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A B S T R A C T  
 

 

This paper proposes a novel facility location model for health service network design by considering 

different key elements including the reliability aspects, service capacity, congestion, service quality, 
surrounding public infrastructures, geographical accessibility and several types of cost such as 

investment, transportation and operational costs. We formulate the problem as a robust scenario-based 

stochastic programming model to deal with different categories of uncertainty associated with 
reliability, demand, service and geographical accessibility such that the minimization of expected costs 

under all disruption scenarios will be attained. To illustrate the applicability of the proposed model, a 

real-life case study based on the health service network of Sistan and Baluchestan province is 
presented. The findings of this research enable the system designers to investigate different strategic 

and operational decisions in the design and management of the health service networks from both cost 

and risk perspectives. 

doi: 10.5829/idosi.ije.2017.30.01a.10 
 

 
1. INTRODUCTION1 

 

Location and allocation decisions play a significant role 

in the success of private and public sectors such as 

emergency service systems, post offices, bank branches, 

automated teller machines, gas stations, etc. To address 

these strategic decisions, numerous researches have 

been developed in the literature, among them Alizadeh 

et al. [1], Karimi et al. [2], Bashiri and Rezanezhad [3] 

and Arkat and Jafari [4]. Health service network is one 

of the most important public service provisions in urban 

and rural areas which is strongly affected by facility 

location and allocation decisions. As declared by 

Rahman and Smith [5], these decisions can ensure that 

the objective of system design such as minimizing 

social cost or equivalently maximizing the benefits of 

the people is served. They also provide a framework for 

investigating service accessibility problems, comparing 

the quality of previous location decisions and generating 

alternative solutions. 

                                                           

1*Corresponding Author’s Email: pishvaee@iust.ac.ir (M. S. 

Pishvaee)  

Despite the importance of location-allocation model 

in the context of healthcare planning, some of its 

assumptions are unrealistic. For example it is assumed 

that a constructed facility will remain operational 

forever. However, in practice there are many types of 

disruptive events that can become a facility unavailable 

from a time moment to another one. Disruptive events 

may be originated from different reasons including 

natural disasters, equipment breakdowns, terrorist 

attacks, labor strikes, changes in ownership, etc [6, 7]. 

In the occurrence of disruptions, most of the regular 

services like accepting patients and scheduling surgical 

procedures cannot be served. In most of research papers, 

health service facilities are assumed to have enough 

capacity to serve all the simultaneous demands 

immediately. However, real health service facilities may 

be congested in some situations due to the limited 

capacity to serve heavy and random demands. In the 

congested situations, the patients may afford to wait 

until the facility becomes free to serve them, whereas in 

some other cases such as maternity homes, it is not 

possible to wait [8, 9]. Consequently, it is crucial to 

consider reliability aspects and congested situations in 

the health service network design. 

 

 



N. Zarrinpoor et al. / IJE TRANSACTIONS A: Basics  Vol. 30, No. 1, (January 2017)   75-84                                76 
 

When planning the health service network, several 

critical issues must be taken into account including the 

geographical accessibility, transportation network, 

service capacity, congestion, service quality, 

surrounding public infrastructures and different types of 

cost such as investment, transportation and operational 

costs. Since most of these issues involve a high degree 

of uncertainty during operating process, it is important 

to study their uncertainty in order to obtain an effective 

and efficient network design. As declared by Shen et al. 

[10], the uncertainty can be classified into three 

categories including provider-side uncertainty, receiver-

side uncertainty and in-between uncertainty. The first is 

related to the uncertainty in facility capacity and the 

reliability of facilities; the second includes the 

randomness within the demands; and the third 

corresponds to the uncertain travel time, transportation 

cost, etc. As the related literature shows, there is no 

research that applied all the aforementioned relevant 

aspects of configuration of health service network. 

Moreover, none of the research paper considered all 

categories of uncertainty concurrently.  

With regard to the enumerated matters, the current 

research proposes a novel location model for health 

service network design. We consider the risk of 

unexpected disruptive events by a set of disruption 

scenarios each associated with a given probability. The 

queuing system is considered in the model which 

handles uncertainty associated with demand as well as 

service. To ensure the service quality, a maximum limit 

for patients’ expected waiting time is defined. The 

geographical accessibility of a health service network is 

considered in terms of the proximity of a facility to the 

potential patients and its value depends on the realized 

disruption scenario. We formulate the problem as a 

robust scenario-based stochastic programming model to 

deal with different categories of uncertainty including 

provider-side, receiver-side and in-between. We present 

a practical case study and several generated instances to 

illustrate the applicability of the proposed model.The 

rest of this paper is organized as follows. The next 

section reviews the related literature. The proposed 

model is presented in Section 3. Section 4 presents the 

robust formulation of proposed model. Section 5 

describes a real-world case study as well as several 

generated instances. Section 6 ends with some 

conclusions and possible directions for future research. 

 

 

2. LITERATURE REVIEW 
 

The relevant literature in the context of facility location 

problem for health service network is reviewed in this 

section. Narula and Ogbu [11] presented a hierarchical 

location-allocation problem by considering the 

possibility of referral service. Rahman and Smith [12] 

proposed a location model to improve the accessibility 

of people to the healthcare system in a rural area in 

Bangladesh. A hierarchical facility location problem 

with the objective of maximum coverage of population 

was studied by Moore and ReVelle [13]. Galvao et al. 

[14] proposed a location model for maternal and 

perinatal healthcare facilities in municipality of Rio de 

Janeiro. Galvao et al. [15] extended the work of Galvao 

et al. [14] by considering capacity constraints and 

solved the model by Lagrangian relaxation approach. 

Sahin et al. [16] formulated a facility location model for 

regionalization of blood services. A facility location 

model for seasonally moving populations has been 

addressed by Ndiaye and Alfares [17]. Smith et al. [18] 

proposed a number of location models range from 

covering type to p-median aimed at planning of 

community health schemes. Zhang et al. [19] 

incorporated congestion to the preventive healthcare 

facility network design and applied it to mammography 

centers in Montreal. Sorensen and Church [20] 

estimated the aggregate service levels of emergency 

medical services by considering expected coverage. 

Mestre et al. [21] presented a hierarchical model to 

study decisions on the location and supply of hospital 

services. Syam and Cote [22] developed a location 

model for specialized health care services such as the 

treatment and rehabilitation necessary for strokes or 

traumatic brain injuries. Benneyan et al. [23] presented 

single and multi-period location models within the 

Veterans Health Administration to explore relationships 

and tradeoffs between costs, coverage, service location 

and capacity.  

Burkey et al. [24] examined the efficiency and 

equality in accessibility provided by hospitals and 

compared existing locations with optimal ones. Zhang et 

al. [25] investigated a facility location model to consider 

the impact of client choice on preventive healthcare 

facility network design. A location model for 

maximizing the perinatal care accessibility in maternity 

hospitals in France was presented by Baray and Cliquet 

[26]. Zahiri et al. [27] presented a robust possibilistic 

programming approach for a multi-period location 

problem in an organ transplant supply chain. Mestre et 

al. [28] addressed two location-allocation models for 

hospital planning in the presence of uncertainty 

associated with the demand and supply of hospital 

services. Guerriero et al. [29] compared the existing 

health care service network of Calabria with the 

configurations determined by solving well-known 

facility location models. 

 

 
 

3. MODEL FORMULATION 
 

In this section, we present the notation and formulation 

of reliable facility location model for health service 

network design. 
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3. 1. Notation    The sets, parameters and decision 

variables used in the proposed model are defined as 

follows: 

Sets: 

I Set of demand nodes 

J Set of candidate locations for hospitals 

K Set of potential treatment units 

S Set of disruption scenarios 

Parameters: 

jg  
Fixed installation cost to establish a hospital at 

candidate location j  

jkf  
Fixed installation cost to establish treatment unit k  

at hospital j  

jkfs  
Fixed staffing cost for treatment unit k  of hospital 
j  

ijkfa  
Fixed cost per admission associated with patient i  

at treatment unit k  of hospital j  

ijc  
Transportaion cost from demand node i  to hospital 
j  

ijkv  
Treatment variable cost per length of time for 

patient i   at treatment unit k  of hospital j  

ijkta  
Average length of time for patient i   at treatment 

unit k of hospital j  

sp  The probability of disruption scenario s  

s
ik

h  
Demand rate at demand node i  for treatment unit k 

under disruption scenario s  

s
jk

  
Total arrival rate at treatment unit k  of hospital j  

under disruption scenario s  

s
jk

W  

Patients’ expected waiting time in queue at 

treatment unit k  of hospital j  under disruption 

scenario s  

jk  
Maximum acceptable patients’ waiting time at 

treatment unit k  of hospital j  

Q  Maximum number of hospitals that can be 

established 

jP  
Maximum number of treatment units that can be 

established at hospital j  

s
jk

  
Service rate of treatment unit k  of hospital j  

under disruption scenario s  

ijd  Shortest distance between demand node i  and 

hospital j  

sdmax  

Maximum acceptable distance for demand nodes to 

access the service of hospitals under disruption 

scenario s  

jpop  Population located in candidate location j    

minpop  Minimum population required to open a hospital 

s
j  

1 if hospital j  is disrupted under disruption 

scenario s , 0 otherwise 

Decision variables: 

jz   1 if a hospital is located at node j  , 0 otherwise 

jky  
1 if a treatment unit k  is located at hospital  j  , 0 

otherwise 

s
ijk

x  

Portion of patients residing at demand node i  is 

assigned to treatment unit k  of hospital j  under 

disruption scenario s  

 

3. 2. Formulation       We formulate a comprehensive 

reliable location model by considering risk of 

unexpected disruptive events, congestion, service 

quality, service capacity, geographical accessibility, 

minimum population required to open a facility and 

different categories of uncertainty associated with 

parameters.  

We define a scenario with a given probability for 

each outcome of the random disruptive event that can 

affect the system in order to cope with the risk of 

disruptions caused by natural disasters or man-made 

hazards. We assume that there exists a service team 

including specialists and service personnel in each 

treatment unit that can provide health services and each 

treatment unit behaves as an M/M/1 queue, implying 

that the requests for the service appear according to a 

Poisson process and service time is exponentially 

distributed. Note that the Poisson process is a good 

representation of the arrival rates of real-world health 

service networks in which there is always a variation 

around scheduled times [19, 25, 30]. Considering the 

M/M/1 queuing system, the demand generation rate at 

each demand node i under disruption scenario s is the 

Poisson process with average demand rate s
ik

h , thus the 

demand rate at treatment unit k of hospital j under 

disruption scenario s can be written as: 

.xs
ijkhs

ik
Ii

s
jk 



  
(1) 

The stability of the queue at treatment unit k of hospital 

j under disruption scenario s is assured as follows: 

.y jk
s
jk

s
jk

   (2) 

According to Gross and Hariss [31], the patients’ 

expected waiting times at treatment unit k of hospital j 

under disruption scenario s is the following: 

.
1

 s
jk

s
jk

s
jk

W


  
(3) 

To maintain congestion within acceptable limits, a 

capacity constraint must be considered in the model. 

The common approach used to consider the capacity 

constraints in facility location for congested systems is 

to restrict the expected number of requests for service or 

waiting time to be less than some small values [32]. The 

quality of service network can also be expressed in 

terms of expected or worst case waiting times or queue 

length for a specific service [19, 25]. Therefore, the 

service quality for treatment unit k of hospital j is 

enforced through restriction on the level of congestion 
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to ensure that patients’ expected waiting times in system 

do not exceed maximum acceptable level as the 

following: 

.y jkjk
s
jk

W   (4) 

By considering Equation (3), the above equation can be 

stated as follows: 

,1 y jk
s
jk

s
jkjk 







    (5) 

The above constraint can be rewritten in a simpler form 

as follows: 

.1 y jk
s
jkjky jk

s
jkjk    (6) 

The cost elements of systems include the fixed 

installation cost of hospitals (FCH), fixed installation 

cost of treatment units of constructed hospitals (FSTU), 

expected traveling cost from patients to the hospitals 

(TCs), expected fixed cost per admission (ACs), 

expected fixed staffing cost (SCs) and expected 

treatment cost (TRCs). These cost elements are given in 

the following: 

.z jg jFCH

Jj




  
(7) 

.y jkf jkFSTU

Jj Kk


 

  
(8) 

.xs
ijkcijhs

ikTCs

Ii Jj Kk


  

  
(9) 

.xs
ijk

fshs
ikACs jk

Ii Jj Kk


  

  
(10) 

.xs
ijk

fahs
ikSCs ijk

Ii Jj Kk


  

  
(11) 

.xs
ijktaijkvhs

ikTRCs ijk

Ii Jj Kk


  

  
(12) 

The formulation of reliable facility location model 

under disruptions for health service networks can be 

stated as follows: 

 TRC sSCsAC sTC spFSTUFCHZMin

Ss

s  


  
(13) 

,1




Jj

xs
ijk

             ,,, SsKkIi        
(14) 

  ,1 y jkxs
ijk

s
j     ,,,, SsKkJjIi             (15) 

,z jy jk                 ,, KkJj                (16) 

,




Jj

Qz j
                    

(17) 

,




Kk

P jy jk
         ,Jj                        

(18) 

,




Ii

y jk
s
jkxs

ijkhs
ik

       ,,, SsKkJj          
(19) 

,1 y jk
s
jkjkxs

ijkhs
ik

y jkjk

Ii

  


,,, skj       
(20) 

,0z j                            ,minpoppopj j         (21) 

,0xs
ijk

               ,,,, max SsKkddjjIi s
ij    (22) 

,0xs
ijk

             ,,,, SsKkJjIi              (23) 

 ,1,0jky          ,, KkJj               (24) 

 ,1,0jz            .Jj  (25) 

The Objective function (13) minimizes the fixed 

installation cost of hospitals, fixed installation cost of 

treatment units of constructed hospitals and expected 

traveling cost, fixed cost per admission, fixed staffing 

cost and treatment cost under all disruption scenarios. 

Constraint (14) insures that the patients’ demand must 

be served. Constraint (15) assures that patients must be 

assigned only to established and survived treatment 

units under each disruption scenario. Constraint (16) 

insures that a treatment unit can only be opened in a 

constructed hospital. Constraint (17) specifies maximum 

number of hospitals that can be established. Constraint 

(18) represents maximum number of treatment units that 

can be opened at each hospital. Constraint (19) 

guarantees the stability of the queue at the treatment 

units. Constraint (20) ensures the service quality at each 

treatment unit. Constraint (21) indicates that each 

hospital can only be opened in candidate locations that 

have a population higher than a predefined value. 

Constraint (22) ensures that patients should not take 

more than a maximum acceptable distance to access 

services. Constraints (23) to (25) enforce the non-

negativity and binary constraints of decision variables. 

The proposed model is non-linear due to the 

multiplication of binary and integer variables in 

constraint (20). Let xs
ijk

ys
ijk jk  and M be a reasonably 

large number. Therefore, the non-linear constraint can 

be replaced by: 
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,1 y jk
s
jkjk

s
ijkhs

ikjk

Ii

  


,,, SsKkJj   
(26) 

,xs
ijk

s
ijk

           ,,,, SsKkJjIi   (27) 

,yMs
ijk jk       ,,,, SsKkJjIi   (28) 

 ,1 yMxs
ijk

s
ijk jk  ,,,, SsKkJjIi   (29) 

,0 s
ijk

               .,,, SsKkJjIi   (30) 

 

  

4. THE ROBUST MODEL 
 
The proposed model introduced in the previous section 

involves different categories of uncertainty. To deal 

with these uncertainties, we have used the robust 

approach proposed by Leung et al. [33] which is an 

extension of Mulvey et al. [34]. This procedure involves 

solution robustness and model robustness. The former 

seeks to find solution that is optimal in all possible 

realizations of uncertain parameters and the latter 

ensures the feasibility of the solution in all possible 

realizations of uncertain parameters by considering 

penalty functions [34].  

In the following, we briefly describe the robust 

scenario-based stochastic formulation proposed by 

Mulvey et al. [34]. Consider the following linear 

optimization model: 

ydTxcTyxfMin ),(  (31) 

,bAx   (32) 

,eCyBx   (33) 

.0, yx  (34) 

where, Rnx 1 and Rny 2 are a vector of the design 

variables and a vector of the control variables, 

respectively. The coefficients of constraint (32) are 

fixed and free of noise while those for constraint (33) 

are subject to noise. A robust optimization model can be 

represented as follows: 

 ooyyxMin ss ,...,),...,,( 11    (35) 

,bAx   (36) 

,eoyCxB sssss          ,Ss  (37) 

,0, yx s                           .Ss  (38) 

Since the model may become infeasible under some 

scenarios, the control variable os , which represents the 

infeasibility of the model under scenario s, is defined. 

The first part of objective function (35) represents the 

solution robustness and the second part is the model 

robustness weighted by . Mulvey et al. [34] defined 

the solution robustness as follows:  

    .0

2




 


Ss
spsspp

Ss

ss

Ss

s
  (39) 

where  s is the cost or benefit function under scenario s  

and  presents the determined weight of the solution 

variance. Yu and Li [35] proposed the following 

absolute deviation instead of the quadratic term given 

by Equation (39) 

  .0 


 
 Ss

spsspp

Ss

ss

Ss

s   (40) 

We use the procedure proposed by Leung et al. [33] to 

linearize the absolute value. Therefore, we have: 


































 






 s

Ss

sss

Ss

ss

Ss

s pppMin 2  (41) 

,0


  s

Ss

sss p                ,Ss  
(42) 

,0 s                .Ss  (43) 

Note that when  s  is greater than  s
Ss

sp 
, then

0 s . When  s
Ss

sp 
 is greater than  s , then we 

have: 

. ss

Ss

ss p 


 
(44) 

The violation of control constraint (36) should be 

penalized to represent the model robustness. As a result, 

the objective function of robust optimization problem 

given by (35) , can be written as: 




































 






 s

Ss

sss

Ss

ss

Ss

s pppMin 2
, op s

Ss

s


  
(45) 

We consider ps
ik

 as the unmet demand of patient i for 

treatment unit k under disruption scenario s to formulate 

the robust model. Therefore, the proposed robust 

scenario-based stochastic programming model can be 

stated as follows: 






Ss

s

Ss

s pTOC spFSTUFCHZMin  
(46) 
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


















































 
 



Ii KkSs

ss

Ss

s ps
ik

pTOCspTOCs 2  

)43(),30()21(),19()15(.. ts  

,1




Jj

ps
ikxs

ijk
     ,,, SsKkIi                

(47) 

,0


  s

Ss

sss TOCpTOC       ,Ss  
(48) 

,0ps
ik

               ,,, SsKkIi   (49) 

Note that TOCs is defined as follows: 

.TRCsSCsACsTCsTOCs   (50) 

It should be noted that TOCs  is obtained by replacing 

s instead of s in the definition of TOCs . 

 

 

5. COMPUTATIONAL STUDY 
 

In this section, a real-world case study and several 

generated instances are presented to illustrate the 

applicability of the proposed model. The model is coded 

in GAMS23.4 optimization software and all the 

experiments are performed on an INTEL Core 2 CPU 

with 2.4 GHz processor and 2 GB of RAM. It should be 

noted that the results are reported based on the 

formulation of the robust model presented in Section 4. 

A practical case study based on the vastest province of 

Iran, Sistan and Baluchestan, is presented. This province 

coveres 11.5% of Iran with an approximate area of 

181,785 km
2
. It has 37 population centers with a total 

population of 2,534,327 and about 51% of the 

population lives in the rural areas with poor accessibility 

to health service network. A geographical map 

including population centers as well as existing health 

service facilities is shown in Figure 1.  

As it can be seen, most of population centers are not 

equipped with hospitals and their population must incur 

considerably long distances to access health services. 

Moreover, most of the existing hospitals have not 

sufficient capacity to satisfy the potential demand. In 

some cases, such situations will result in serious health 

problems or even death. Therefore, we design a reliable 

health service network with sufficient capacity to serve 

potential demand such that the improvement in 

geographical accessibility of health service facilities 

will be attained. 

The data range for the case study is summarized in 

Table 1. Note that the traveling cost for each patient is 

calculated based on the Euclidean distance between two 

population centers obtained from site coordinates and is 

rounded to its nearest integer value. We set the penalty 

cost to  tavfafs ijkijkijkjk
kji

 max
,,

 .  

The Sistan and Baluchestan province is considered 

as a disaster-prone area in the country in which there is 

risk of various disruptive events such as floods, 

earthquakes and storms due to the climate and 

geographical conditions. According to the Department 

of Disaster Management of Sistan and Baluchestan, 

over 150 natural disasters were affected this province 

between 2010 to 2016. Such disruptions can 

significantly deteriorate the overall system efficiency 

and responsiveness. Moreover, the current health 

service network does not work perfectly reliable and 

health service facilities may become unavailable due to 

the contaminations of a hospital wing, unexpected delay 

in drug supply, lack of specialists, service personnel or 

drug, labor actions, sabotage or changes in ownership, 

etc. 

 

 
Geographic map of Sistan and Baluchestan province Figure 1. 

 

 
TABLE 1. Data used in case study 

Parameters Values Parameters Values 

g j U[10,55]×105 d ij U(5,850) 

f jk U[2,7] ×105 Q 9 

fs jk U[150,300] P j U[5,15] 

faijk U[100,200] 
 s

jk 
U[10,55]×104 

vijk U[200,350] popmin 50000 

taijk U[2,15] 
d s

max U[50,150] 

cij  ,.d ij[30,60]  jk U[10,30] 
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a) Normal situation b) Scenario 1 

Figure 2. The optimal solution of the case study 

 

 
TABLE 2. Impact of reliability on the system 

Solution Normal condition Disruptive conditions 

TCS 1366831235 1437645724 

FCH(%) 12.74 10.46 

FSTU(%) 19.43 20.11 

ETCs(%) 7.84 6.31 

EACs(%) 5.62 5.02 

ESCs(%) 9.37 7.45 

ETRCs(%) 41.72 44.46 

EPC(%) 3.28 6.19 

UD (%) 0.37 2.32 

 

 

Based on the historical data and experts’ opinions, 

we consider several disruption scenarios. These 

disruption scenarios include earthquake, flood, storm, 

lack of specialists, lack of service personnel, lack of 

drug, personnel action, contaminations of a hospital 

wing, fire and change in ownership and their associated 

probability is 0.31, 0.06, 0.35, 0.1, 0.05, 0.05, 0.01, 

0.05, 0.01 and 0.01, respectively.  

Figure 2 illustrates the optimal solution obtained 

from solving the problem by considering two conditions 

including normal disruption-free and storm scenario 

graphically. Since the optimal location of hospitals in all 

disruption scenarios is fixed and only the allocation of 

population centers to the health service facilities varies, 

for the sake of brevity, the optimal solution based on the 

storm scenario is shown in Figure 2. 

Table 2 gives the obtained results regarding normal 

and disruptive conditions. The TCS, EPC and UD 

present the total cost of system, expected penalty cost 

and unsatisfied demand, respectively. Note that E before 

each cost element in this table denotes its expected 

value. The total cost is given in Monetary Unit (MU). 

The unsatisfied demand in the normal situation is 

related to the maximum acceptable distance 

consideration. By considering disruptions in the model, 

TCS and UD increase 4.93 % and 1.95%, respectively, 

but the system will be protected against the risk of 

disruptions. 

We investigate the structure of current health service 

network without considering changes in the capacity of 

existing hospitals or opening new hospitals, to analyze 

what degree of improvement in the total cost could be 

obtained by proposed health service network.The results 

under different   values are presented in Table 3. The 

results indicate that the proposed network can be 

expected to perform well. In the current health service 

network, the significant increase in the total cost is 

mainly related to lack of enough capacity of existing 

facilities to satisfy the demand and ignoring the 

reliability aspects.  
 

 

TABLE 3. Comparison of current and proposed networks 

 Current network  Proposed network  

 TCS UD(%) TCS UD(%) 

1500 1871431312 57.34 914535118 14.76 

2500 2321045303 50.51 1217871914 9.13 

3500 2614706748 42.33 1429315167 3.54 

4500 3015312176 36.95 1601216320 1.78 

Ave 2455623885 46.78 1290740202 7.3 
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Some generated instances are also presented to study 

the system performance under different disruption 

scenarios. We consider the data ranges for these 

instances to be the same as the range of case study’s 

parameters. Table 4 presents the numerical results for 

the generated instances. Note that the values of  are 

considered to be in interval [1500,2000]. The reported 

cost values are rounded to their nearest integer values. 

We can conclude that the total system cost increases due 

to the increasing in potential demand for health service 

network, number of treatment units and number of 

disruption scenarios. We see that, on average, FCH, 

FSTU, ETCs, EACs, ESCs, ETRCs and EPC constitute 

10.54%, 19.58%, 6.34%, 4.22%, 10.54%, 44.22% and 

4.56% of total cost, respectively. 

Figure 3 presents the impact of   on the system for 

a 70-node network with |J|=35, |I|=35, |K|=6 and |S|=6.  

 

 

TABLE 4. Computational results for the generated instances 

Problem |J| |I| |K| |S| TCS 
Cost components 

FCH FSTU ETCs EACs ESCs ETRCs EPC 

1 15 15 5 4 366678766 34880205 68763834 29897319 19931546 49828865 154128454 9248543 

2    8 375153293 41369408 76828901 22067673 14237209 37016743 171624903 12008456 

3   10 5 417800232 47183627 87626736 28622092 18465866 47087957 176355423 12458531 

4    10 551542384 62971808 116947643 33644036 22429357 56073393 237035151 22440996 

5 25 20 5 4 483094698 50853446 94442117 35939802 23951865 59899804 203845350 14162314 

6    8 530363448 53709221 99745696 36295223 24196815 61701878 235501442 19213173 

7   10 5 586222180 62771258 116575194 38713147 25808765 64521913 259635514 18196389 

8    10 642874860 69946221 129800125 41876296 27023352 67558365 274504627 32165901 

9 35 25 5 4 551974624 56093185 104173057 38206465 25470976 66234539 243942264 17854138 

10    8 624390731 68707132 127598961 38843871 25895914 64139785 262743763 35861305 

11   10 5 583164895 61816894 112361376 39107891 26071927 65179819 254214354 24412634 

12    10 676696429 66704665 123840150 42142534 28095025 70237556 306286250 39390249 

13 45 30 5 4 656070628 67191520 124784252 41830389 27886926 69717315 296127659 28532567 

14    8 702001356 75264093 141637024 42501016 28334011 70835026 308184532 35245654 

15   10 5 691890207 73319928 139879869 42053595 28035730 70049325 306653123 31898637 

16    10 773250338 80476756 153171120 46396223 30930864 74327159 346568512 41379704 

17 55 35 5 4 825262735 87391187 162297918 47963139 31975421 79938552 372546703 43149815 

18    8 878910656 90451516 164125409 52205563 34803708 87001272 403257715 47065473 

19   10 5 844863128 88169785 163743880 50245415 33496943 83742358 381243243 44221504 

20    10 898145125 94763104 170974146 53775057 35850039 89625096 404134051 49023632 

 

 

 

 
Figure 3. Impact of  on the system 

We see that the lower   values would lead to better 

economic benefit, but the worse risk performance could 

be expected due to the increase in the unsatisfied 

demand. Therefore, the system designer should 

determine the appropriate values of  for hedging 

against the risk of disruptions. 
 
 
6. CONCLUSIONS 
 
This paper proposes a reliable facility location model 

for health service network design that concurrently 

deals with different categories of uncertainty including 

provider-side uncertainty reflected in the service 

capacity and reliability aspect of health service 

facilities, receiver-side uncertainty reflected in the 

demand, and in-between uncertainty reflected in the 
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geographical accessibility. The risk of unexpected 

disruptive events is characterized by a set of disruption 

scenarios. The queuing system is considered in the 

model which handles uncertainty associated with 

demand as well as service. To ensure the service 

quality, a maximum limit reflected in the expected 

patients’ waiting time is defined. The geographical 

accessibility of a health service network is considered in 

terms of the proximity of a facility to the potential 

patients and its value depends on the realized disruption 

scenario. The minimum population required to open a 

facility is determined which insures the selected 

locations have surrounding public infrastructures, 

human resources and demand. The proposed model is 

implemented on a real-life case study in health service 

network to illustrate its applicability. The findings of 

this research enable the system designers to investigate 

different strategic and operational decisions in the 

design and management of the health service networks 

from both cost and risk perspectives.  

As future research, the proposed model can be 

extended in the situations in which users have 

incomplete information about the operational status of 

service facilities. It would be interesting to investigate 

the capacity of each facility as a decision variable. 

Considering other parameters such as cost parameters 

and traveling time as the uncertain parameters would be 

another natural direction for future research. 
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 هچكيد
 

 
یابی تسهیلات برای طراحی شبکه خدمات سلامت با در نظر گرفتن اجزای کلیدی مختلف  این مقاله یک مدل جدید مکان

های قابلیت اطمینان، ظرفیت خدمتدهی، ازدحام، کیفیت خدمتدهی، زیرساختارهای عمومی محیط مورد بررسی،  شامل جنبه

کند.  های ثابت استقرار، حمل و نقل و عملیاتی پیشنهاد می های مختلف نظیر هزینه جغرافیایی و انواع هزینهقابلیت دسترسی 

  قطعیت  ریزی احتمالی مبتنی بر سناریو  برای مواجهه با انواع مختلف عدم ما مسئله را به صورت یک مدل استوار برنامه

سازی  سازی کردیم، به طوری که کمینه ت دسترسی جغرافیایی مدلموجود در قابلیت اطمینان، تقاضا، خدمتدهی و قابلی

های مورد انتظار تحت همه سناریوهای اختلال محقق گردد. برای شرح قابلیت کاربرد مدل پیشنهادی، از یک مطالعه  هزینه

حان سیستم را های این تحقیق، طرا موردی بر اساس شبکه خدمات سلامت استان سیستان و بلوچستان استفاده شد. یافته

های خدمات سلامت از هر دو  سازد تا تصمیمات مختلف استراتژیک و عملیاتی را در مدیریت و طراحی شبکه قادر می

 دیدگاه هزینه و ریسک بررسی نمایند. 
doi: 10.5829/idosi.ije.2017.30.01a.10 

 


