
IJE TRANSACTIONS A: Basics Vol. 30, No. 1, (January 2017) 48-56

Please cite this article as: S. Jam, A. Shahbahrami, S. H. S. Ziyabari, Parallel Implementation of Particle Swarm Optimization Variants Using
Using Graphics Processing Unit Platform, International Journal of Engineering (IJE), TRANSACTIONS A: Basics Vol. 30, No. 1, (January 2017)
48-56

International Journal of Engineering

J o u r n a l H o m e p a g e : w w w . i j e . i r

Parallel Implementation of Particle Swarm Optimization Variants Using Graphics

Processing Unit Platform

S. Jam, A. Shahbahrami*, S. H. S. Ziyabari

Department of Computer Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran

P A P E R I N F O

Paper history:
Received 23 June 2016
Received in revised form 20 September 2016
Accepted 11 November 2016

Keywords:
Particle Swarm Optimization
Adaptive Particle Swarm Optimization
Particle Swarm Optimization with an Aging
Leader and Challengers
Graphics Processing Unit

A B S T R A C T

There are different variants of Particle Swarm Optimization (PSO) algorithm such as Adaptive Particle

Swarm Optimization (APSO) and Particle Swarm Optimization with an Aging Leader and Challengers

(ALC-PSO). These algorithms improve the performance of PSO in terms of finding the best solution
and accelerating the convergence speed. However, these algorithms are computationally intensive. The

goal of this paper is high performance implementations of Traditional PSO (TPSO), APSO and ALC-

PSO using CUDA technology. We have implemented these three algorithms on both central processing
unit (CPU) and graphics processing unit (GPU) in order to analyze and improve their performance and

reduce their computational times. We have achieved speedups up to 14.5x, 31x, and 152x, for GPU-

TPSO , GPU-ALCPSO , and GPU-APSO, respectively. In addition, different number of threads has
been chosen in order to find an appropriate number of threads per block for both APSO and ALC-PSO

algorithms. Our experimental results show that the best choice for number of threads per block
depends on the number of existing variables and constants in each algorithm and the number of

registers per multiprocessor.
doi: 10.5829/idosi.ije.2017.30.01a.07

1. INTRODUCTION1

Particle Swarm Optimization (PSO) has been

successfully applied to a lot of difficult and complex

optimization problems such as artificial neural network

training, function optimization and fuzzy system control

[1-3]. However, PSO is a population-based iterative

algorithm and similar to most of the evolutionary

algorithms, it is computationally intensive. The main

reason is that optimizing process of PSO requires a

large number of fitness evaluations which runs

sequentially on CPU. So, a result, running speed of PSO

may become quite slow [4]. In addition, PSO cannot

overcome the problem of premature convergence that is

a big disadvantage [5].

Researchers who have focused on PSO have

considered accelerating convergence speed and avoiding

the local optima as their major goals [6]. A number of

variant PSO algorithms have been proposed [5, 7, 8],

1*Corresponding Author’s Email: shahbahrami@guilan.ac.ir

but most of them have only focused on one of these

goals in order to improve the performance of PSO,

whereas Adaptive PSO (APSO) [6] and the PSO with an

Aging Leader and Challengers (ALC-PSO) [9] have

been proposed to achieve both of these goals. In this

article, the original PSO is called Traditional Particle

Swarm Optimization (TPSO). However, the improved

PSO algorithms are also computationally intensive [3].

We have also shown that TPSO, APSO and ALC-PSO

take so much time. For example the execution times of

the APSO algorithm using 2000 particles for three

benchmark test functions are 3535, 3773 and 4589

seconds, respectively.

GPU pipelines are used as a coprocessor for

implementing highly parallelizable algorithms, since

they became programmable and the programming

model was unified by the NVIDIA CUDA

architecture
21

[10]. The main goal of this paper is high

performance implementation of PSO, APSO and ALC-

21.CUDA, C programming guide. http://docs.nvidia.com/cuda/cuda-c-
programming-guide. (2014).

mailto:shahbahrami@guilan.ac.ir
http://docs.nvidia.com/cuda/cuda-c-programming-guide.%20(2014
http://docs.nvidia.com/cuda/cuda-c-programming-guide.%20(2014

49 S. Jam et al. / IJE TRANSACTIONS A: Basics Vol. 30, No. 1, (January 2017) 48-56

SPO on GPU platform. In order to obtain high

performance in comparison with to CPU

implementation, we have exploited different

parallelisms such as loop-level parallelism, and have

achieved significant speedup of up to 152x faster than

CPU based implementation. Our main contributions

compared to other related works are as follows:

 Analyzing and implementing TPSO, APSO and

ALC-PSO on CPU platform in order to show that

they are computationally intensive. Experimental

results show that APSO is the slowest algorithm and

it takes more than one hour for 2000 particles using

some benchmark test functions.

 Exploiting different available parallelism such as

loop-level parallelism in these three algorithms using

GPU characteristics in order to improve their

performance.

 Our experimental results show that the maximum

speedup is obtained for APSO algorithm which is up

to 152x.

 Using multiple threads in order to calculate the ideal

occupancy –number of threads per block- for parallel

implementations of APSO and ALCPSO algorithms.

 Evaluating the relation among number of threads,

number of existing variables and constants in

algorithms and number of registers per

multiprocessor which can help us to choose the best

number of threads per block in order to achieve

highest speedup.

This paper is organized as follows. Background

information and related works are discussed in Section

2. In Section 3, high performance implementation of

PSO algorithms are presented. Experimental evaluations

are discussed in Section 4. Finally, conclusions are

presented in Section 5.

2. BACKGROUND

Background information about the construction of

TPSO, APSO and ALC-PSO, as well as a brief

description of graphics processing unit are presented in

this section.

2. 1. Particle Swarm Optimization Particle swarm

optimization algorithm was introduced by Eberhart and

Kennedy [11-13]. In this algorithm each member of the

swarm is called a particle and each swarm is called a

group. The swarm is initialized with stochastic values

and during movement, each particle remembers its best

previous position and its best neighborhood’s previous

position which is represented by pBesti (pBesti1,

pBesti2, … , pBestin) and gBest (gBest1, gBest2, … ,

gBestn) for particle i (i = 1, 2, ..., N), respectively. All

particles exchange their good position with each other

and according to this information, they set their position

and velocity dynamically. In TPSO, particles update

their velocity and position during each iteration using

Equations (1) and (2), respectively, where for ith

particle the velocity vector by Vi(vi
1, vi

2, … , vi
n) and the

position vector is shown byXi(xi
1, xi

2, … , xi
n). In

addition, N is the number of particles in a population

[14-18].

𝑣𝑖
𝑗

= 𝜔𝑣𝑖
𝑗

+ 𝑐1. 𝑟1
𝑗
. (𝑝𝐵𝑒𝑠𝑡𝑖

𝑗
− 𝑥𝑖

𝑗
) + 𝑐2. 𝑟2

𝑗
. (𝑔𝐵𝑒𝑠𝑡𝑗 −

𝑥𝑖
𝑗
)

(1)

𝑥𝑖
𝑗

= 𝑥𝑖
𝑗

+ 𝑣𝑖
𝑗
 (2)

where c1 and c2 are acceleration coefficients, 𝜔 is the

inertia weight and j (j = 1, 2, ..., n) represents the jth

dimension of the search space. r1
j
 and r2

j
 which maintain

diversity of the population, are randomly distributed in

[0,1]. We have divided this algorithm into three parts,

initialization, checking, and updating.

2. 2. Adaptive Particle Swarm Optimization
Adaptive Particle Swarm Optimization (APSO) is one

of the improved PSO algorithms. In addition to

overcome the problem of premature convergence,

APSO can improve the search efficiency and

convergence speed by controlling the inertia weight

acceleration coefficient and other algorithmic

parameters automatically at run time.

At first, it performs an Evolutionary State

Estimation (ESE) to identify one of the following four

defined evolutionary states, including exploration,

exploitation, convergence and jumping out in each

generation using some information about population

distribution and particle fitness. Then, it applies an

Elitist Learning Strategy (ELS) to the globally best

particle in order to help jumping out of local optima

regions when the evolutionary state is classified as

convergence state. The effects of parameter adaptation

show potential improvements that have been gained by

this algorithm in comparison with TPSO [6].

2. 3. Particle Swarm Optimization with an Aging
Leader and Challengers Particle Swarm

Optimization with an Aging Leader and Challengers

(ALC-PSO) is another improved version of TPSO. It

has been developed by considering the effect of aging

on the cultural diversity of a social animal colony. In

nature, if the leader of a colony be too old, it does not

have adequate leading power to challenge and claim the

leadership, so it must be replaced by new individuals.

According to aging mechanism, the gBest cannot be the

leader necessarily, but a particle with adequate leading

power is the leader. The ALC-PSO maintains the

population diversity and overcomes the problem of

getting trapped in local optima without weakening the

fast-converging feature of TPSO
32

.

32.CUDA, C programming guide. http://docs.nvidia.com/cuda/cuda-c-

programming-guide. (2014).

http://docs.nvidia.com/cuda/cuda-c-programming-guide.%20(2014
http://docs.nvidia.com/cuda/cuda-c-programming-guide.%20(2014

S. Jam et al. / IJE TRANSACTIONS A: Basics Vol. 30, No. 1, (January 2017) 48-56 50

2. 4. Graphics Processing Unit Graphic

Processing Unit (GPU) which has just been used to

perform graphical process in recent years, is being used

for non-graphics and general-purpose computing

applications [3, 19]. Actually, due to GPU construction

that involves multiple cores driven by very high

memory bandwidth, its parallel computing mechanism

and fast floating-point operation, it offers incredible

resources for both graphics and non-graphics

processing. GPU can support concurrent execution of

tens of thousands of threads because of its massively

parallel computing architecture [20]. So, it is more

appropriate for data-parallel computations and is able to

do more floating-point operations per second [3]. In

order to exert the full power of a GPU, it is necessary to

consider a good usage of the computing units and

memory systems [21]. Compute Unified Device

Architecture (CUDA) is a programming model and

parallel computational platform which has been

developed by NVIDIA to perform general-purpose

computing on GPU conveniently. The programmability

of GPU hardware has been dramatically increased by

introduction of CUDA [20, 22-25].

2. 5. Related Work Many researchers have

focused on performance improvement of PSO

algorithms [3, 16, 26-36]. The standard PSO has been

implemented on both GPU and CPU for four benchmark

test functions. The maximum speedup was 11x [3]. The

speedup of GPU based PSO with triggered mutation

over CPU was 25x in [16]. In addition, asynchronous

parallel PSO [26], using PC cluster system [27],

implementing PSO based on the MapReduce parallel

programming model [28] and using GPU [29] are such a

parallel implementations which have been proposed in

literature. Some of GPU based PSO algorithms are

given in Table 1. To the best of our knowledge, there is

not any high performance implementation of APSO and

ALC-PSO algorithms in literature.

3. HIGH PERFORMANCE IMPLEMENTATION OF
TRADITIONAL AND IMPROVED PSO

In order to implement the algorithms on GPU, we need

to decompose tasks in order to determine which parts of

the program can be executed independently. There are

variant decomposition techniques such as recursive,

input data, output data, exploratory, and speculative

decompositions. We have achieved a good speedup

using loop level parallelism, removing loops and

executing the code of each loop on parallel threads.

TPSO, APSO and ALC-PSO in parallel are

implemented as follows. We consider NP and ND as the

number of particles and the number of dimensions of

the problem, respectively. The lower and upper bounds

of the problem are defined as [Start_Range_Min,

Start_Range_Max]. The most important arrays which

maintain particles’ information are defined as follows.

 x[NP*ND]: current position of the particles

 v[NP*ND]: current velocity of the particles

 pBests[NP*ND]: the best current position of the

particles

 gBest[ND]: the best position of the swarm

The arrays have been considered one dimensional

because we have to save them on global memory when

we want to transfer them into GPU and only one

dimensional array can be accepted by global memory.

In TPSO algorithm after initialization, updating velocity

and position of particles and pBest are executed in

parallel, while there is write after write data dependency

among some tasks. Therefore, updating gBest must be

run sequentially. Particles must be initialized randomly.

So, first of all, we execute random generator function on

CPU, and then transfer the arrays to GPU. In APSO

algorithm, the tasks which are relevant to calculating the

mean distance of each particle from other particles,

velocity, position and pBest update can be executed in

parallel, while the tasks which are relevant to gBest

update, because of their data dependency,` cannot be

run in parallel.

In ALC-PSO implementation instead of gBest, two

arrays have been defined as follows.

 Leader[ND]: current leader of the swarm

 Challenger[ND]: this is a particle that is replaced

with the current leader if the leader is too old.

Leader is the only leader of ALC-PSO that has an

important impact on all of particles; hence its updating

must be executed sequentially. In order to compare the

best position of each particle with the leader and doing

update, the array of pBests that has been updated on

GPU must be transferred into CPU. In this algorithm,

updating the velocity and position of each particle are

performed in parallel.

4. EXPERIMENTAL EVALUATIONS

In this section, we present our experimental results

which have been obtained on CPU and GPU platforms.

4. 1. Benchmark Functions and Implementation
Environment For performance comparisons between

CPU and GPU implementations, six classical

benchmark test functions which are depicted in Table 2

have been selected. These test functions can be

classified into two groups. The first three functions -F1 -

F3- are unimodal functions and the next three -F4 – F6-

are multimodal functions. Actually, these two kinds of

test functions have been chosen to show that those

algorithms can be used for both simple and complex

functions.

51 S. Jam et al. / IJE TRANSACTIONS A: Basics Vol. 30, No. 1, (January 2017) 48-56

TABLE 1.Variant GPU-based implementation of PSO algorithms

TABLE 2. Benchmark test functions

Name Test Functions Domain

Sphere 𝐹1(𝑥) = ∑ 𝑥𝑖
2𝑛

𝑖=1 [-100, 100]

Schewefel’s

P2.22
𝐹2(𝑥) = ∑ |𝑥𝑖|𝑛

𝑖=1 + ∏ |𝑥𝑖|𝑛
𝑖=1 [-10, 10]

Zakharov
𝐹3(𝑥) = ∑ 𝑥𝑖

2𝑛
𝑖=1 + (∑ 0.5𝑖𝑥𝑖

𝑛
𝑖=1)2 +

(∑ 0.5𝑖𝑥𝑖
𝑛
𝑖=1)4

[-10, 10]

Rastrigin
𝐹4(𝑥) = ∑ [𝑥𝑖

2𝑛
𝑖=1 − 10 cos(2𝜋𝑥𝑖)] +

10𝑛

[-5.12,

5.12]

Griewank
𝐹5(𝑥) =

1

4000
∑ 𝑥𝑖

2𝑛
𝑖=1 − ∏ cos (

𝑥𝑖

√𝑖
)𝑛

𝑖=1 + 1

[-600,

600]

Michal-ewicz 𝐹6(𝑥) = ∑ sin(𝑥𝑖) . (sin (
𝑖.𝑥𝑖

2

𝜋
))2.𝑚𝑛

𝑖=1 [0, 𝜋]

In multimodal functions, optimization algorithms try to

find different good solutions. In other words,

multimodal functions are those with multiple local

optima. Each of these functions has specific

characteristics which can have impact on their behavior.

For example, Rastrigin function is separable,

asymmetrical and with huge number of local optima.

Some of them have geometric or more floating point

computations. But, CPU and GPU face with these

characteristics in a different way. For instance, in

comparison with sin and cos calculations, floating point

calculations can be performed 6x faster on our GPU

compared to CPU [32].

We executed all three algorithms under the same

conditions. In other words, number of dimensions and

threads are 5 and 64 in all implementations,

respectively. We have executed GPU and CPU based

programs several times independently.

In order to compare the GPU implementations with

the fastest CPU implementations, we have executed

CPU-TPSO, CPU-APSO and CPU-ALCPSO for 2000

particles on three different kinds of CPUs. The

characteristics of these three CPUs are shown in Table

3. After comparing these CPUs with each other, CPU C

and GPU GeForce GT 740M have been selected.

TABLE 3. The specifications of the CPUs platforms.

Name Description

CPU A AMD Sempron(TM) 145 Processor 2.80 GHz

CPU B Intel(R) Core(TM) 2 Duo CPU T9300 2.5 GHz

CPU C Intel Core i5-4200M 2.50GHz

Algorithm Description Reference

Standard Particle Swarm
Optimization (SPSO)

SPSOs have been implemented on both GPU and CPU to optimize four benchmark test function.
Experimental results showed that GPU-SPSO can be 11x faster than CPU-SPSO.

[3]

Particle Swarm Optimization

with Triggered
Mutation(PSO-TM)

Speedup of GPU implementation of PSO-TM over CPU is 25x. [16]

Particle swarm optimization
(PSO)

An implementation of PSO algorithm in C-CUDA has been presented in order to reduce computational
time. The best performance over the C implementation was 17x.

[30]

Multi-Swarm Particle

Swarm Optimization
(MSPSO)

A collaborative multi-swam PSO algorithm has been implemented on GPU and the results show that
GPU based MSPSO can be 37x faster than its sequential implementation.

[31]

Parallel Dimension Particle
Swarm Optimization

(PDPSO)

Speedup of GPU based implementation of PDPSO was 85xover CPU basedl implementation. [32]

PSO

A CUDA accelerated PSO has been used in order to reduce the computational time of the
multidimensional knapsack problem. The attainable performance benefit has been evaluated when

using a highly optimized GPU code instead of an efficient multi-core CPU implementation and 9.6x

has been gained as the highest speedup.

[33]

PSO

In order to enhance the efficiency of the PSO algorithm, it has been implemented using the shared
memory available in the GPU of CUDA platforms. In this implementation, each dimension of each

particle has been mapped as a thread and multiple sub-swarms have been used. The results show the

speedups up to 100x have been achieved compared to the serial implementation.

[34]

PSO and Distributed PSO

(DPSO)

In order to get the maximum efficiency while solving large size maximal constraint satisfaction
problems, PSO and Distributed PSO have been implemented in parallel using GPU architecture.

Speedups of up to 3.79x have been gained.

[35]

PSO

Inherent parallelism of GPU has been utilized in order to accelerate the computing time of PSO

algorithm and benefit of parallel computing mechanism supported by general purpose computing

ability of GPU has been taken. The efficiency of the algorithm has been tasted on five different

functions and the speedup of 30x have been gained.

[36]

S. Jam et al. / IJE TRANSACTIONS A: Basics Vol. 30, No. 1, (January 2017) 48-56 52

Figure 1. Speedup of CPU B over CPU A for three PSO

algorithms using different bechmarks functions.

Figure 2. Speedup of CPU C over CPU A for three PSO

algorithms using different benchmarks functions.

We have used the GPU GeForce GT 740M in order

to evaluate the effect GPU threads on the performance

of APSO and ALCPSO executing.

4. 2. Experimental Results on Different CPUs The

PSO algorithms have different behavior on different

kinds of processors. The speedups of CPU B and CPU

C over CPU A are depicted in Figures 1 and 2,

respectively. The CPU B yields speedup ranging from

0.45 to 2 and CPU C yields speedup ranging from 0.5 to

3.7. As can be seen, for most functions, the performance

improvement of CPU C is more than the CPU B. Hence,

CPU C was chosen for our performance comparison

with GPU based implementations.

4. 3. Performance Comparison on CPU and GPU
We have executed these benchmark functions on CPU

and GPU platforms in two different ways based on the

number of iterations, variable and fixed. In the first

implementation, since we already knew the optimum

value of the benchmark test functions, algorithms were

executed until they reach the optimum value. In other

words, the CPU and GPU based programs were stopped

as soon as they reached the optimum value and

acceptable solution. In the second implementation,

algorithms were executed with predefined or fixed

number of iterations such as 1000 and 4000.

4. 5. Speedup of GPU over CPU with Predefined
Optimum Value The experimental results on CPU

and GPU for TPSO, APSO and ALC-PSO algorithms

with predefined optimum value are depicted in Table 4.

The number of particles and dimensions are 1000 and 5,

respectively. In the table, columns, CPU-Iter and GPU-

Iter represent the number of iterations after that the

programs were stopped and reached to the predefined

optimum value. The second, fifth, and eighth columns

represent the speedup of GPU-TPSO, GPU-APSO,

GPU-ALCPSO over CPU-TPSO, CPU-APSO, and

CPU-ALCPSO, respectively.

As Table 4 depicts, the GPU-TPSO yields speedup

ranging from 1.57 to 10.9, while the GPU-APSO yields

speedup ranging from 10.42 to 62.91. The GPU-

ALCPSO yields speedup ranging from 1.05 to 27.63.

For most functions, GPU iteration is less than CPU

iteration. For example, for Griewank function in TPSO

algorithm in Table 4, the CPU-Iter and GPU-Iter are

165 and 35, respectively. This means that GPU can

reach the predefined optimum value with less iteration.

Since in PSO algorithms, particles are initialized

randomly, if we let the programs to be run until

achieving the optimum value, they stop in different

number of iterations in each execution.

4. 6. Performance of GPU over CPU with
Predefined Number of Iterations To make a fair

performance comparison between CPU and GPU, we

have implemented three algorithms using fixed number

of iterations. Numbers of iterations have been

considered 4000 for TPSO and ALC-PSO and 1000 for

APSO algorithms.

Speedups of GPU-TPSO, GPU-APSO, and GPU-

ALCPSO implementations over CPU-TPSO, CPU-

APSO, and CPU-ALCPSO implementations are

depicted in Figures 3, 4 and 5, respectively. The number

of particles are selected from 1000 to 3000. As can be

seen in these figures, with increasing the number of

particles, the speedups are also increased. For example,

in F1 function, the speedup of GPU-TPSO over CPU-

TPSO is 9.3x and 14.5x for N = 1000 and N = 3000,

respectively.

Speedups of GPU-APSO and GPU-ALCPSO are

more than the speedups of GPU-TPSO algorithm. The

maximum speedup in GPU-TPSO is 14.5 while the

maximum speedups in GPU-APSO and GPU-ALCPSO

are 152 and 31, respectively. There are more parallelism

in APSO and ALC-PSO algorithms compared to TPSO.

Especially, in APSO algorithm, there are many nested

loops which have been exploited using loop- and data-

level parallelism. In addition, speedup is increased by

increasing the number of particles and number of

iterations; even GPU-APSO can be 300x faster than

CPU-APSO for 4000 particles.

0

0.5

1

1.5

2

2.5

F₁ F₂ F₃ F₄ F₅ F₆

TPSO APSO ALC-PSO

0
0.5

1
1.5

2
2.5

3
3.5

4

F₁ F₂ F₃ F₄ F₅ F₆

TPSO APSO ALC-PSO

S
p

ee
d
u

p
s

Different benchmark functions

S
p

ee
d
u

p

Different benchmark functions

53 S. Jam et al. / IJE TRANSACTIONS A: Basics Vol. 30, No. 1, (January 2017) 48-56

4. 6. Evaluating the Effect of GPU Threads on the
Performance of APSO and ALC-PSO Executing
On the GPU based programs, choosing the appropriate

number of threads based on the selected PSO algorithm,

the features of employed GPU and population size can

impact on the performance of parallel programs and

their execution times. In fact, the occupancy of GPU

blocks -number of threadsper block- can impact on the

performance of program execution. In order to evaluate

the impact of threads, GPU-APSO and GPU-ALCPSO

have been executed using 500 and 1000 particles,

respectively. The speedup of GPU-APSO over CPU-

APSO and the speedup of GPU-ALCPSO over CPU-

ALCPSO using 64,128, 256, 512 and 1024 threads per

block have been depicted in Figures 6 and 7 for 500 and

1000 particles, respectively. As can be seen, the

execution times of GPU based program is reduced with

increasing the number of particles. Although in all cases

of using different threads, the performance of GPU

based programs is better than the performance of its

CPU based programs, GPU shows its best performance

when 100% of block capacity is used. In the other

words, GPU based programs can be executed in the

smallest time when the block occupancy is 100%. The

occupancy of each multiprocessor which can impact on

the programs performance and the behavior of programs

in dealing with different functions can be calculated

using Equation (3).

The occupancy of each

multiprocessors =

The number of allocated

warps per multiprocessors

(3) Maximum number of warps

which are supportable by

each multiprocessor

Since each multiprocessor contains a set of registers, the

number of employed registers by the program,

computational capability and physical limitation of GPU

can have impact on the performance of programs in

dealing with different functions.The occupancy of each

multiprocessor according to the number of allocated

registers per threads for GeForce GT 740M is shown in

Table 5. When the number of threads per block is 64,

the number of warps per block is 2.

Figure 3. Speedup of GPU-TPSO implementation over CPU-

TPSO implementation for different benchmarks with different

number of particles.

Figure 4. Speedup of GPU-APSO implementation over CPU-

APSO implementation for different benchmarks with different

number of particles.

Figure 5. Speedup of GPU-ALCPSO implementation over

CPU-ALCPSO implementation for different benchmarks with

different number of particles.

Since the maximum number of active blocks per

multiprocessor can be 16, the number of active warps

per multiprocessor will be 32, while each

multiprocessor in our employed GPU can support 64

warps in parallel. Hence, the number of active blocks

which can be supported by each multiprocessor can

cause performance limitation in this case. Considering

Equation (3), the occupancy of multiprocessors per

block for 64 threads is 50%.

When the number of threads per block is 128, the

number of warps per block is 4. Since the maximum

number of active blocks per multiprocessor can be 16,

the number of active warps per multiprocessor will be

64. So, the maximum number of blocks can cause

performance limitation. Although the occupancy of each

multiprocessor per block is 100% for 128 threads, GPU

hardware limits performance in this case. When the

number of threads per block is 256, 512 and 1024, the

number of warps per block is 8, 16 and 32, respectively.

In these cases, the number of active warps per

multiprocessor can cause performance limitation. The

number of active warps per multiprocessor for 256, 512

and 1024 threads is 64 but the number of active blocks

per multiprocessor is 8, 4 and 2, respectively.

In this case, each multiprocessor can support up to

16 blocks, and considering Equation (3), the occupancy

of multiprocessors is 100% for 256, 512 and 1024

threads.

0

5

10

15

20

F₁ F₂ F₃ F₄ F₅ F₆

N=1000

N=2000

N=3000

0

50

100

150

F₁ F₂ F₃ F₄ F₅ F₆

N=1000

N=1500

N=2000

0

10

20

30

40

F₁ F₂ F₃ F₄ F₅ F₆

N=1000

N=2000

N=3000

Different benchmark functions

Different benchmark functions

Different benchmark functions

S
p

ee
d
u

p

S
p

ee
d
u

p

S
p

ee
d
u

p

S. Jam et al. / IJE TRANSACTIONS A: Basics Vol. 30, No. 1, (January 2017) 48-56 54

Figure 6. Speedup of GPU-APSO over CPU-APSO using 500

particles, six benchmark functions and predefined number of

iterations for different block sizes.

Figure 7. Speedup of GPU-ALCPSO over CPU-ALCPSO

using 1000 particles, six benchmark functions and predefined

number of iterations for different block sizes.

TABLE 5. The multiprocessors features while the different benchmark functions are running on GeForce GT 740 M

The occupancy of

each multiprocessor

The number of active

blocks per

multiprocessor

The number of active

warps per

multiprocessor

The number of active

threads per

multiprocessor

The number of

registers per

thread

The number of

threads per block

50% 16 32 1024 9, 11,16, 21, 22 64

100% 16 64 2048 9, 11, 16, 21, 22 128

100% 8 64 2048 9,11,16, 21,22 256

100% 4 64 2048 9,11,16, 21,22 512

100% 2 64 2048 9, 11,16, 21,22 1024

Even allocating 1024 threads to each block and 22

registers to each thread, totally 45056 registers per

multiprocessor is required. Hence, there is no limitation

in this GPU in term of number of registers and GPU

behavior for same number of threads but different

number of registers which are required for each thread,

is almost the same.

5. CONCLUSIONS

Particle Swarm Optimization (PSO) algorithm, and its

improved PSO algorithms such as Adaptive PSO

(APSO) and PSO with an Aging Leader and

Challengers (ALC-PSO) are used for optimizations

problems. In comparison with the traditional PSO, the

APSO and ALC-PSO algorithms improve convergence

speed and avoid the problem of premature convergence.

Similar to most of the evolutionary algorithms, these

algorithms are population-based iterative and

computationally intensive. The main reason is that the

optimizing process of these algorithms requires a large

number of fitness evaluations which runs sequentially

on CPU. We have improved the performance of the

mentioned algorithms on GPU platform in two different

ways, variable and fixed number of iterations. In

0

20

40

60

80

100

120

140

160

180

F₁ F₂ F₃ F₄ F₅ F₆

Block size 64

Block size 128

Block size 256

Block size 512

Block size 1024

0

5

10

15

20

25

30

35

F₁ F₂ F₃ F₄ F₅ F₆

Block size= 64

Block size= 128

Block size= 256

Block size= 512

Block size= 1024

TABLE 4. The execution resultsof TPSO, APSO and ALC-PSO algorithms on CPU and GPU with predifined optimum value.

ALC-PSO APSO TPSO

GPU-Iter CPU-Iter Speedup GPU-Iter CPU-Iter Speedup GPU-Iter CPU-Iter Speedup Name

28 33 3.1 22 41 10.42 24 31 3.7 Sphere

31 37 2.9 19 39 11.36 37 28 10.85 Schwefel

18 34 4.71 12 50 22.11 15 26 4.88 Zakharov

137 80 1.05 27 35 23.44 81 65 1.57 Rastrigin

39 603 27.63 27 310 62.91 35 165 10.95 Griewank

18 33 3.03 21 98 21.79 11 30 2.88 Michalewicz

Different benchmark functions

)(

S
p

ee
d
u

p

Different benchmark functions

)(

S
p

ee
d
u

p

55 S. Jam et al. / IJE TRANSACTIONS A: Basics Vol. 30, No. 1, (January 2017) 48-56

variable number of iteration, we set predefined optimum

value for all benchmark test functions, and maximum

speedup were 10.9, 62.91, and 27.63 for TPSO, APSO,

and ALC-PSO algorithms, respectively. In fixed number

of iteration, 4000 for TPSO and ALC-PSO and 1000 for

APSO algorithms were used. The maximum speedup in

GPU-TPSO is 14.5, while the maximum speedups in

GPU-APSO and GPU-ALCPSO are 152 and 31,

respectively. Although the APSO and ALC-PSO

improve the performance of TPSO algorithm in terms of

convergence speed, global optimality and solution

accuracy, they are more computational intensive than

TPSO algorithm. Speedups of GPU-APSO and GPU-

ALCPSO are more than the speedups of GPU-TPSO

algorithm in all implementations. The largest speedup

yields for APSO algorithm. There are much more

nested-loops in APSO algorithm and it is exploited

using loop- and data-level parallelism in parallel

implementation. With increasing the number of particles

and iterations, the speedup is also increased. In addition,

the number of GPU threads can have impact on the

performance of parallel implementation. Our

experimental results show that the ideal occupancy -

number of threads per block- for APSO and ALC-PSO

is almost 100% of the total threads of the block.

Actually, when we do not have any limitation in terms

of number of registers, full block occupancy can be

appropriate in order to reduce GPU based programs

execution time.

6. REFERENCES

1. Rao, S.S. and Rao, S., "Engineering optimization: Theory and

practice, John Wiley & Sons, (2009).

2. Altinoz, O.T. and Yilmaz, A.E., "Particle swarm optimization

with parameter dependency walls and its sample application to

the microstrip-like interconnect line design", AEU-International

Journal of Electronics and Communications, Vol. 66, No. 2,

(2012), 107-114.

3. Zhou, Y. and Tan, Y., "GPU-based parallel particle swarm
optimization", in IEEE Congress on Evolutionary Computation,

(2009), 1493-1500.

4. Ciuprina, G., Ioan, D. and Munteanu, I., "Use of intelligent-
particle swarm optimization in electromagnetics", IEEE

Transactions on Magnetics, Vol. 38, No. 2, (2002), 1037-1040.

5. Liang, J.J., Qin, A.K., Suganthan, P.N. and Baskar, S.,
"Comprehensive learning particle swarm optimizer for global

optimization of multimodal functions", IEEE Transactions on

Evolutionary Computation, Vol. 10, No. 3, (2006), 281-295.

6. Zhan, Z.-H., Zhang, J., Li, Y. and Chung, H.S.-H., "Adaptive

particle swarm optimization", IEEE Transactions on Systems,

Man, and Cybernetics, Part B (Cybernetics), Vol. 39, No. 6,

(2009), 1362-1381.

7. Ho, S.-Y., Lin, H.-S., Liauh, W.-H. and Ho, S.-J., "OPSO:
Orthogonal particle swarm optimization and its application to

task assignment problems", IEEE Transactions on Systems,

Man, and Cybernetics-Part A: Systems and Humans, Vol. 38,
No. 2, (2008), 288-298.

8. Liu, B., Wang, L. and Jin, Y.-H., "An effective PSO-based

memetic algorithm for flow shop scheduling", IEEE

Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics), Vol. 37, No. 1, (2007), 18-27.

9. Chen, W.-N., Zhang, J., Lin, Y., Chen, N., Zhan, Z.-H., Chung,

H.S.-H., Li, Y. and Shi, Y.-H., "Particle swarm optimization

with an aging leader and challengers", IEEE Transactions on

Evolutionary Computation, Vol. 17, No. 2, (2013), 241-258.

10. Santos, A., Teixeira, J.M., Farias, T., Teichrieb, V. and Kelner,

J., "Understanding the efficiency of kd-tree ray-traversal
techniques over a gpgpu architecture", International Journal of

Parallel Programming, Vol. 40, No. 3, (2012), 331-352.

11. Eberhart, R.C. and Kennedy, J., "A new optimizer using particle
swarm theory", in Proceedings of the sixth international

symposium on micro machine and human science, New York,
NY. Vol. 1, (1995), 39-43.

12. Eberhart, R. C., Kennedy, J., “Particle swarm optimization”, In

Proceedings of IEEE International Conferenceon Neural
Networks, (1995); 1942–1948.

13. Kennedy, J. and Eberhart, R.C., "A discrete binary version of the

particle swarm algorithm", in Systems, Man, and Cybernetics, in
IEEE International Conference on Computational Cybernetics

and Simulation., 1997, Vol. 5, (1997), 4104-4108.

14. Sadri, J. and Suen, C.Y., "A genetic binary particle swarm
optimization model", in IEEE International Conference on

Evolutionary Computation, (2006), 656-663.

15. Bratton, D. and Kennedy, J., "Defining a standard for particle
swarm optimization", in IEEE swarm intelligence symposium,

(2007), 120-127.

16. Zhou, Y. and Tan, Y., "Particle swarm optimization with
triggered mutation and its implementation based on GPU", in

Proceedings of the 12th annual conference on Genetic and

evolutionary computation, ACM, (2010), 1-8.

17. Liao, C.-Y., Lee, W.-P., Chen, X. and Chiang, C.-W., "Dynamic

and adjustable particle swarm optimization", in Proceedings of

the 8th WSEAS International Conference on Evolutionary
Computing, Citeseer, (2007), 301-306.

18. Mendes, R., Kennedy, J. and Neves, J., "The fully informed

particle swarm: Simpler, maybe better", IEEE Transactions on

Evolutionary Computation, Vol. 8, No. 3, (2004), 204-210.

19. Kromer, P., Platos, J. and Snasel, V., "Nature-inspired meta-

heuristics on modern GPUs: State of the art and brief survey of
selected algorithms", International Journal of Parallel

Programming, Vol. 42, No. 5, (2014), 681-709.

20. Cao, Y., Patnaik, D., Ponce, S., Archuleta, J., Butler, P., Feng,
W.-c. and Ramakrishnan, N., "Parallel mining of neuronal spike

streams on graphics processing units", International Journal of

Parallel Programming, Vol. 40, No. 6, (2012), 605-632.

21. Shen, X., Liu, Y., Zhang, E.Z. and Bhamidipati, P., "An

infrastructure for tackling input-sensitivity of GPU program

optimizations", International Journal of Parallel

Programming, Vol. 41, No. 6, (2013), 855-869.

22. Sun, E. and Kaeli, D., "Aggressive value prediction on a GPU",

International Journal of Parallel Programming, Vol. 42, No.
1, (2014), 30-48.

23. Lee, C., Ro, W.W. and Gaudiot, J.-L., "Boosting CUDA

applications with CPU–GPU hybrid computing", International

Journal of Parallel Programming, Vol. 42, No. 2, (2014), 384-

404.

24. Andion, J.M., Arenaz, M., Bodin, F., Rodriguez, G. and
Tourino, J., "Locality-aware automatic parallelization for

GPGPU with openhmpp directives", International Journal of

Parallel Programming, Vol. 44, No. 3, (2016), 620-643.

25. Martinez-Angeles, C.A., Wu, H., Dutra, I., Costa, V.S. and

Buenabad-Chavez, J., "Relational learning with GPUs:

Accelerating rule coverage", International Journal of Parallel

Programming, Vol. 44, No. 3, (2016), 663-685.

S. Jam et al. / IJE TRANSACTIONS A: Basics Vol. 30, No. 1, (January 2017) 48-56 56

26. Ziyabari, S.H.S. and Shahbahrami, A., "High performance

implementation of apso algorithm using gpu platform", in
International Symposium onArtificial Intelligence and Signal

Processing (AISP), IEEE, (2015), 196-200.

27. Venter, G. and Sobieszczanski-Sobieski, J., "Parallel particle
swarm optimization algorithm accelerated by asynchronous

evaluations", Journal of Aerospace Computing, Information,

and Communication, Vol. 3, No. 3, (2006), 123-137.

28. Kim, J.-Y., Jeong, H.-M., Lee, H.-S. and Park, J.-H., "PC cluster

based parallel pso algorithm for optimal power flow", in

International Conference on Intelligent Systems Applications to
Power Systems, ISAP., IEEE, (2007), 1-6.

29. McNabb, A.W., Monson, C.K. and Seppi, K.D., "Parallel PSO
using mapreduce", in IEEE Congress on Evolutionary

Computation, (2007), 7-14.

30. Veronese, L.D.P. and Krohling , R.A., " Swarm's flight:

Accelerating the particles using C-CUDA", in IEEE Congress

on Evolutionary Computation, (2009), 3264-3270.

31. Solomon, S., Thulasiraman, P. and Thulasiram, R.,
"Collaborative multi-swarm PSO for task matching using

graphics processing units", in Proceedings of the 13th annual

conference on Genetic and evolutionary computation, ACM,

(2011), 1563-1570.

32. Calazan, R.M., Nedjah, N. and de Macedo Mourelle, L.,

"Parallel GPU-based implementation of high dimension particle

swarm optimizations", in IEEE Fourth Latin American
Symposium on Circuits and Systems (LASCAS), (2013), 1-4.

33. Zan, D. and Jaros, J., "Solving the multidimensional knapsack

problem using a cuda accelerated PSO", in IEEE Congress on
Evolutionary Computation (CEC), (2014), 2933-2939.

34. Silva, E.H. and Bastos Filho, C.J., "PSO efficient

implementation on GPUs using low latency memory", IEEE

Latin America Transactions, Vol. 13, No. 5, (2015), 1619-

1624.

35. Dali, N. and Bouamama, S., "Parallel particle swarm

optimization approaches on graphical processing unit for

constraint reasoning: Case of max-CPSs", Procedia Computer

Science, Vol. 60, (2015), 1070-1080.

36. Kaur, J., Singh, S. and Singh, S., "Parallel implementation of

PSO algorithm using GPGPU", in Second International
Conference on Computational Intelligence & Communication

Technology (CICT), IEEE, (2016), 155-159.

Parallel Implementation of Particle Swarm Optimization Variants Using Graphics

Processing Unit Platform

S. Jam, A. Shahbahrami, S. H. S. Ziyabari

Department of Computer Engineering, Faculty of Engineering, University of Guilan, Rasht, Iran

P A P E R I N F O

Paper history:
Received 23 June 2016
Received in revised form 20 September 2016
Accepted 11 November 2016

Keywords:
Particle Swarm Optimization
Adaptive Particle Swarm Optimization
Particle Swarm Optimization with an Aging
Leader and Challengers
Graphics Processing Unit

 هچكيد

سازی اجتماع ذرات (، از جمله الگوریتم تطبیقی بهینهPSO) سازی اجتماع ذرات بهینه های انواع مختلفی از الگوریتم

(APSOو الگوریتم بهینه) (سازی اجتماع ذرات با رهبر سالخورده و رقباALC-PSO وجود دارد. اگر چه این)

شوند، اما می PSOسرعت همگرایی موجب بهبود عملکرد الگوریتمی یافتن بهترین پاسخ و تسریع ها در زمینه الگوریتم

 PSO (TPSO،) APSO سازی کارآمد الگوریتم سنتی دارای حجم محاسباتی بالایی هستند. هدف اصلی این مقاله، پیاده

زمان است. به منظور ارزیابی و بهبود عملکرد این سه الگوریتم و کاهش CUDA با استفاده از فناوری ALC-PSO و

 ،TPSO ایم. برای سه الگوریتم پیاده سازی کرده GPU و CPU ها را بر روی هر دو پلتفرم اجرای آنها، این الگوریتم

APSOو ALC-PSO، ایم. به علاوه، به منظور یافتن تعداد دست یافته 152و 31، 14.5به ترتیب به تسریعی برابر با

های مختلفی در ما از تعداد نخ ،ALC-PSO و APSO الگوریتمهای مناسب به ازای هر بلاک، برای دو نخ

ها به ازای هر دهد که انتخاب بهترین تعداد نخ ایم. نتایج به دست آمده نشان می های انجام شده، استفاده کرده سازی پیاده

 دازنده بستگی دارد.های موجود در هر الگوریتم و تعداد رجیسترها به ازای هر چندپر بلاک، به تعداد متغیرها و ثابت

doi: 10.5829/idosi.ije.2017.30.01a.07

