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A B S T R A C T  
 

 

The image content detectability and image structure preservation are closely related concepts with 

undeniable role in image quality assessment. However, the most attention of image quality studies has 

been paid to image structure evaluation, few of them focused on image content detectability. 
Examining the image structure was firstly introduced and assessed in Structural SIMilarity (SSIM) 

measure, in which, the definition of image structure is constrained to the intensity covariance between 

the reference and test images. Indeed, this measure discerns the luminance changes in the pixels of the 
reference and test images, by employing the low-level statistical features. But this minimal definition 

of image structure does not cover the issue of image content detectability. In this study, we found that 

the status of image region smoothness can reflect its structural content. So, we proposed a novel 
smoothness measure based on the maximally stable extremal regions (MSER) descriptor. 

Subsequently, we proposed a novel image structural similarity measure, in which the fidelity of image 
region smoothness is also taken into account. Experimental results on five popular benchmark image 

databases, including A57, LIVE, CSIQ, TID2008 and TID2013, are provided, which confirm that the 

proposed approach has a reasonable prediction performance compared to the state-of-the-art image 
quality metrics. 

doi: 10.5829/idosi.ije.2017.30.02b.03 
 

 
1. INTRODUCTION1 
 

Developments in media devices, besides the growing 

networking technologies, have aroused extra demands 

for qualitative media products. Hence the media 

producers seek a way to automatically assess the quality 

of produced images and videos before delivery. In 

addition, in the image and video enhancement 

applications, existence of a validation stage, which 

assesses the quality of enhanced output is vital. 

Specifically, in image enhancement procedures, gauging 

the amount of image impairments, e.g., noisiness, 

blockiness, blurriness, and contrast altering is a 

fundamental necessary. The above two fields of 

applications make the image quality assessment (IQA) 

as one of the most active research areas in machine 

vision.  

                                                           

1*Corresponding Author’s Email: mohokhosravi@shahroodut.ac.ir 

(M. H. Khosravi) 

Intuitively human being is the final and sometimes the 

best judge, and his/her opinion, which is often referred 

to as the subjective quality score, determines the quality 

of image. But the subjective assessment is very time-

consuming and inefficient, and cannot be used for real-

time applications. Considerable efforts have been 

performed to develop objective quality metrics to 

predict the human judges automatically and provide 

scores as close as possible to the subjective ones [1]. 

In general, the existing objective IQA measures can 

be classified into three major categories according to 

dependence to the reference image. Full-reference (FR) 

models require the original distortion-free images 

known as the reference images. These models are 

widely used to evaluate the performance of image 

processing algorithms and are frequently employed in 

optimization procedures of image enhancement methods 

[2-5]. Reduced-reference (RR) IQA methods, which 

only need the quality aware features from reference 

images, are useful to assess the quality of received 
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images in a noisy transformation channel [6, 7]. The 

third class is No-reference (NR) or blind IQA methods 

which do not require the reference images or any 

information from them [8-10]. These models are more 

challenging due to their reference image dependency. 

Among the FR IQA methods, the Structural 

SIMilarity (SSIM) measure proposed in the literature 

[11] can be considered as a mutation in IQA 

developments. This measure employs the statistical 

features of image to form its structural indicator. Let x 

and y be the reference and distorted image patches, each 

with M pixels, respectively. The SSIM employs the 

local comparison of three components: luminance, 

),( yxl , contrast, ),( yxc and structure, ),( yxs with the 

following definitions: 
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in which, x , x  and xy  are the image average, 

variance and covariance, respectively, as below: 
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and 1C , 
2C  and 

3C  are positive constants to avoid 

instability when the denominators are very close to zero. 

The general form of SSIM index is defined by pooling 

the above three statistics as below: 

 ),(.),(.),(),( yxsyxcyxlyxSSIM  . (7) 

By setting 1  , the resulting SSIM measure is 

given by: 
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Although the SSIM is an outstanding measure for its 

interesting theory, low complexity and reasonable 

results, its structural descriptors, i.e. image mean, 

variance and covariance, are not sufficient to capture all 

aspects of image structures [12]. All of the three 

components in SSIM deal with image luminance and its 

variations, while the HVS is also sensitive to the spatial 

distributions of intensities and their deformations. 

Several studies in the literature have been done to 

further promote the SSIM performance by considering 

more complex structural descriptors. MS-SSIM [13] is a 

multi-scale version of SSIM in which the three major 

components of SSIM are also applied to filtered and 

down-sampled versions of images. CW-SSIM as a 

complex version of SSIM in wavelet domain is more 

sensitive to phase than magnitude distortions [14]. 

Information content weighted SSIM (IW-SSIM) [15] 

incorporates the idea of weighted pooling, in which the 

weights derived via image information content. 

Gradient similarity (GSIM) [16], calculated the contrast 

and structural similarity of reference and distorted 

images based on their gradient maps. Riesz-transform 

based feature similarity (RFSIM) [17] employed the 

coeffients of the 1
st
-order and 2

nd
-order Riesz transform, 

and masked the resulted maps by the image’s edge 

locations. Feature-based similarity (FSIM) used the 

image phase congruency and gradient magnitude to 

gauge the overall image quality [18]. The recently 

proposed IDSSIM [19] divides an image into edge and 

texture components, and then computes the luminance 

and contrast similarity in texture component, and the 

structural similarity in edge component. IDSSIMc is the 

extension of IDSSIM which computes the variations of 

chrominance components too. 

In this paper we propose a new structural IQA 

measure by considering a novel region descriptor which 

takes into account the amount of image content 

detectability, as one of the most essential characteristics 

for IQA. The human perception of an image is very 

keen to the distinguishability of the image contents. 

There are also computational theories in object 

recognition science that support this hypothesis [20]. 

Here, to assess the amount of image content 

degradation, we introduce and employ a suitable 

measure of image smoothness. Image global and local 

smoothness are important descriptors which show the 

amount of degradation in image acuity. When an image 

with distinguishable contents is degraded, to the extent 

that the regions’ smoothness of the original and 

degraded images is identical, one should expect that the 

image contents remain recognizable. Obviously, after 

any blur-like distortion, the image surface will be 

smooth, while additive-noise distortions have an 

opposite result and make the image regions harsh. In 

both cases the image content detectability will be 

decreased, and subsequently a poor quality score must 

be reported. 

From this point of view, image distortions can be 

categorized in three classes. The first class includes 

distortions, which decrease the level of general and 

local image smoothness by adding artifacts to pristine 

image in its spatial representation. Additive noise 

distortions belong to this category. The distortions of 



M. H. Khosravi and H. Hassanpour / IJE TRANSACTIONS B: Applications  Vol. 30, No. 2, (February 2017)   172-181                210 

 

second class behave in opposite direction and increase 

image smoothness by attenuating its details. Gaussian 

blur and image denoising are examples of these 

distortions. In spectral domain, these two distortion 

classes are respectively called spurious high frequency 

additive (SHFA) and high frequency attenuating (HFA) 

distortions, due to their opposite effects on high-

frequency components of image. There are also some 

kinds of distortions which have a mixed behavior. As 

examples, consider distortions like JPEG blocking, 

which introduce block regions with smooth body and 

non-smooth boundaries; and quantization noise which 

can divide originally smooth regions into some smooth 

sub-regions with sharp borders.  

The main contributions of this work are as follows: 

First, we focus on the concept of image contents 

detectability and its relation to the image smoothness 

fidelity. Second, we define new image smoothness in 

term of image maximally stable extremal region 

(MSER), as an efficient image region descriptor. To the 

best of authors’ knowledge, using of MSER descriptor 

for gauging the image smoothness is unprecedented. 

Third, based on the new proposed MSER-based image 

smoothness, we introduced a novel image structural 

similarity measure dubbed MSER-SSIM, which is 

thoroughly examined by extensive experiments 

conducted on five large scale databases. The results 

show that our proposed measure works relatively better 

than most of the other state-of-the-art IQA metrics, 

especially for SHFA distorted images. In addition, the 

computational complexity of our MSER-SSIM is quite 

promising. 

The rest of this paper is organized as follows: In 

Section 2, we introduce the maximally stable extremal 

region (MSER), which will be used to propose a novel 

measure of image smoothness. In Section 3, the 

proposed measure is introduced. Experimental results 

and discussions are provided in Section 4. Section 5 

concludes this paper. 

 
 
2. MAXIMALLY STABLE EXTREMAL REGIONS 
 
The concept of Maximally Stable Extremal Regions 

(MSERs) was first proposed by Matas et al. [21]. An 

MSER is a stable connected component of an image, 

obtained by thresholding the image at different gray 

levels. Suppose t
binI  be a binary thresholded version of a 

gray image I  in some threshold t , as below: 
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in which the threshold  )max(),min( IIt . The set of all 

connected components of all binary images t
binI , 

 255,...,0t  is the set of all extremal regions. The 

extremal regions with stable size over a large range of 

thresholds are maximally stable extremal regions. More 

formally definition of MSER is as follow: Let image I  

be a mapping DI : , in which 2D  is the spatial 

domain of pixels and  255,...,1,0  include the pixel 

intensity values. A region R  is a connected subset of D  

in terms of an adjacency (neighborhood) relation, with 

an outer boundary, depicted by RB , which is the set of 

all pixels being adjacent to at least one pixel of R but 

not belonging to R . A region R  is an extremal region if 

and only if )()(:, qIpIBqRp R   (maximum 

intensity region) or )()( qIpI   (minimum intensity 

region). Now, suppose ,...,,..., 11 ii RRR   be a sequence of 

nested extremal regions, i.e. 1 ii RR . Extremal region 

*iR  is maximally stable if: 

i

ii
i

R

RR  
 , (10) 

has a local minimum at *i , where   is the set 

cardinality (here the number of region points) and   is 

the stability parameter.  

MSERs have some important properties, like 

invariance to affine transformation of image intensities, 

regions stability and low computational complexity, 

which make them suitable for various image processing 

applications like object correspondence [22], object 

recognition and matching [23, 24], object tracking [25, 

26], face registration [27] and Google video grouping 

[28]. 

Obtaining the image MSERs is simple and fast. 

First, image pixels are sorted on intensity using a linear 

sorting algorithm. Since the pixel intensities are integer 

numbers in the range [0,255], the counting sort with the 

time cost O(n) would be the best choice [29]. After 

pixel sorting, the connected components are formed 

using efficient union-find algorithm [29] with the 

computational complexity of O(nloglogn). The output is 

a set of region seed points, in which, for each seed point 

x, a set of neighbor points within the level set I(x) are 

assigned to form a connected region.  

 

2. 1. MSER-based Image Smoothness          The 

number of MSER seed points has a direct relationship 

with image smoothness, i.e. in an smooth region the 

number of seed points is less than the ones on a non-

smooth region. This property of MSER in image 

smoothness description is an important characteristic, 

which persuades us to employ MSER as an effective 

and efficient approach for image smoothness measure. 

We define the MSER-based patch smoothness as below: 

,
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in which )( pMSERSeeds  denotes the set of MSER seed 

points of image patch p, 2
5.0 pC   is an adaptive 

constant value greater than the number of patch seed 

points, and   indicates the set cardinality. Clearly the 

range of )( pSMSER is within [0,1], in which the values 

close to one, belong to more smooth patches. Based on 

Equation (11), we define the image smoothness measure 

in two globally and locally schemes. The globally 

smoothness of image I, indicated by )(IGSMSER , can be 

considered as a particular case of Equation (11), in 

which the whole image I is the input of function MSERS . 

To calculate the local-based smoothness measure, we 

generate a local smoothness map by partitioning the 

image I into non-overlapped 16×16 patches p, and 

calculating the smoothness measure of each patch using 

Equation (11). Finally, the image local-based 

smoothness measure is obtained as below: 

  Ip MSER
p

MSER pS
N

ILS )(
1

)( , 
(12) 

in which Np is the number of image’s patches. 

 

2. 2. Analysis of MSER-based Image Smoothness         
Here,  we   examine   more   closely  on  how  well  the  
 

proposed image smoothness measure works.  

 
 

Figure 1 shows the image ‘I23.bmp’ from TID2013 

image database [30], in which some patches with 

different smoothness status are selected and their 

MSER-based smoothness values are sticked beside 

them. It can be observed that the corresponding 

smoothness values increase with increasing the patch 

homogeneity and decrease by adding any primitive. The 

overall smoothness of images are evaluated in Figure 2 

in which the reference images of TID2013 database are 

arranged in a descending order of MSER-based global 

smoothness ( MSERGS ).  

 

 

 
Figure 1. The reference image ‘I23.bmp’ from TID2013 

database, in which the MSER-based smoothness for four 

different patches are calculated and depicted 
 

      
9393.0MSERGS  

9453.0MSERLS  

9397.0MSERGS  

9277.0MSERLS  

9466.0MSERGS  

9521.0MSERLS  

9554.0MSERGS  

9534.0MSERLS  

9640.0MSERGS  

9578.0MSERLS  

9653.0MSERGS  

9543.0MSERLS  

      
9007.0MSERGS  

9164.0MSERLS  

9105.0MSERGS  

9304.0MSERLS  

9188.0MSERGS  

9295.0MSERLS  

9330.0MSERGS  

9305.0MSERLS  

9345.0MSERGS  

9280.0MSERLS  

9369.0MSERGS  

9221.0MSERLS  

      
7835.0MSERGS  

8821.0MSERLS  

8185.0MSERGS  

8616.0MSERLS  

8213.0MSERGS  

8753.0MSERLS  

8451.0MSERGS  

9543.0MSERLS  

8499.0MSERGS  

8884.0MSERLS  

8663.0MSERGS  

9004.0MSERLS  

      
5464.0MSERGS  

7779.0MSERLS  

6698.0MSERGS  

8113.0MSERLS  

6796.0MSERGS  

8241.0MSERLS  

7039.0MSERGS  

8245.0MSERLS  

7675.0MSERGS  

8443.0MSERLS  

7811.0MSERGS  

8615.0MSERLS  

Figure 2. (Top-left to bottom-right) The reference images of TID2013 database, arranged in descending order of MSERGS . 
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It can be seen that this sorted list of images is intuitively 

consistent with our perception of image smoothness, i.e. 

the images in the beginning of this list have large 

smooth regions, while the ones in the ending can be 

considered as crowd images with small smooth regions. 

Any degradation of image primitives, which alters 

the image content detectability, can be monitored by 

tracking the image global and local smoothnesses. 

When a pristine image is polutted by an SHFA 

distortion (like additive Gaussian noise (AGN), or high-

frequency noise (HFN)), the number of MSER seeds 

increases. In opposite, a degraded image with HFA 

distortion (like blur or jpeg2000 ringing artifact), has 

less MSER seed points with respect to its pristine 

image. We showed this relationship through Figure (3), 

in which Figure 3(a), 3(c) and 3(e) show the reference 

image ‘I15.bmp’ from the TID2013 database, and its 

corresponding blurred and HFN distorted images, 

respectively. Obviously, the detectability of image 

contents is altered in both of the two distortions. Figure 

3(b), 3(d) and 3(f) indicate the corresponding MSER 

map, besides the number of region seed points. Here, 

the MSER map shows the overlapping MSERs, in 

which the value of each pixel is equal to the number of 

overlapping extremal regions, rescaled to [0-255] for 

presentation purpose. It can be seen that the HFN 

distortion increases the number of region seed points 

drastically, while the blur distortion, decreases it. This 

emphasizes the fact that the number of image regions 

obtained by MSER detector is sensitive to the image 

distortions and thus can serve as a suitable 

distinguishing property. 

 

 

3. MSER-BASED STRUCTURAL SIMILARITY 
 
Inspired from the adequacy evidences of the MSER-

based smoothness measure in image region description, 

we define a novel image structural similarity measure, 

which evaluates the image content detectability through 

assessing its region smoothness provided by MSER 

detector. We found that in SHFA distortions (e.g. 

additive noise) the deviation of general smoothness 

between reference and distorted image are 

discriminative enough to cover the images differences, 

but in HFA distortions (e.g. image blurring) this 

deviation is not adequate and we must resort to the 

image average smoothness by considering the 

smoothness map. The good news is that we can 

distinguish these two distortion types by image global 

smoothness (i.e. for SHFA distortions, the global 

smoothness of reference image is higher than the global 

smoothness of degraded image, while for HFA 

distortions this relation is opposite). Let x  and y  be the 

pristine reference and distorted images. We define the 

MSER-based image Content Detectability (MSER_CD) 

as below: 
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in which, for simplicity, the acronyms xGS  and xLS  

stand for )(xGSMSER  and )(xLSMSER , respectively. 

Clearly, the MSER-CD of two images, provides a scalar 

value in the range of [0,1], in which the higher value 

indicates more fidelity of content detectability in two 

images. 

Having the MSER-CD, we provide a new quality 

measure that encompasses all three major components 

of SSIM measure besides our novel quality factor 

MSER-CD, to compensate the lack of content 

detectability evaluation of SSIM. The overall proposed 

quality metric is as below, 

),,(_),(

),(_

21 yxCDMSERwyxSSIMw

yxSSIMMSER




 (14) 

in which the coefficients 1w  and 2w are used to adjust 

the relative importance of different components and 

must be chosen to satisfy the condition 121 ww .  

 

 

  
(a) Reference image (b) #Region seeds = 910 

  
(c) Blurred image (d) #Region seeds = 44 

  
(e) HFN distorted (f) #Region seeds = 10481 

Figure 3. (from top to bottom) Left: An image and its 

corresponding blurred and high-frequency noise distorted 

images. Right: The corressponding MSER regions. 
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3. 1. Visual Masking Property of MSER-SSIM       An 

interesting property of the proposed MSER-CD, which 

will be discussed here, is its visual masking property. In 

MSER domain, the increasing or decreasing of seed 

points depends on the intrinsic smoothness nature of the 

original image. To be more concretely, increasing the 

number of MSER seed points due to an SHFA distortion 

in an intrinsicaly smooth region, is more than the ones 

in an innately non-smooth region. In a similar way, 

decreasing the number of MSER seed points resulted 

from a HFA distortion in a non-smooth region is more 

than the ones happened for a smooth region. This is 

completely consistent with the visual masking property 

of HVS, which claims that the visibility of an image 

additive distortion is reduced in crowd regions. We 

show this in Figure 4, in which two natural images with 

different intrinsic smoothness are chosen from TID2013 

database for comparison. Figure 4(a) and 4(b) show 

these two images contaminted by HFN, while Figure 

4(c) and 4(d) indicate their blurred versions, besides the 

corresponding SSIM and MSER_CD values. It can be 

seen that, although the subjective quality scores (MOS) 

of Figure 4(a) and 4(b) (and also 4(c) and 4(d)) are very 

close, the corresponding SSIM values are different. 

Indeed, according to SSIM, the image in Figure 4(b) is 

far worse than 4(a), while MSER_CD measure 

coincides with MOS, for these two distorted images. For 

the blurred image pairs, the SSIM prediction is more 

accurate than the previous case, but still the MSER_CD 

prediction is better. 
 
 

4. EXPERIMENTAL RESULTS 
 
4. 1. Image Databases       To evaluate the 

performance of the proposed method we employed five 

frequently   used    public    image    quality    databases, 
 

 

  
(a) MOS=5.39, SSIM=0.93 

MSER_CD= 0.99 
(b) MOS=5.33, SSIM=0.59 

MSER_CD=0.90 

  
(c) MOS=5.40, SSIM=0.98 

MSER_CD=0.99 
 (d) MOS=5.38, SSIM=0.90 

MSER_CD=0.99 
Figure 4. Comparison of SSIM and MSER_CD on two 

natural images with different intrinsic smoothnesses (a) and 

(b) HFN contaminated images, (c) and (d) blurred images 

including A57 [31], CSIQ [32], LIVE [33], TID2008 

[34] and TID2013. The subjective scores of the images 

in TID2008 and TID2013 are in the form of MOS, 

while the images in A57, LIVE and CSIQ have 

subjective scores in the form of DMOS. Table 1 shows 

the major characteristics of these databases. 
 

4. 2. Performance Metrics      We used four criteria to 

assess the performance of the proposed algorithm 

following the literature [35]: (1) The Pearson correlation 

coefficient (PCC), which measures the amount of 

predictions correlation with the subjective scores, (2) 

the Spearman rank order correlation (SROCC) and (3) 

the Kendall rank order correlation (KROCC), which 

measure both the relative monotonicity between the 

predictions and subjective scores, and (4) the root mean 

square error (RMSE) which validates the predictions 

accuracy, like PCC. Before evaluating the performance 

criteria, we applied the logistic transform suggested by 

[35], to the values obtained from our proposed measure 

to bring them on the same scales as the LIVE, TID2008 

and TID2013's MOS, and A57 and CSIQ's DMOS 

values. 
 

4. 3. Implementation Details     Here, the proposed 

MSER-SSIM measure was compared with SSIM and 

SSIM-inspired IQAs including: MSSIM, IWSSIM, 

RFSIM, GSIM, FSIM, CWSSIM and IDSSIM. In 

addition some SSIM-irrelevant well-performed state-of-

the-art IQMs such as PSNR, visual information fidelity 

(VIF) [36], internal generative mechanism-based quality 

metric (IGM) [37] and visual signal to noise ratio 

(VSNR) [31], are also incorporated in our comparison. 

These IQMs were applied using their default 

implementations. 
To obtain the MSER smoothness measures, we 

extract the MSER descriptors of non-overlapped patches 

using VLFeat open source Matlab codes [38]. The 

number of MSER seed points and their neighbors can be 

controlled by parameter   in Equation (10), which 

defines how the stability is calculated. Other MSER 

parameteres are: 1) MinArea and MaxArea, which 

control the minimum and maximum area of the regions 

relative to the image domain area, 2) MaxVariation, 

which can make a tradeoff between the region stability 

and the number of regions, and 3) MinDiversity, a 

threashold indicates when two nested stable regions can 

be merged together. 
 

TABLE 1. Benchmark image datasets for IQA 

1 
Reference 

Images 

Distorted 

Images 

Distortion 

Types 

Image 

Dimensions 

Score 

Ranging 

A57 3 54 6 512×512 [0-1] 

LIVE 29 779 5 Various [0-100] 

CSIQ 30 866 6 512×512 [0-1] 

TID2008 25 1700 17 512×384 [0-9] 

TID2013 25 3000 24 512×384 [0-9] 
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The best values for these MSER parameters, which lead 

to the best SROCC performance, are as follows:  =5, 

MinArea=0.05, MaxArea=0.75, MaxVariation=0.25 and 

MinDiversity=0.5. In addition, we used the default 

values of constants 
1C  to 

3C , as they set in the original 

SSIM, and choose the values 5.64 C  and 2.01 w , 

employed in Equation (13) and Equation (14), 

respectively.  
 

4. 4. Performance Evaluation       We compared the 

SROCC performance criterion of the proposed method 

with the ones obtained by other methods on each 

distortion types in TID2008 and TID2013 databases. 

Among all of the existing image quality databases, the 

TID2008 and TID2013 cover most of the distortion 

types, i.e. 17 and 24 different types, respectively. The 

distortions of TID2008 are additive Gaussian noise 

(AGN), additive noise in color components (ANC),  

 

spatially correlated noise (SCN), masked noise (MN), 

high frequency noise (HFN), impulse noise (IN), 

quantization noise (QN), Gaussian blur (GB), image 

denoising (DEN), JPEG compression (JPEG), 

JPEG2000 compression (JP2K), JPEG transmission 

errors (JPTE), JPEG2000 transmission errors (J2TE) , 

non-eccentricity pattern noise (NEPN), local block-wise 

distortions of different intensity (Block), mean shift 

(MS), and contrast change (CTC). The first 17 

distortions of the TID2013 are the same as the TID2008. 

The rest are as follow: change of color saturation (CCS), 

multiplicative Gaussian noise (MGN), comfort noise 

(CS), lossy compression of noisy images (LCNI), image 

color quantization with dither (ICQD), chromatic 

aberrations (CHA) and finally, sparse sampling and 

reconstruction (SSR). Table 2 shows the results of 

SROCC comparison, in which for each distortion, we 

bolded the three best performed algorithms.  

TABLE 2. SROCC values of IQA indices for each type of distortions in TID2013 and TID2008. The best three performed metrics 

have been bolded for quick access. In addition, the MSER-SSIM measures which occupy the first rank, indicated by an ‘*’ sign 

DB. Dist. 

SSIM-irrelevant measures SSIM-related IQA measures 

VIF IGM PSNR VSNR SSIM 
MSSI

M 

IWSSI

M 

CWSSI

M 

RFSI

M 
FSIM GSIM 

IDSSI

M 

MSER-

SSIM 

T
ID

2
0
1
3
 

AGN 0.8996 0.9371 0.9338 0.8270 0.8675 0.8663 0.8448 0.7920 0.8877 0.8984 0.9063 0.8981 0.9522* 

ANC 0.8428 0.8792 0.8667 0.7266 0.8010 0.7729 0.7514 0.7228 0.8476 0.8207 0.8175 0.8316 0.8673* 

SCN 0.8835 0.9244 0.9245 0.8024 0.8756 0.8543 0.8166 0.8340 0.8821 0.8749 0.9158 0.8822 0.9555* 

MN 0.8449 0.8053 0.8355 0.7118 0.7766 0.8074 0.8019 0.6848 0.8366 0.7943 0.7292 0.8233 0.8377 

HFN 0.8972 0.9260 0.9182 0.8566 0.8633 0.8648 0.8589 0.8750 0.9145 0.8991 0.8869 0.9000 0.9194 

IN 0.8536 0.8591 0.9000 0.7343 0.7503 0.7628 0.7281 0.8802 0.9062 0.8072 0.7964 0.8595 0.8648 

QN 0.8161 0.8913 0.8754 0.8356 0.8657 0.8705 0.8467 0.8224 0.8968 0.8719 0.8841 0.8462 0.4627 

GB 0.9649 0.9772 0.9102 0.9469 0.9667 0.9672 0.9701 0.8855 0.9697 0.9550 0.9689 0.9692 0.9666 
DEN 0.9064 0.9493 0.9503 0.9104 0.9254 0.9267 0.9152 0.9001 0.9359 0.9301 0.9432 0.9405 0.9453 

JPEG 0.9191 0.9491 0.9217 0.9007 0.9200 0.9265 0.9197 0.9080 0.9398 0.9378 0.9284 0.9414 0.9226 

JP2K .9516 0.9680 0.8858 0.9273 0.9063 0.9504 0.9506 0.9326 0.9518 0.9576 0.9601 0.9589 0.9064 
JGTE 0.8441 0.8452 0.8060 0.8181 0.8493 0.8475 0.8387 0.7203 0.8786 0.8463 0.8512 0.8655 0.8919* 

J2TE 0.8760 0.9183 0.8905 0.8407 0.8828 0.8888 0.8656 0.6725 0.9102 0.8912 0.9181 0.9045 0.8787 

NEPN 0.7719 0.8029 0.6791 0.6652 0.7821 0.7968 0.8010 0.7882 0.7704 0.7917 0.8130 0.7470 0.8104 

Block 0.5306 0.5272 0.3297 0.1771 0.5720 0.4800 0.3716 0.3463 0.0338 0.5489 0.6418 0.5292 0.6331 

MS 0.6275 0.6091 0.7571 0.3632 0.7751 0.7906 0.7833 0.5485 0.5547 0.7530 0.7874 0.6626 0.7776 

CTC 0.8523 0.4601 0.4466 0.3319 0.4314 0.4633 0.4592 0.7323 0.5591 0.4686 0.4856 0.4858 0.4275 
CCS 0.3099 0.3225 0.6388 0.3676 0.4141 0.4099 0.4196 0.1425 0.0204 0.2748 0.3573 0.6690 0.4567 

MGN 0.8466 0.8832 0.8831 0.7644 0.7803 0.7785 0.7727 0.7481 0.8487 0.8469 0.8347 0.8788 0.9085* 

CN 0.8948 0.9201 0.8413 0.8690 0.8565 0.8527 0.8761 0.8946 0.8917 0.9120 0.9124 0.9051 0.8652 
LCNI 0.9229 0.9492 0.9155 0.8821 0.9057 0.9067 0.9037 0.9283 0.9009 0.9466 0.9562 0.8988 0.8915 

ICQD 0.8463 0.9071 0.9201 0.8695 0.8542 0.8554 0.8401 0.9061 0.8959 0.8759 0.8972 0.8890 0.4966 

CHA 0.8848 0.9142 0.8797 0.8644 0.8774 0.8784 0.8681 0.7700 0.8990 0.8714 0.8822 0.8927 0.8888 

SSR 0.9371 0.9672 0.9108 0.9364 0.9460 0.9482 0.9474 0.8724 0.9325 0.9564 0.9667 0.9536 0.9102 

T
ID

2
0
0
8
 

AGN 0.8838 0.9069 0.9070 0.7727 0.8106 0.8085 0.7869 0.7559 0.8415 0.8566 0.8606 0.8501 0.9336* 

ANC 0.8750 0.8947 0.8994 0.7793 0.8029 0.8053 0.7920 0.6436 0.8621 0.8527 0.8090 0.8595 0.9036* 

SCN 0.8709 0.9152 0.9169 0.7664 0.8143 0.8209 0.7713 0.7838 0.8475 0.8486 0.8941 0.8653 0.9388* 

MN 0.8683 0.7968 0.8515 0.7294 0.7794 0.8106 0.8088 0.7097 0.8533 0.8021 0.7452 0.8523 0.8751* 

HFN 0.9074 0.9223 0.9270 0.8800 0.8773 0.8733 0.8702 0.8797 0.9181 0.9152 0.8945 0.9091 0.9281* 

IN 0.8464 0.8160 0.8723 0.6471 0.6732 0.6907 0.6464 0.8589 0.8805 0.7452 0.7234 0.8074 0.8445 

QN 0.8816 0.8788 0.8696 0.8261 0.8530 0.8588 0.8176 0.7762 0.8950 0.8564 0.8799 0.8481 0.4147 

GB 0.9540 0.9682 0.8684 0.9330 0.9544 0.9563 0.9636 0.8413 0.9408 0.9471 0.9599 0.9574 0.9435 
DEN 0.9182 0.9704 0.9416 0.9299 0.9529 0.9582 0.9473 0.9050 0.9399 0.9602 0.9724 0.9539 0.9478 

JPEG 0.9167 0.9484 0.8717 0.9174 0.9251 0.9321 0.9208 0.9127 0.9385 0.9369 0.9393 0.9438 0.9023 

JP2K 0.9709 0.9845 0.8131 0.9515 0.9629 0.9699 0.9738 0.9452 0.9487 0.9773 0.9761 0.9694 0.8783 
JGTE 0.8585 0.8635 0.7565 0.8113 0.8677 0.8680 0.8588 0.7046 0.8534 0.8707 0.8790 0.8701 0.8704 

J2TE 0.8500 0.8893 0.8308 0.7909 0.8576 0.8606 0.8202 0.5997 0.8591 0.8543 0.8935 0.8602 0.8433 

NEPN 0.7619 0.7295 0.5814 0.5715 0.7107 0.7376 0.7724 0.7686 0.7274 0.7491 0.7386 0.6824 0.7934* 

Block 0.8320 0.7902 0.6192 0.1926 0.8462 0.7557 0.7623 0.2788 0.6258 0.8493 0.8862 0.7520 0.8934* 

MS 0.5095 0.4887 0.7107 0.3714 0.7230 0.7336 0.7066 0.4221 0.4335 0.6720 0.7190 0.5514 0.7213 

CTC 0.8403 0.6411 0.6042 0.4746 0.4411 0.6380 0.6301 0.8648 0.5431 0.6481 0.6691 0.6459 0.4121 
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It can be seen that the proposed measure can faithfully 

assess image quality. Particularly, for the SHFA 

distortions (include AGN, ANC, SCN, JGTE, and 

MGN) our algorithm is superior to the entire competing 

IQA methods on TID2013 and TID2008. In addition, 

we see that the results of the proposed measure on HFA 

distortions (like GB, DEN and CHA) are also 

comparable with the ones obtained using the state-of-

the-art metrics although not the best.  

In these cases, the sensitivity of MSER descriptor 

decreased in high-severity distortions and similar seed 

points are reported for different severities. In 

applications which only the HFA distortions are 

targeted, one can increase the performance of the 

proposed measure by tunning the constant C in Equation 

(11), and obtain better results. However, we didn’t do it 

here to preserve generality of the method. For exotic 

distortions (defined in [30]) like JGTE, NEPN and 

Block the performance of proposed method is still 

acceptable and stand among the best. It must be 

mentioned that for some distortions (like QN and 

ICQD) the performance of MSER-SSIM is not 

promising, because of their mixed nature, as mentioned 

in Section 1. Indeed these distortions exhibit the 

behaviour of SHFA and HFA distortions, 

simultaniously, and therefore have unpredictable 

smoothness status in different severities. Table 3 lists 

the average of PLCC, SROCC, KROCC and RMSE 

results of the proposed MSER-SSIM and the other IQA 

measures on A57, LIVE, CSIQ, TID2008 and TID2013 

databases. For each performance criterion, the three 

IQA indices producing the best results were highlighted 

in boldface for each database. It can be seen that the 

results of the proposed method for A57, LIVE and 

TID2013 databases, stand among the three best IQA 

metrics. For CSIQ and TID2008 databases the proposed 

method’s results are only slightly worse than the best 

and the differences are not significant. As we mentioned 

in the previous paragraphs, although the performance of 

our proposed measure for SHFA distortions is 

substantial, its performance for HFA distortions is not 

as well as the ones for SHFA distortions, and by this, 

the overall performance of MSER-SSIM is lower than 

metrics like IGM, FSIM and IDSSIM. It is worthy to 

note that the IGM metric, as one of the best performers 

on TID2008, TID2013 and CSIQ database, is a very 

time-consuming metric, with limited applicability in 

real-time situations. 

 

 
TABLE 3. Comparison of average performance criteria of IQA indices on four image databases. The best three performed metrics 

have been bolded for quick access. The MSER-SSIM measures which occupy the first rank, indicated by an ‘*’ sign 

DB. Criterion 

SSIM-irrelevant measures SSIM-related IQA measures 

VIF IGM PSNR VSNR SSIM 
MSSSI

M 

IWSSI

M 

CWSSI

M 
RFSIM FSIM GSIM 

IDSSI

M 

MSER-

SSIM 

T
ID

2
0

1
3
 

PLCC 0.7720 0.8561 0.6902 0.7402 0.7895 0.8329 0.8319 0.7908 0.8333 0.8589 0.8464 0.8584 0.8327 

SROCC 0.6769 0.8097 0.6862 0.6812 0.7417 0.7859 0.7779 0.7628 0.7744 0.8015 0.7946 0.8304 0.8088 

KROCC 0.5147 - 0.5043 0.5084 0.5588 0.6047 0.5977 0.5833 0.5951 0.6289 0.6255 0.6451 0.6410 

RMSE 0.7880 - 0.8976 0.8392 0.7608 0.6861 0.6880 0.5319 0.6852 0.6349 0.6603 0.6358 0.4935* 

T
ID

2
0

0
8
 

PLCC 0.8084 0.8857 0.5309 0.6820 0.7732 0.8451 0.8579 0.7650 0.8645 0.8738 0.8422 0.8646 0.8453 

SROCC 0.7491 0.8902 0.5245 0.7046 0.7749 0.8542 0.8559 0.7442 0.8680 0.8805 0.8504 0.8736 0.8261 

KROCC 0.5860 0.7104 0.3696 0.5340 0.5768 0.6568 0.6636 0.5605 0.6780 0.6946 0.6596 0.6827 0.6456 

RMSE 0.7899 0.6228 1.1372 0.9815 0.8511 0.7173 0.6895 0.5491 0.6746 0.6525 0.7235 0.6742 0.4833* 

C
S

IQ
 

PLCC 0.9277 0.9280 0.8001 0.8002 0.8613 0.8991 0.9144 0.9150 0.9179 0.9120 0.8964 0.9317 0.9096 

SROCC 0.9195 0.9401 0.8057 0.8106 0.8756 0.9133 0.9213 0.9202 0.9295 0.9242 0.9108 0.9451 0.9071 

KROCC 0.7537 0.7872 0.6080 0.6247 0.6907 0.7393 0.7529 0.7570 0.7645 0.7567 0.7374 0.7947 0.7396 

RMSE 0.0980 0.0978 0.1575 0.1575 0.1334 0.1449 0.1063 0.0985 0.1042 0.1022 0.1164 0.0953 0.0975 

L
IV

E
 

PLCC 0.9604 0.9578 0.8721 0.9231 0.9449 0.9489 0.9522 0.8725 0.9354 0.9597 0.9512 0.9473 0.9657* 

SROCC 0.9636 0.9580 0.8755 0.9274 0.9479 0.9513 0.9567 0.9027 0.9401 0.9634 0.9561 0.9516 0.9616 

KROCC 0.8282 0.8319 0.6864 0.7616 0.7963 0.8045 0.8175 0.7319 0.7816 0.8337 0.8150 0.8063 0.8399* 

RMSE 7.6137 0.9248 13.368 10.506 8.9455 8.6188 8.3473 11.2960 9.6642 7.6780 8.4327 8.7514 5.8673* 

A
5

7
 

PLCC 0.6158 0.9230 0.6587 0.9472 0.8017 0.8504 0.9035 0.7444 0.8475 0.9252 0.7231 0.9282 0.9349 

SROCC 0.6223 0.8984 0.6189 0.9355 0.8066 0.8394 0.8706 0.6557 0.8215 0.9181 0.9018 0.9285 0.8556 

KROCC 0.4589 0.7359 0.4309 0.8031 0.6058 0.6478 0.6848 0.5093 0.6324 0.7639 0.8724 0.7741 0.7407 

RMSE 0.1936 0.0945 0.1849 0.0781 0.1469 0.1293 0.1052 0.1641 0.1305 0.0933 0.1206 0.0900 0.0781* 
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5. CONCLUSIONS 
 
In this paper we emphasize the value of image content 

detectability in the context of image quality assessment, 

and accentuate the role of region smoothness state in 

image content clarity. Inspired by this idea, a new 

MSER-based image smoothness measure is proposed 

and benefited from the suitable distinguishing feature of 

this measure; we introduced a novel structural similarity 

measure. We evaluated the performance of the proposed 

method in terms of correlation with human perceptual 

opinion scores and found it highly competitive against 

most of the state-of-the-art image quality methods. 
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 هچكيد
 

 
قابل تشخیص بودن محتوای تصویر و حفظ ساختار آن دو مفهوم کاملاً در هم تنیده و معادل در ارزیابی کیفیت تصویر 

دهد بیشترین اهمیت به هستند که اهمیت سنجش آنها بر کسی پوشیده نیست. اما بررسی مطالعات این حوزه نشان می

اند. اندکی به بررسی میزان قابل تشخیص بودن محتوای تصویر پرداختههای ارزیابی ساختار تصویر داده شده و پژوهش

( مورد سنجش قرار گرفت، که در آن ساختار تصویر از SSIMساختار تصویر برای اولین بار در معیار شباهت ساختاری )

بعبارت دیگر  شود.طریق بررسی واریانس و کوواریانس مقادیر شدت روشنایی در دو تصویر مرجع و تست، ارزیابی می

های سطح پایین، تأکید بر همانندی تغییرات شدت روشنایی در دو تصویر تحت آزمون دارد. این معیار با بکارگیری آماره

توجه است. در این اما این تعریف حداقلی از ساختار تصویر، در خصوص میزان قابل تشخیص بودن محتوای تصویر بی

توان به درک ابی میزان وفاداریِ وضعیت همواری یا عدم همواری نواحی تصویر، میپژوهش، ما دریافتیم که از طریق ارزی

( یک MSERگرهای نواحی حداکثری )ریختگی محتوای تصویر رسید. بنابراین با استفاده از توصیفخوبی از حفظ یا بهم

رای تعریف یک معیار جدید معیار همواری کارآمد پیشنهاد و بعنوان یک عامل سنجش میزان وفاداری محتوای تصویر ب

، A57 ،LIVE ،CSIQارزیابی کیفیت مورد استفاده قرار گرفت. نتایج حاصل از آزمایشات بر روی پنج بانک تصویر رایج )

TID2008  وTID2013دهند که معیار پیشنهادی در ارزیابی کیفیت تصویر عملکرد قابل قبولی دارد و کارآمدی ( نشان می

 گیرد.از معیارهای نوین قرار میآن بالاتر از بسیاری 
doi: 10.5829/idosi.ije.2017.30.02b.03 
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