaussian blur (GB), image
denoising (DEN), JPEG compression (JPEG),
JPEG2000 compression (JP2K), JPEG transmission
errors (JPTE), JPEG2000 transmission errors (J2TE) ,
non-eccentricity pattern noise (NEPN), local block-wise
distortions of different intensity (Block), mean shift
(MS), and contrast change (CTC). The first 17
distortions of the TID2013 are the same as the TID2008.
The rest are as follow: change of color saturation (CCS),
multiplicative Gaussian noise (MGN), comfort noise
(CS), lossy compression of noisy images (LCNI), image
color quantization with dither (ICQD), chromatic
aberrations (CHA) and finally, sparse sampling and
reconstruction (SSR). Table 2 shows the results of
SROCC comparison, in which for each distortion, we
bolded the three best performed algorithms.

TABLE 2. SROCC values of 1QA indices for each type of distortions in TID2013 and TID2008. The best three performed metrics
have been bolded for quick access. In addition, the MSER-SSIM measures which occupy the first rank, indicated by an ‘*’ sign

SSIM-irrelevant measures

SSIM-related IQA measures

DB. Dist. MSSI IWSSI CWSSI RFSI IDSSI  MSER-
VIF IGM PSNR VSNR SSIM M M M M FSIM  GSIM M SSIM

AGN 0.899% 0.9371 09338 0.8270 0.8675 0.8663  0.8448 0.7920 0.8877 0.8984 0.9063  0.8981 0.9522*
ANC 0.8428 0.8792 0.8667 0.7266 0.8010 0.7729  0.7514 0.7228 0.8476 0.8207 0.8175 0.8316 0.8673*
SCN 0.8835 0.9244 0.9245 0.8024 0.8756 0.8543  0.8166 0.8340 0.8821 0.8749 0.9158  0.8822 0.9555*

MN 0.8449 0.8053 0.8355 0.7118 0.7766  0.8074  0.8019 0.6848 0.8366 0.7943 0.7292  0.8233 0.8377

HFN 0.8972 0.9260 0.9182 0.8566 0.8633 0.8648  0.8589 0.8750 0.9145 0.8991 0.8869  0.9000 0.9194

IN 08536 0.8591 0.9000 0.7343 0.7503 0.7628 0.7281 0.8802 0.9062 0.8072 0.7964  0.8595 0.8648

QN 08161 0.8913 0.8754 0.8356 0.8657 0.8705  0.8467 0.8224 0.8968 0.8719 0.8841  0.8462 0.4627

GB 09649 0.9772 09102 0.9469 0.9667 0.9672  0.9701 0.8855 0.9697 0.9550 0.9689  0.9692 0.9666

DEN 0.9064 0.9493 0.9503 0.9104 0.9254 0.9267  0.9152 0.9001 0.9359 0.9301 09432  0.9405 0.9453
JPEG 0.9191 09491  0.9217 0.9007 0.9200 0.9265 0.9197 0.9080 0.9398 0.9378 09284 0.9414 0.9226

o JP2K 9516 09680 0.8858 09273 0.9063 0.9504  0.9506 0.9326 0.9518 0.9576 0.9601  0.9589 0.9064
S JGTE 0.8441 0.8452 0.8060 0.8181 0.8493 0.8475  0.8387 0.7203 0.8786 0.8463 0.8512  0.8655 0.8919*
O J2TE 0.8760 0.9183 0.8905 0.8407 0.8828 0.8888  0.8656 0.6725 0.9102 0.8912 09181 0.9045 0.8787
= NEPN 07719 0.8029 0.6791 0.6652 0.7821 0.7968  0.8010 0.7882 0.7704 0.7917 0.8130 0.7470 0.8104
Block 0.5306 05272 0.3297 0.1771 0.5720 0.4800 0.3716 0.3463 0.0338 0.5489 0.6418 0.5292 0.6331

MS 0.6275 0.6091 0.7571 0.3632 0.7751 0.7906  0.7833 0.5485 0.5547 0.7530 0.7874 0.6626 0.7776

CTC 0.8523 0.4601  0.4466 0.3319 0.4314 0.4633 0.4592 0.7323 0.5591 0.4686  0.4856  0.4858 0.4275

CCS 03099 03225 0.6388 0.3676 0.4141 0.4099  0.4196 0.1425 0.0204 0.2748 0.3573  0.6690 0.4567
MGN 0.8466 0.8832 0.8831 0.7644 0.7803 0.7785  0.7727 0.7481 0.8487 0.8469 0.8347  0.8788 0.9085*

CN 08948 0.9201 0.8413 0.8690 0.8565 0.8527  0.8761 0.8946 0.8917 0.9120 09124  0.9051 0.8652
LCNI 0.9229 0.9492 09155 0.8821 0.9057 0.9067  0.9037 0.9283 0.9009 0.9466 0.9562  0.8988 0.8915
ICQD 0.8463 0.9071 0.9201 0.8695 0.8542 0.8554  0.8401 0.9061 0.8959 0.8759 0.8972  0.8890 0.4966
CHA 0.8848 09142 0.8797 0.8644 0.8774 0.8784  0.8681 0.7700 0.8990 0.8714 0.8822  0.8927 0.8888

SSR 09371 09672 0.9108 0.9364 0.9460 0.9482 0.9474 0.8724 0.9325 0.9564 0.9667 0.9536 0.9102
AGN 0.8838 0.9069 0.9070 0.7727 0.8106 0.8085  0.7869 0.7559 0.8415 0.8566 0.8606  0.8501 0.9336*
ANC 0.8750 0.8947 0.8994 0.7793 0.8029 0.8053  0.7920 0.6436 0.8621 0.8527 0.8090  0.8595 0.9036*
SCN 0.8709 09152 0.9169 0.7664 0.8143 0.8209  0.7713 0.7838 0.8475 0.8486 0.8941  0.8653 0.9388*

MN 0.8683 0.7968 0.8515 0.7294 0.7794 0.8106  0.8088 0.7097 0.8533 0.8021 0.7452  0.8523 0.8751*

HFN 0.9074 09223 0.9270 0.8800 0.8773 0.8733  0.8702 0.8797 09181 0.9152 0.8945  0.9091 0.9281*

IN 08464 0.8160 0.8723 0.6471 0.6732 0.6907 0.6464 0.8589 0.8805 0.7452 0.7234  0.8074 0.8445

o QN 08816 0.8788 0.8696 0.8261 0.8530 0.8588  0.8176 0.7762 0.8950 0.8564 0.8799  0.8481 0.4147
=] GB 09540 0.9682 0.8684 0.9330 0.9544 0.9563  0.9636 0.8413 0.9408 0.9471 09599  0.9574 0.9435
a DEN 09182 0.9704 0.9416 0.9299 0.9529 0.9582  0.9473 0.9050 0.9399 0.9602 09724  0.9539 0.9478
= JPEG 009167 0.9484 0.8717 09174 09251 09321  0.9208 0.9127 0.9385 0.9369 0.9393 0.9438 0.9023
JP2K 0.9709 0.9845 0.8131 0.9515 0.9629 0.9699  0.9738 0.9452 0.9487 0.9773 09761 0.9694 0.8783
JGTE 0.8585 0.8635 0.7565 0.8113 0.8677 0.8680  0.8588 0.7046 0.8534 0.8707 0.8790 0.8701 0.8704
J2TE 0.8500 0.8893 0.8308 0.7909 0.8576 0.8606  0.8202 0.5997 0.8591 0.8543 0.8935 0.8602 0.8433
NEPN 0.7619 0.7295 0.5814 05715 0.7107 0.7376  0.7724 0.7686 0.7274 0.7491 0.7386  0.6824 0.7934*
Block 0.8320 0.7902  0.6192 0.1926 0.8462  0.7557  0.7623 0.2788 0.6258 0.8493 0.8862  0.7520 0.8934*

MS 05095 0.4887 0.7107 0.3714 0.7230 0.7336  0.7066 0.4221 0.4335 0.6720 0.7190 0.5514 0.7213

CTC 0.8403 0.6411 0.6042 0.4746 0.4411 0.6380  0.6301 0.8648 05431 0.6481 0.6691  0.6459 0.4121
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It can be seen that the proposed measure can faithfully
assess image quality. Particularly, for the SHFA
distortions (include AGN, ANC, SCN, JGTE, and
MGN) our algorithm is superior to the entire competing
IQA methods on TID2013 and TID2008. In addition,
we see that the results of the proposed measure on HFA
distortions (like GB, DEN and CHA) are also
comparable with the ones obtained using the state-of-
the-art metrics although not the best.

In these cases, the sensitivity of MSER descriptor
decreased in high-severity distortions and similar seed
points are reported for different severities. In
applications which only the HFA distortions are
targeted, one can increase the performance of the
proposed measure by tunning the constant C in Equation
(11), and obtain better results. However, we didn’t do it
here to preserve generality of the method. For exotic
distortions (defined in [30]) like JGTE, NEPN and
Block the performance of proposed method is still
acceptable and stand among the best. It must be
mentioned that for some distortions (like QN and
ICQD) the performance of MSER-SSIM is not
promising, because of their mixed nature, as mentioned
in Section 1. Indeed these distortions exhibit the
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behaviour of SHFA and HFA distortions,
simultaniously, and therefore have unpredictable
smoothness status in different severities. Table 3 lists
the average of PLCC, SROCC, KROCC and RMSE
results of the proposed MSER-SSIM and the other IQA
measures on A57, LIVE, CSIQ, TID2008 and TID2013
databases. For each performance criterion, the three
IQA indices producing the best results were highlighted
in boldface for each database. It can be seen that the
results of the proposed method for A57, LIVE and
TID2013 databases, stand among the three best IQA
metrics. For CSIQ and T1D2008 databases the proposed
method’s results are only slightly worse than the best
and the differences are not significant. As we mentioned
in the previous paragraphs, although the performance of
our proposed measure for SHFA distortions is
substantial, its performance for HFA distortions is not
as well as the ones for SHFA distortions, and by this,
the overall performance of MSER-SSIM is lower than
metrics like IGM, FSIM and IDSSIM. It is worthy to
note that the IGM metric, as one of the best performers
on TID2008, TID2013 and CSIQ database, is a very
time-consuming metric, with limited applicability in
real-time situations.

TABLE 3. Comparison of average performance criteria of IQA indices on four image databases. The best three performed metrics
have been bolded for quick access. The MSER-SSIM measures which occupy the first rank, indicated by an ‘*’ sign

SSIM-irrelevant measures

SSIM-related IQA measures

DB. Criterion

VIE  IGM PSNR VSNR SSIM MISVISS' 'Wl\is' CVXASS' RFSIM  FSIM  GSIM 'Dlas' '\ggﬁ\ﬁ

PLCC 07720 08561 06902 07402 0.7895 08329 08319 07908 08333 08589 08464 08584  0.8327

3 SROCC 06769 08097 0.6862 06812 07417 07859 07779 07628 07744 08015 07946 08304  0.8088
S KROCC 05147 - 05043 05084 05588 06047 05977 05833 05951 06289 0.6255 06451  0.6410
“  RMSE 07880 - 08976 08392 07608 06861 06880 05319 06852 06349 0.6603 06358  04935*
PLCC 08084 08857 05309 06820 0.7732 08451 08579 07650 08645 08738 08422 08646  0.8453

3 SROCC 07491 08902 05245 07046 07749 08542 08550 07442 08680 08805 08504 08736  0.8261
S KROCC 05860 07104 0.3696 05340 05768 06568 06636 05605 0.6780 0.6946 0.6596 0.6827  0.6456
®  RMSE 07899 06228 11372 09815 0.8511 07173 0.6895 05491 0.6746 06525 07235 0.6742  0.4833*
PLCC 09277 09280 08001 08002 0.8613 08991 09144 09150 09179 09120 08964 09317  0.9096

Q SROCC 09195 00401 0.8057 0.8106 08756 09133 09213 09202 09205 09242 09108 09451 09071
O KROCC 07537 07872 0.6080 0.6247 0.6907 07393 07529 07570 07645 0.7567 0.7374 07947 07396
RMSE 00980 00978 0.1575 0.1575 0.1334 0.449 01063 00985 01042 01022 01164 00953  0.0975
PLCC 00604 09578 08721 09231 09449 09489 09522 08725 09354 09597 09512 09473 09657+

~ SROCC 09636 09580 0.8755 0.9274 09479 09513 09567 09027 09401 09634 09561 09516  0.9616
N KROCC 08282 08319 0.6864 07616 0.7963 08045 08175 07319 07816 08337 08150 0.8063  0.8399*
RMSE 7.6137 09248 13.368 10506 8.9455 86188 83473 112060 9.6642 7.6780 84327 87514  58673*
PLCC 06158 09230 06587 09472 0.8017 08504 09035 07444 08475 09252 07231 09282  0.9349

> SROCC 06223 08984 06189 09355 0.8066 08394 08706 06557 08215 09181 09018 09285  0.8556
I KROCC 04589 07359 0.4309 0.8031 06058 06478 06848 05093 0.6324 07639 08724 07741  0.7407
RMSE 0.1936 00945 0.1849 00781 0.1469 0.293 0.1052 01641 01305 00933 01206 00900 0.0781*
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5. CONCLUSIONS

In this paper we emphasize the value of image content
detectability in the context of image quality assessment,
and accentuate the role of region smoothness state in
image content clarity. Inspired by this idea, a new
MSER-based image smoothness measure is proposed
and benefited from the suitable distinguishing feature of
this measure; we introduced a novel structural similarity
measure. We evaluated the performance of the proposed
method in terms of correlation with human perceptual
opinion scores and found it highly competitive against
most of the state-of-the-art image quality methods.

6. REFERENCES

10.

11.

12.

Chandler, D.M., "Seven challenges in image quality assessment:
Past, present, and future research”, ISRN Signal Processing,
Vol. 2013, (2013), 53-60.

Wang, Z., "Applications of objective image quality assessment
methods [applications corner]”, Signal Processing Magazine,
IEEE, Vol. 28, No. 6, (2011), 137-142.

Hassanpour, H. and Asadi, S., "Image quality enhancement
using pixel wise gamma correction", International Journal of
Engineering-Transactions B: Applications, Vol. 24, No. 4,
(2011), 301-311.

Hassanpour, H., Azari, F. and Asadi, S., "Improving dark
channel prior for single image dehazing", International Journal
of Engineering-Transactions C: Aspects, Vol. 28, No. 6,
(2015), 880-889.

Khosravi, M. and Hassanpour, H., "Image denoising using
anisotropic diffusion equations on reflection and illumination
components of image", International Journal of Engineering-
Transactions C: Aspects, Vol. 27, No. 9, (2014), 1339-1348.

Soundararajan, R. and Bovik, A.C., "Rred indices: Reduced
reference entropic differencing for image quality assessment",
Image Processing, IEEE Transactions on, Vol. 21, No. 2,
(2012), 517-526.

Rehman, A. and Wang, Z., "Reduced-reference image quality
assessment by structural similarity estimation", Image
Processing, IEEE Transactions on, Vol. 21, No. 8, (2012),
3378-3389.

Kamble, V. and Bhurchandi, K., "No-reference image quality
assessment algorithms: A survey”, Optik-International Journal
for Light and Electron Optics, Vol. 126, No. 11, (2015), 1090-
1097.

Manap, R.A. and Shao, L., "Non-distortion-specific no-reference
image quality assessment: A survey”, Information Sciences,
(2015), 203-210.

Li, L., Lin, W., Wang, X., Yang, G., Bahrami, K. and Kot, A.C.,
"No-reference image blur assessment based on discrete
orthogonal moments", IEEE Transaction on Cybernetics, Vol.
46, No. 1, (2016), 39-50.

Wang, Z., Bovik, A.C., Sheikh, H.R. and Simoncelli, E.P.,
"Image quality assessment: From error visibility to structural
similarity”, Image Processing, IEEE Transactions on, Vol. 13,
No. 4, (2004), 600-612.

Wau, J., Qi, F. and Shi, G., "Image quality assessment based on
improved structural similarity, in Advances in multimedia
information processing—-PCM", (2012), Springer.153-163.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

3L

Wang, Z., Simoncelli, E.P. and Bovik, A.C., "Multiscale
structural similarity for image quality assessment”, in
Proceedings of the 37th IEEE Asilomar Conference on Signals,
Systems and Computers, . Vol. 2, (2003), 1398-1402.

Sampat, M.P., Wang, Z., Gupta, S., Bovik, A.C. and Markey,
M.K., "Complex wavelet structural similarity: A new image
similarity index", Image Processing, IEEE Transactions on,
Vol. 18, No. 11, (2009), 2385-2401.

Wang, Z. and Li, Q., "Information content weighting for
perceptual image quality assessment”, Image Processing, IEEE
Transactions on, Vol. 20, No. 5, (2011), 1185-1198.

Chen, G.-H., Yang, C.-L. and Xie, S.-L., "Gradient-based
structural similarity for image quality assessment”, in Image
Processing, IEEE International Conference on. (2006), 2929-
2932.

Zhang, L., Zhang, D. and Mou, X., "Rfsim: A feature based
image quality assessment metric using riesz transforms”, in
Image Processing (ICIP), 17th IEEE International Conference
on. (2010), 321-324.

Zhang, L., Zhang, D. and Mou, X., "Fsim: A feature similarity
index for image quality assessment”, Image Processing, IEEE
Transactions on, Vol. 20, No. 8, (2011), 2378-2386.

Yang, J., Lin, Y., Ou, B. and Zhao, X., "Image decomposition-
based structural similarity index for image quality assessment",
EURASIP Journal on Image and Video Processing, Vol.
2016, No. 1, (2016), 31-40.

Biederman, I., "Recognition-by-components: A theory of human
image understanding”, Psychological review, Vol. 94, No. 2,
(1987), 115-122.

Matas, J., Chum, O., Urban, M. and Pajdla, T., "Robust wide-
baseline stereo from maximally stable extremal regions", Image
and Vision Computing, Vol. 22, No. 10, (2004), 761-767.

Perd’och, M., "Maximally stable extremal regions and local
geometry for visual correspondences”, Citeseer, (2011),

Forssen, P.-E., "Maximally stable colour regions for recognition
and matching”, in IEEE Conference on Computer Vision and
Pattern Recognition,. (2007), 1-8.

Obdrzalek, S. and Matas, J., Object recognition using local
affine frames on maximally stable extremal regions, in Toward
category-level object recognition. (2006), Springer.83-104.

Donoser, M. and Bischof, H., "Efficient maximally stable
extremal region (MSER) tracking”, in IEEE Computer Society
Conference on Computer Vision and Pattern Recognition
(CVPR'06),. Vol. 1, (2006), 553-560.

Roth, P.M., Donoser, M. and Bischof, H., "Tracking for learning
an object representation from unlabeled data", in Proceedings of
the Computer Vision Winter Workshop (CVWW). (2006), 46-
51.

Murphy-Chutorian, E. and Trivedi, M.M., "N-tree disjoint-set
forests for maximally stable extremal regions”, in BMVC,,
(2006), 739-748.

Sivic, J., Schaffalitzky, F. and Zisserman, A., "Object level
grouping for video shots", International Journal of Computer
Vision, Vol. 67, No. 2, (2006), 189-210.

Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C,,
"Introduction to algorithms, MIT press Cambridge, Vol. 6,
(2001).

Ponomarenko, N., Jin, L., leremeiev, O., Lukin, V., Egiazarian,
K., Astola, J., Vozel, B., Chehdi, K., Carli, M. and Battisti, F.,
"Image database tid2013: Peculiarities, results and perspectives",
Signal Processing: Image Communication, Vol. 30, (2015),
57-717.

Chandler, D.M. and Hemami, S.S., "Vsnr: A wavelet-based
visual signal-to-noise ratio for natural images”, Image



209

32.

33.

34.

35.

M. H. Khosravi and H. Hassanpour / IJE TRANSACTIONS B: Applications Vol. 30, No. 2, (February 2017) 172-181

Processing, IEEE Transactions on,
2284-2298.

Larson, E.C. and Chandler, D.M., "Most apparent distortion:
Full-reference image quality assessment and the role of
strategy", Journal of Electronic Imaging, Vol. 19, No. 1,
(2010), 011006-011021.

Sheikh, H.R., Wang, Z., Cormack, L. and Bovik, A.C., "Live
image quality assessment database release 2" (2005).
Ponomarenko, N., Lukin, V., Zelensky, A., Egiazarian, K., Carli,
M. and Battisti, F., "TID2008-a database for evaluation of full-
reference visual quality assessment metrics”, Advances of
Modern Radioelectronics, Vol. 10, No. 4, (2009), 30-45.

Group, V.Q.E. "Final report from the video quality experts

Vol. 16, No. 9, (2007),

36.

37.

38.

group on the validation of objective models of video quality
assessment, phase Il (FR_TV2)" (2003); Available from:
ftp://ftp.its.bldrdoc.gov/dist/ituvida/Boulder VQEG_jan_04/V
QEG_Phasell_FRTV_Final_Report SG9060E.doc.

Sheikh, H.R. and Bovik, A.C., "Image information and visual
quality", Image Processing, IEEE Transactions on, Vol. 15,
No. 2, (2006), 430-444.

Wu, J., Lin, W., Shi, G. and Liu, A., "Perceptual quality metric
with internal generative mechanism", Image Processing, IEEE
Transactions on, Vol. 22, No. 1, (2013), 43-54.

A. Vedaldi, B.F. {VLFEAT}: "An open and portable library of
computer vision algorithms" (2008); Available from:
\url{http://www.vifeat.org/}.

A Novel Image Structural Similarity Index Considering Image Content Detectability
Using Maximally Stable Extremal Region Descriptor

M. H. Khosravi, H. Hassanpour

Faculty of Computer Engineering, Shahrood University of Technology, Shahrood, Iran

PAPER INFO

Paper history:

Received 25 November 2016
Received in revised form 20 December 2016
Accepted 05 January 2017

Keywords:

Image Quality Assessment

Image Smoothness Measure
Maximally Stable Extremal Regions
Content Detectability

S kS ol 52 Jalee 5 ek a3 SIS poete 53 O Sl Bis 5 el (glgme D3 oS LG
@ el ot s OLE 03 opl Sldlas ey bl s sl S ol e Coaal S dzs
ety Slsime 031 et B Ol s & S Slatask 5 edd esls s Jlle sl
S Sl 0T s 45 (23S 15 i 355s (SSIMD) (kb Coale Slins 53 b olsl 8y o il
S ol ssde ALl W 5 @ gl 5 03 by DA slie (bS5 loly oo b

3515 Dasl o el 53 53 iy SAd DS siles Ly AT b mlaw sbae bl 5SS L bae

Q-i.)b Sl vjfﬁ)..d 6.):’“‘ [)bﬁ u.a,?e_mo Jﬁl} Qlj':.a Bl ol LJ.:}.AE)L”;‘-LA )" JEL\;- LJLLJ.!: Ji. ]

So2 4 UlSe pdl ol Solser ple b Soler Sands 516 Ol SL5) Gib S a8 Bl Lol
S (MSER) (558 15 gls Sios 5 51 oslinnl b ol iy oy o 3ol (5150 (S b Bai 51 055
Lk e S S Sl gl Sl (55105 Ol o ale S Ol 5 sleiey LIS (55lsen Jlne
€CSIQ LIVE A57) ml; » s SO o 555 2 lislesl 5l Lol S 8 S 3 eslinal 3550 oS L3
Gl 5ol Jad s Ses sl CudS Ul o (oolgd slas &5 s e 0L (TID2013 5 TID2008

358 ol s sbasbas 5 ol 51 SV O

doi: 10.5829/idosi.ije.2017.30.02b.03



ftp://ftp.its.bldrdoc.gov/dist/ituvidq/Boulder_VQEG_jan_04/VQEG_PhaseII_FRTV_Final_Report_SG9060E.doc
ftp://ftp.its.bldrdoc.gov/dist/ituvidq/Boulder_VQEG_jan_04/VQEG_PhaseII_FRTV_Final_Report_SG9060E.doc
http://www.vlfeat.org/%7d

