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A B S T R A C T  
 

 

There are different variants of Particle Swarm Optimization (PSO) algorithm such as Adaptive Particle 

Swarm Optimization (APSO) and Particle Swarm Optimization with an Aging Leader and Challengers 

(ALC-PSO). These algorithms improve the performance of PSO in terms of finding the best solution 
and accelerating the convergence speed. However, these algorithms are computationally intensive. The 

goal of this paper is high performance implementations of Traditional PSO (TPSO), APSO and ALC-

PSO using CUDA technology. We have implemented these three algorithms on both central processing 
unit (CPU) and graphics processing unit (GPU) in order to analyze and improve their performance and 

reduce their computational times. We have achieved speedups up to 14.5x, 31x, and 152x, for GPU-

TPSO , GPU-ALCPSO , and GPU-APSO, respectively. In addition, different number of threads has 
been chosen in order to find an appropriate number of threads per block for both APSO and ALC-PSO 

algorithms. Our experimental results show that the best choice for number of threads per block 
depends on the number of existing variables and constants in each algorithm and the number of 

registers per multiprocessor. 
doi: 10.5829/idosi.ije.2017.30.01a.07 

 

 
1. INTRODUCTION1 

 

Particle Swarm Optimization (PSO) has been 

successfully applied to a lot of difficult and complex 

optimization problems such as artificial neural network 

training, function optimization and fuzzy system control 

[1-3]. However, PSO is a population-based iterative 

algorithm and similar to most of the evolutionary 

algorithms, it is computationally intensive. The main 

reason is that optimizing process of PSO requires a 

large number of fitness evaluations which runs 

sequentially on CPU. So, a result, running speed of PSO 

may become quite slow [4]. In addition, PSO cannot 

overcome the problem of premature convergence that is 

a big disadvantage [5].  

Researchers who have focused on PSO have 

considered accelerating convergence speed and avoiding 

the local optima as their major goals [6]. A number of 

variant PSO algorithms have been proposed [5, 7, 8], 
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but most of them have only focused on one of these 

goals in order to improve the performance of PSO, 

whereas Adaptive PSO (APSO) [6] and the PSO with an 

Aging Leader and Challengers (ALC-PSO) [9] have 

been proposed to achieve both of these goals. In this 

article, the original PSO is called Traditional Particle 

Swarm Optimization (TPSO). However, the improved 

PSO algorithms are also computationally intensive [3]. 

We have also shown that TPSO, APSO and ALC-PSO 

take so much time. For example the execution times of 

the APSO algorithm using 2000 particles for three 

benchmark test functions are 3535, 3773 and 4589 

seconds, respectively.   

GPU pipelines are used as a coprocessor for 

implementing highly parallelizable algorithms, since 

they became programmable and the programming 

model was unified by the NVIDIA CUDA 

architecture
21

[10]. The main goal of this paper is high 

performance implementation of PSO, APSO and ALC-

                                                           
21.CUDA, C programming guide. http://docs.nvidia.com/cuda/cuda-c-
programming-guide. (2014). 
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SPO on GPU platform. In order to obtain high 

performance in comparison with to CPU 

implementation, we have exploited different 

parallelisms such as loop-level parallelism, and have 

achieved significant speedup of up to 152x faster than 

CPU based implementation. Our main contributions 

compared to other related works are as follows: 

 Analyzing and implementing TPSO, APSO and 

ALC-PSO on CPU platform in order to show that 

they are computationally intensive. Experimental 

results show that APSO is the slowest algorithm and 

it takes more than one hour for 2000 particles using 

some benchmark test functions.  

 Exploiting different available parallelism such as 

loop-level parallelism in these three algorithms using 

GPU characteristics in order to improve their 

performance.  

 Our experimental results show that the maximum 

speedup is obtained for APSO algorithm which is up 

to 152x. 

 Using multiple threads in order to calculate the ideal 

occupancy –number of threads per block- for parallel 

implementations of APSO and ALCPSO algorithms. 

 Evaluating the relation among number of threads, 

number of existing variables and constants in 

algorithms and number of registers per 

multiprocessor which can help us to choose the best 

number of threads per block in order to achieve 

highest speedup. 

This paper is organized as follows. Background 

information and related works are discussed in Section 

2. In Section 3, high performance implementation of 

PSO algorithms are presented. Experimental evaluations 

are discussed in Section 4. Finally, conclusions are 

presented in Section 5. 
 

 

2. BACKGROUND 
 

Background information about the construction of 

TPSO, APSO and ALC-PSO, as well as a brief 

description of graphics processing unit are presented in 

this section.  

 

2. 1. Particle Swarm Optimization    Particle swarm 

optimization algorithm was introduced by Eberhart and 

Kennedy [11-13]. In this algorithm each member of the 

swarm is called a particle and each swarm is called a 

group. The swarm is initialized with stochastic values 

and during movement, each particle remembers its best 

previous position and its best neighborhood’s previous 

position which is represented by pBesti (pBesti1, 

pBesti2, … , pBestin) and gBest (gBest1, gBest2, … , 

gBestn) for particle i (i = 1, 2, ..., N), respectively. All 

particles exchange their good position with each other 

and according to this information, they set their position 

and velocity dynamically. In TPSO, particles update 

their velocity and position during each iteration using 

Equations (1) and (2), respectively, where for ith 

particle the velocity vector by Vi(vi
1, vi

2, … , vi
n) and the 

position vector is shown byXi(xi
1, xi

2, … , xi
n). In 

addition, N is the number of particles in a population 

[14-18]. 

𝑣𝑖
𝑗

= 𝜔𝑣𝑖
𝑗

+ 𝑐1. 𝑟1
𝑗
. (𝑝𝐵𝑒𝑠𝑡𝑖

𝑗
− 𝑥𝑖

𝑗
) + 𝑐2. 𝑟2

𝑗
. (𝑔𝐵𝑒𝑠𝑡𝑗 −

𝑥𝑖
𝑗
)  

(1) 

𝑥𝑖
𝑗

= 𝑥𝑖
𝑗

+ 𝑣𝑖
𝑗
  (2) 

where c1 and c2 are acceleration coefficients, 𝜔 is the 

inertia weight and j (j = 1, 2, ..., n) represents the jth 

dimension of the search space. r1
j
 and r2

j
 which maintain 

diversity of the population, are randomly distributed in 

[0,1]. We have divided this algorithm into three parts, 

initialization, checking, and updating. 

 
2. 2. Adaptive Particle Swarm Optimization  
Adaptive Particle Swarm Optimization (APSO) is one 

of the improved PSO algorithms. In addition to 

overcome the problem of premature convergence, 

APSO can improve the search efficiency and 

convergence speed by controlling the inertia weight 

acceleration coefficient and other algorithmic 

parameters automatically at run time. 

At first, it performs an Evolutionary State 

Estimation (ESE) to identify one of the following four 

defined evolutionary states, including exploration, 

exploitation, convergence and jumping out in each 

generation using some information about population 

distribution and particle fitness. Then, it applies an 

Elitist Learning Strategy (ELS) to the globally best 

particle in order to help jumping out of local optima 

regions when the evolutionary state is classified as 

convergence state. The effects of parameter adaptation 

show potential improvements that have been gained by 

this algorithm in comparison with TPSO [6].  

 
2. 3. Particle Swarm Optimization with an Aging 
Leader and Challengers    Particle Swarm 

Optimization with an Aging Leader and Challengers 

(ALC-PSO) is another improved version of TPSO. It 

has been developed by considering the effect of aging 

on the cultural diversity of a social animal colony. In 

nature, if the leader of a colony be too old, it does not 

have adequate leading power to challenge and claim the 

leadership, so it must be replaced by new individuals. 

According to aging mechanism, the gBest cannot be the 

leader necessarily, but a particle with adequate leading 

power is the leader. The ALC-PSO maintains the 

population diversity and overcomes the problem of 

getting trapped in local optima without weakening the 

fast-converging feature of TPSO
32

.  

                                                           
32.CUDA, C programming guide. http://docs.nvidia.com/cuda/cuda-c-

programming-guide. (2014). 
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2. 4. Graphics Processing Unit      Graphic 

Processing Unit (GPU) which has just been used to 

perform graphical process in recent years, is being used 

for non-graphics and general-purpose computing 

applications [3, 19]. Actually, due to GPU construction 

that involves multiple cores driven by very high 

memory bandwidth, its parallel computing mechanism 

and fast floating-point operation, it offers incredible 

resources for both graphics and non-graphics 

processing. GPU can support concurrent execution of 

tens of thousands of threads because of its massively 

parallel computing architecture [20]. So, it is more 

appropriate for data-parallel computations and is able to 

do more floating-point operations per second [3]. In 

order to exert the full power of a GPU, it is necessary to 

consider a good usage of the computing units and 

memory systems [21]. Compute Unified Device 

Architecture (CUDA) is a programming model and 

parallel computational platform which has been 

developed by NVIDIA to perform general-purpose 

computing on GPU conveniently. The programmability 

of GPU hardware has been dramatically increased by 

introduction of CUDA [20, 22-25]. 

 

2. 5. Related Work        Many researchers have 

focused on performance improvement of PSO 

algorithms [3, 16, 26-36]. The standard PSO has been 

implemented on both GPU and CPU for four benchmark 

test functions. The maximum speedup was 11x [3]. The 

speedup of GPU based PSO with triggered mutation 

over CPU was 25x in [16]. In addition, asynchronous 

parallel PSO [26], using PC cluster system [27], 

implementing PSO based on the MapReduce parallel 

programming model [28] and using GPU [29] are such a 

parallel implementations which have been proposed in 

literature. Some of GPU based PSO algorithms are 

given in Table 1. To the best of our knowledge, there is 

not any high performance implementation of APSO and 

ALC-PSO algorithms in literature. 

 

 
3. HIGH PERFORMANCE IMPLEMENTATION OF 
TRADITIONAL AND IMPROVED PSO 
 
In order to implement the algorithms on GPU, we need 

to decompose tasks in order to determine which parts of 

the program can be executed independently. There are 

variant decomposition techniques such as recursive, 

input data, output data, exploratory, and speculative 

decompositions.  We have achieved a good speedup 

using loop level parallelism, removing loops and 

executing the code of each loop on parallel threads. 

TPSO, APSO and ALC-PSO in parallel are 

implemented as follows. We consider NP and ND as the 

number of particles and the number of dimensions of 

the problem, respectively. The lower and upper bounds  

of the problem are defined as [Start_Range_Min, 

Start_Range_Max]. The most important arrays which 

maintain particles’ information are defined as follows. 

 x[NP*ND]: current position of the particles 

 v[NP*ND]: current velocity of the particles 

 pBests[NP*ND]: the best current position of the 

particles 

 gBest[ND]: the best position of the swarm 

The arrays have been considered one dimensional 

because we have to save them on global memory when 

we want to transfer them into GPU and only one 

dimensional array can be accepted by global memory. 

In TPSO algorithm after initialization, updating velocity 

and position of particles and pBest are executed in 

parallel, while there is write after write data dependency 

among some tasks. Therefore, updating gBest must be 

run sequentially. Particles must be initialized randomly. 

So, first of all, we execute random generator function on 

CPU, and then transfer the arrays to GPU. In APSO 

algorithm, the tasks which are relevant to calculating the 

mean distance of each particle from other particles, 

velocity, position and pBest update can be executed in 

parallel, while the tasks which are relevant to gBest 

update, because of their data dependency,` cannot be 

run in parallel.  

In ALC-PSO implementation instead of gBest, two 

arrays have been defined as follows.  

 Leader[ND]: current leader of the swarm 

 Challenger[ND]: this is a particle that is replaced 

with the current leader if the leader is too old.  

Leader is the only leader of ALC-PSO that has an 

important impact on all of particles; hence its updating 

must be executed sequentially. In order to compare the 

best position of each particle with the leader and doing 

update, the array of pBests that has been updated on 

GPU must be transferred into CPU. In this algorithm, 

updating the velocity and position of each particle are 

performed in parallel. 
 

 

4. EXPERIMENTAL EVALUATIONS 
 

In this section, we present our experimental results 

which have been obtained on CPU and GPU platforms. 

 

4. 1. Benchmark Functions and Implementation 
Environment    For performance comparisons between 

CPU and GPU implementations, six classical 

benchmark test functions which are depicted in Table 2 

have been selected. These test functions can be 

classified into two groups. The first three functions -F1 - 

F3- are unimodal functions and the next three -F4 – F6- 

are multimodal functions. Actually, these two kinds of 

test functions have been chosen to show that those 

algorithms can be used for both simple and complex 

functions.  
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TABLE 1.Variant GPU-based implementation of PSO algorithms 

 

 
TABLE 2. Benchmark test functions 

Name Test Functions Domain 

Sphere 𝐹1(𝑥) = ∑ 𝑥𝑖
2𝑛

𝑖=1   [-100, 100] 

Schewefel’s 

P2.22 
𝐹2(𝑥) = ∑ |𝑥𝑖|𝑛

𝑖=1 + ∏ |𝑥𝑖|𝑛
𝑖=1   [-10, 10] 

Zakharov 
𝐹3(𝑥)  = ∑ 𝑥𝑖

2𝑛
𝑖=1 + (∑ 0.5𝑖𝑥𝑖

𝑛
𝑖=1 )2 +

(∑ 0.5𝑖𝑥𝑖
𝑛
𝑖=1 )4  

[-10, 10] 

Rastrigin 
𝐹4(𝑥) = ∑ [𝑥𝑖

2𝑛
𝑖=1 − 10 cos(2𝜋𝑥𝑖)] +

10𝑛  

[-5.12, 

5.12] 

Griewank 
𝐹5(𝑥) =

1

4000
∑ 𝑥𝑖

2𝑛
𝑖=1 − ∏ cos (

𝑥𝑖

√𝑖
)𝑛

𝑖=1 + 1  

[-600, 

600] 

Michal-ewicz 𝐹6(𝑥) = ∑ sin(𝑥𝑖) . (sin (
𝑖.𝑥𝑖

2

𝜋
))2.𝑚𝑛

𝑖=1   [0, 𝜋] 

 

 

In multimodal functions, optimization algorithms try to 

find different good solutions. In other words, 

multimodal functions are those with multiple local 

optima. Each of these functions has specific 

characteristics which can have impact on their behavior. 

For example, Rastrigin function is separable, 

asymmetrical and with huge number of local optima. 

Some of them have geometric or more floating point 

computations. But, CPU and GPU face with these 

characteristics in a different way. For instance, in 

comparison with sin and cos calculations, floating point 

calculations can be performed 6x faster on our GPU 

compared to CPU [32].   

We executed all three algorithms under the same 

conditions. In other words, number of dimensions and 

threads are 5 and 64 in all implementations, 

respectively. We have executed GPU and CPU based 

programs several times independently. 

In order to compare the GPU implementations with 

the fastest CPU implementations, we have executed 

CPU-TPSO, CPU-APSO and CPU-ALCPSO for 2000 

particles on three different kinds of CPUs. The 

characteristics of these three CPUs are shown in Table 

3. After comparing these CPUs with each other, CPU C 

and GPU GeForce GT 740M have been selected.  

 

 
TABLE 3. The specifications of the CPUs platforms. 

Name Description 

CPU A AMD Sempron(TM) 145 Processor 2.80 GHz 

CPU B Intel(R) Core(TM) 2 Duo CPU T9300 2.5 GHz 

CPU C Intel Core i5-4200M 2.50GHz 

 

Algorithm Description Reference 

Standard Particle Swarm 
Optimization (SPSO) 

SPSOs have been implemented on both GPU and CPU to optimize four benchmark test function. 
Experimental results showed that GPU-SPSO can be 11x faster than CPU-SPSO.  

[3] 

Particle Swarm Optimization 

with Triggered 
Mutation(PSO-TM) 

Speedup of GPU implementation of PSO-TM over CPU is 25x. [16] 

Particle swarm optimization 
(PSO) 

An implementation of PSO algorithm in C-CUDA has been presented in order to reduce computational 
time. The best performance over the C implementation was 17x.  

[30] 

Multi-Swarm Particle 

Swarm Optimization 
(MSPSO) 

A collaborative multi-swam PSO algorithm has been implemented on GPU and the results show that 
GPU based MSPSO can be 37x faster than its sequential implementation.  

[31] 

Parallel Dimension Particle 
Swarm Optimization 

(PDPSO) 

Speedup of  GPU based implementation of PDPSO was 85xover  CPU basedl implementation. [32] 

PSO 

A CUDA accelerated PSO has been used in order to reduce the computational time of the 
multidimensional knapsack problem. The attainable performance benefit has been evaluated when 

using a highly optimized GPU code instead of an efficient multi-core CPU implementation and 9.6x 

has been gained as the highest speedup. 

[33] 

PSO 

In order to enhance the efficiency of the PSO algorithm, it has been implemented using the shared 
memory available in the GPU of CUDA platforms. In this implementation, each dimension of each 

particle has been mapped as a thread and multiple sub-swarms have been used. The results show the 

speedups up to 100x  have been achieved compared to the serial implementation.  

[34] 

PSO and Distributed PSO 

(DPSO) 

In order to get the maximum efficiency while solving large size maximal constraint satisfaction 
problems, PSO and Distributed PSO have been implemented in parallel using GPU architecture. 

Speedups of up to 3.79x have been gained.  

[35] 

PSO 

Inherent parallelism of GPU has been utilized in order to accelerate the computing time of PSO 

algorithm and benefit of parallel computing mechanism supported by general purpose computing 

ability of GPU has been taken. The efficiency of the algorithm has been tasted on five different 

functions and the speedup of 30x have been gained. 

[36] 
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Figure 1. Speedup of CPU B over CPU A for three PSO 

algorithms using different bechmarks  functions. 

 

 

 
Figure 2. Speedup of CPU C over CPU A for three PSO 

algorithms using different benchmarks  functions. 

 

We have used the GPU GeForce GT 740M in order 

to evaluate the effect GPU threads on the performance 

of APSO and ALCPSO executing. 

 

4. 2. Experimental Results on Different CPUs   The 

PSO algorithms have different behavior on different 

kinds of processors. The speedups of CPU B and CPU 

C over CPU A are depicted in Figures 1 and 2, 

respectively. The CPU B yields speedup ranging from 

0.45 to 2 and CPU C yields speedup ranging from 0.5 to 

3.7. As can be seen, for most functions, the performance 

improvement of CPU C is more than the CPU B. Hence, 

CPU C was chosen for our performance comparison 

with GPU based implementations.  

 

4. 3. Performance Comparison on CPU and GPU     
We have executed these benchmark functions on CPU 

and GPU platforms in two different ways based on the 

number of iterations, variable and fixed. In the first 

implementation, since we already knew the optimum 

value of the benchmark test functions, algorithms were 

executed until they reach the optimum value. In other 

words, the CPU and GPU based programs were stopped 

as soon as they reached the optimum value and 

acceptable solution.  In the second implementation, 

algorithms were executed with predefined or fixed 

number of iterations such as 1000 and 4000. 

 

4. 5. Speedup of GPU over CPU with Predefined 
Optimum Value    The experimental results on CPU 

and GPU for TPSO, APSO and ALC-PSO algorithms 

with predefined optimum value are depicted in Table 4. 

The number of particles and dimensions are 1000 and 5, 

respectively. In the table, columns, CPU-Iter and GPU-

Iter represent the number of iterations after that the 

programs were stopped and reached to the predefined 

optimum value. The second, fifth, and eighth columns 

represent the speedup of GPU-TPSO, GPU-APSO, 

GPU-ALCPSO over CPU-TPSO, CPU-APSO, and 

CPU-ALCPSO, respectively. 

As Table 4 depicts, the GPU-TPSO yields speedup 

ranging from 1.57 to 10.9, while the GPU-APSO yields 

speedup ranging from 10.42 to 62.91. The GPU-

ALCPSO yields speedup ranging from 1.05 to 27.63.  

For most functions, GPU iteration is less than CPU 

iteration. For example, for Griewank function in TPSO 

algorithm in Table 4, the CPU-Iter and GPU-Iter are 

165 and 35, respectively. This means that GPU can 

reach the predefined optimum value with less iteration. 

Since in PSO algorithms, particles are initialized 

randomly, if we let the programs to be run until 

achieving the optimum value, they stop in different 

number of iterations in each execution. 
 

4. 6. Performance of GPU over CPU with 
Predefined Number of Iterations To make a fair 

performance comparison between CPU and GPU, we 

have implemented three algorithms using fixed number 

of iterations. Numbers of iterations have been 

considered 4000 for TPSO and ALC-PSO and 1000 for 

APSO algorithms. 

Speedups of GPU-TPSO, GPU-APSO, and GPU-

ALCPSO implementations over CPU-TPSO, CPU-

APSO, and CPU-ALCPSO implementations are 

depicted in Figures 3, 4 and 5, respectively. The number 

of particles are selected from 1000 to 3000. As can be 

seen in these figures, with increasing the number of 

particles, the speedups are also increased. For example, 

in F1 function, the speedup of GPU-TPSO over CPU-

TPSO is 9.3x and 14.5x for N = 1000 and N = 3000, 

respectively. 

Speedups of GPU-APSO and GPU-ALCPSO are 

more than the speedups of GPU-TPSO algorithm. The 

maximum speedup in GPU-TPSO is 14.5 while the 

maximum speedups in GPU-APSO and GPU-ALCPSO 

are 152 and 31, respectively. There are more parallelism 

in APSO and ALC-PSO algorithms compared to TPSO. 

Especially, in APSO algorithm, there are many nested 

loops which have been exploited using loop- and data-

level parallelism. In addition, speedup is increased by 

increasing the number of particles and number of 

iterations; even GPU-APSO can be 300x faster than 

CPU-APSO for 4000 particles.  
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4. 6. Evaluating the Effect of GPU Threads on the 
Performance of APSO and ALC-PSO Executing     
On the GPU based programs, choosing the appropriate 

number of threads based on the selected PSO algorithm, 

the features of employed GPU and population size can 

impact on the performance of parallel programs and 

their execution times. In fact, the occupancy of GPU 

blocks -number of threadsper block- can impact on the 

performance of program execution. In order to evaluate 

the impact of threads, GPU-APSO and GPU-ALCPSO 

have been executed using 500 and 1000 particles, 

respectively. The speedup of GPU-APSO over CPU-

APSO and the speedup of GPU-ALCPSO over CPU-

ALCPSO using 64,128, 256, 512 and 1024 threads per 

block have been depicted in Figures 6 and 7 for 500 and 

1000 particles, respectively. As can be seen, the 

execution times of GPU based program is reduced with 

increasing the number of particles. Although in all cases 

of using different threads, the performance of GPU 

based programs is better than the performance of its 

CPU based programs, GPU shows its best performance 

when 100% of block capacity is used. In the other 

words, GPU based programs can be executed in the 

smallest time when the block occupancy is 100%. The 

occupancy of each multiprocessor which can impact on 

the programs performance and the behavior of programs 

in dealing with different functions can be calculated 

using Equation (3).  

The occupancy of each 

multiprocessors = 

The number of allocated 

warps per multiprocessors 

(3) Maximum number of warps 

which are supportable by 

each multiprocessor 

Since each multiprocessor contains a set of registers, the 

number of employed registers by the program, 

computational capability and physical limitation of GPU 

can have impact on the performance of programs in 

dealing with different functions.The occupancy of each 

multiprocessor according to the number of allocated 

registers per threads for GeForce GT 740M is shown in 

Table 5. When the number of threads per block is 64, 

the number of warps per block is 2. 

 

 
Figure 3. Speedup of GPU-TPSO implementation over CPU-

TPSO implementation for different benchmarks with different 

number of particles. 

 

Figure 4. Speedup of GPU-APSO implementation over CPU-

APSO implementation for different benchmarks with different 

number of particles. 

 

 

 

Figure 5. Speedup of GPU-ALCPSO implementation over 

CPU-ALCPSO implementation for different benchmarks with 

different number of particles. 

 

 

Since the maximum number of active blocks per 

multiprocessor can be 16, the number of active warps 

per multiprocessor will be 32, while each 

multiprocessor in our employed GPU can support 64 

warps in parallel. Hence, the number of active blocks 

which can be supported by each multiprocessor can 

cause performance limitation in this case. Considering 

Equation (3), the occupancy of multiprocessors per 

block for 64 threads is 50%.  

When the number of threads per block is 128, the 

number of warps per block is 4. Since the maximum 

number of active blocks per multiprocessor can be 16, 

the number of active warps per multiprocessor will be 

64. So, the maximum number of blocks can cause 

performance limitation. Although the occupancy of each 

multiprocessor per block is 100% for 128 threads, GPU 

hardware limits performance in this case. When the 

number of threads per block is 256, 512 and 1024, the 

number of warps per block is 8, 16 and 32, respectively. 

In these cases, the number of active warps per 

multiprocessor can cause performance limitation. The 

number of active warps per multiprocessor for 256, 512 

and 1024 threads is 64 but the number of active blocks 

per multiprocessor is 8, 4 and 2, respectively. 

In this case, each multiprocessor can support up to 

16 blocks, and considering Equation (3), the occupancy 

of multiprocessors is 100% for 256, 512 and 1024 

threads. 
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Figure 6. Speedup of GPU-APSO over CPU-APSO using 500 

particles, six benchmark functions and predefined number of 

iterations for different block sizes. 
 

 

Figure 7. Speedup of GPU-ALCPSO over CPU-ALCPSO 

using 1000 particles, six benchmark functions and predefined 

number of iterations for different block sizes. 

 

 
TABLE 5. The multiprocessors features while the different benchmark functions are running on GeForce GT 740 M 

The occupancy of 

each multiprocessor 

The number of active 

blocks per 

multiprocessor 

The number of active 

warps per 

multiprocessor 

The number of active 

threads per 

multiprocessor 

The number of 

registers per 

thread 

The number of 

threads per block 

50% 16 32 1024 9, 11,16, 21, 22 64 

100% 16 64 2048 9, 11, 16, 21, 22 128 

100% 8 64 2048 9,11,16, 21,22 256 

100% 4 64 2048 9,11,16, 21,22 512 

100% 2 64 2048 9, 11,16, 21,22 1024 

 

 

Even allocating 1024 threads to each block and 22 

registers to each thread, totally 45056 registers per 

multiprocessor is required. Hence, there is no limitation 

in this GPU in term of number of registers and GPU 

behavior for same number of threads but different 

number of registers which are required for each thread, 

is almost the same. 

 

 

5. CONCLUSIONS 
 

Particle Swarm Optimization (PSO) algorithm, and its 

improved PSO algorithms such as Adaptive PSO 

(APSO) and PSO with an Aging Leader and 

Challengers (ALC-PSO) are used for optimizations 

problems. In comparison with the traditional PSO, the 

APSO and ALC-PSO algorithms improve convergence 

speed and avoid the problem of premature convergence. 

Similar to most of the evolutionary algorithms, these 

algorithms are population-based iterative and 

computationally intensive. The main reason is that the 

optimizing process of these algorithms requires a large 

number of fitness evaluations which runs sequentially 

on CPU. We have improved the performance of the 

mentioned algorithms on GPU platform in two different 

ways, variable and fixed number of iterations. In 
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TABLE 4. The execution resultsof TPSO, APSO and ALC-PSO algorithms on CPU and GPU with predifined optimum value. 

ALC-PSO APSO TPSO  

GPU-Iter CPU-Iter Speedup GPU-Iter CPU-Iter Speedup GPU-Iter CPU-Iter Speedup Name 

28 33 3.1 22 41 10.42 24 31 3.7 Sphere 

31 37 2.9 19 39 11.36 37 28 10.85 Schwefel 

18 34 4.71 12 50 22.11 15 26 4.88 Zakharov 

137 80 1.05 27 35 23.44 81 65 1.57 Rastrigin 

39 603 27.63 27 310 62.91 35 165 10.95 Griewank 

18 33 3.03 21 98 21.79 11 30 2.88 Michalewicz 

Different benchmark functions 

)( 

 

S
p

ee
d
u

p
 

 

Different benchmark functions 

)( 

 

S
p

ee
d
u

p
 

 



55                                                      S. Jam et al. / IJE TRANSACTIONS A: Basics  Vol. 30, No. 1, (January 2017)   48-56 
 

variable number of iteration, we set predefined optimum 

value for all benchmark test functions, and maximum 

speedup were 10.9, 62.91, and 27.63 for TPSO, APSO, 

and ALC-PSO algorithms, respectively. In fixed number 

of iteration, 4000 for TPSO and ALC-PSO and 1000 for 

APSO algorithms were used. The maximum speedup in 

GPU-TPSO is 14.5, while the maximum speedups in 

GPU-APSO and GPU-ALCPSO are 152 and 31, 

respectively. Although the APSO and ALC-PSO 

improve the performance of TPSO algorithm in terms of 

convergence speed, global optimality and solution 

accuracy, they are more computational intensive than 

TPSO algorithm. Speedups of GPU-APSO and GPU-

ALCPSO are more than the speedups of GPU-TPSO 

algorithm in all implementations. The largest speedup 

yields for APSO algorithm. There are much more 

nested-loops in APSO algorithm and it is exploited 

using loop- and data-level parallelism in parallel 

implementation. With increasing the number of particles 

and iterations, the speedup is also increased. In addition, 

the number of GPU threads can have impact on the 

performance of parallel implementation. Our 

experimental results show that the ideal occupancy -

number of threads per block- for APSO and ALC-PSO 

is almost 100% of the total threads of the block. 

Actually, when we do not have any limitation in terms 

of number of registers, full block occupancy can be 

appropriate in order to reduce GPU based programs 

execution time. 
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 هچكيد
 

 
سازی اجتماع ذرات  (، از جمله الگوریتم تطبیقی بهینهPSO) سازی اجتماع ذرات بهینه های انواع مختلفی از الگوریتم

(APSOو الگوریتم بهینه ) ( سازی اجتماع ذرات با رهبر سالخورده و رقباALC-PSO وجود دارد. اگر چه این )

شوند، اما  می   PSOسرعت همگرایی موجب بهبود عملکرد الگوریتمی یافتن بهترین پاسخ و تسریع  ها در زمینه الگوریتم

 PSO  (TPSO،) APSO سازی کارآمد الگوریتم سنتی دارای حجم محاسباتی بالایی هستند. هدف اصلی این مقاله، پیاده

زمان  است. به منظور ارزیابی و بهبود عملکرد این سه الگوریتم و کاهش CUDA با استفاده از فناوری ALC-PSO و

   ،TPSO ایم. برای سه الگوریتم پیاده سازی کرده GPU و  CPU ها را بر روی هر دو پلتفرم اجرای آنها، این الگوریتم

APSOو ALC-PSO،  ایم. به علاوه، به منظور یافتن تعداد  دست یافته 152و  31، 14.5به ترتیب به تسریعی برابر با

های مختلفی در  ما از تعداد نخ ،ALC-PSO و APSO الگوریتمهای مناسب به ازای هر بلاک، برای دو  نخ

ها به ازای هر  دهد که انتخاب بهترین تعداد نخ ایم. نتایج به دست آمده نشان می های انجام شده، استفاده کرده سازی پیاده

 دازنده بستگی دارد.های موجود در هر الگوریتم و تعداد رجیسترها به ازای هر چندپر بلاک، به تعداد متغیرها و ثابت

doi: 10.5829/idosi.ije.2017.30.01a.07 

 


