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ABSTRACT

This study is concentrated on the natural frequencies and mode shapes of a simple three-member space
frame coupled with a dynamic vibration absorber. The dynamic vibration absorber is modeled as a six-
degree-of-freedom mass-spring system. For the first time, the free vibration of an elastic structure with
a six-degree-of-freedom mass-spring system is found. Each member of the space frame has uniform
mechanical and geometrical properties, but these may differ from one member to another. The exact
result of this complex problem is obtained via analytical scheme and finite element method. All effects
of the axial and torsional deformations and also in- and out-of-plane bending are taken into account.
This formulation includes eighteen differential equations along with thirty six boundary and
compatibility conditions. Comparison of the results by both approaches mentioned above, illustrates
the accuracy of our solutions. Findings are useful benchmarks for the natural frequencies and mode
shapes of the space frame coupled with a dynamic vibration absorber.

Finite Element Solution

doi: 10.5829/idosl.ije.2017.30.01a.05

1. INTRODUCTION

Frame systems are important structures which are used
in many branches of engineering such as civil,
mechanical and aerospace engineering. Vibrations of
planar frames have received considerable attention in
the literature [1-5]. On the other hand, space frame has
received much less attention. This fact may be due to
difficulty involved in the analysis of three-dimensional
structures.

Dumir et al., used dynamic stiffness method for
dynamic analysis of space frames under distributed
harmonic loads [6]. Noorzaei presented a numerical
solution for the modelling of the space frame-raft-soil
system by means of finite element method [7]. Moon
and Choi employed the finite element method for
dynamic analysis of space frames [8]. Guo et al.,
proposed the formulation of dynamic reverberation-ray
matrix analysis to study wave propagation of frames [9].
Tu et al., utilized the transfer dynamic stiffness matrix
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method to study free vibration of space frames [10].
Minghini et al. used two-node locking-free Hermitian
finite elements for analyzing vibration frequencies and
mode shapes of pultruded FRP plane and space frames
with semi-rigid joints [11]. Mei and Sha used wave-
based as well as experimental methods to study
vibrations in simple space frames [12]. Mei and Sha
employed a wave-based method to investigate
vibrations in built-up multi-story space frames [13].

A vast number of publications are available in
literature regarding vibration analysis of continuous
structures such as beams and plates carrying mass-
spring systems. The importance of this subject is well-
recognized for its engineering applications. The design
of tuned dynamic vibration absorber relies on this
concept that by adding one or more spring-mass systems
to a structure, natural frequencies and mode shapes can
be alerted significantly to avoid resonance and other
undesirable dynamic phenomena. Furthermore, in the
design of robotics, and also when dealing with human
structure interaction, structural systems are often
modeled as a combination of beam and mass-spring
systems [14].
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All mentioned literature reviews showed that the free
vibration of an elastic continuous structure joined by a
mass-spring system up to three degrees of freedom has
been investigated so far. To the authors' best knowledge,
the free vibration analysis of space frame including
mass-spring system and having six-degree-of-freedom
has not been treated yet. This mass-spring system can be
used as a realistic model for a dynamic vibration
absorber. Therefore, the main objective of this paper is
to fill this gap and present a simple straightforward
method for analyzing the free vibration of space frames
with an attached six-degree-of-freedom mass-spring
system. As a result, this study is devoted to the free
vibration of a space frame with three orthogonal
members having a dynamic vibration absorber, which is
shown in Figure 1. The dynamic vibration absorber is
modeled as a six-degree-of-freedom mass-spring
system. Each member of the frame has uniform
mechanical and geometrical properties. To generalize
the solution, these properties may differ from one
member to another. The governing eigenvalue problem
includes eighteen differential equations and thirty six
boundary and compatibility conditions. In the presented
formulation, all interactions of axial deformation,
torsional deformation and in- and out-of-plane bending
are considered. After solving the related eigenvalue
problem, natural frequencies and mode shapes of the
system are found. To verify the correctness of the
authors' formulation, the exact solution of the problem
is also obtained by the finite element method.

2. GOVERNING DIFFERENTIAL EQUATIONS OF
SPACE FRAMES

As mentioned previously, for free vibration analysis of
space frames, in the most general case, the interaction of
in-plane  bending, out-of-plane  bending, axial
deformation and torsional deformation could be
considered. Therefore, for a space frame member, the
following differential equations describe the vibratory
behavior of the member [13]:

o

A3 +pAwi, =0 ()
2

2 9; +1,0°0, =0 )
“u

2

Bl, & —pA®TU, =0 ®)
4,

El, g;; — pA&, =0 @)

where u,, 6,, u, and u, are axial displacement,

angular displacement, xy-plane transverse displacement

and xz-plane transverse displacement, respectively. In
addition, x is the position along the member axis, t time,
E Young's modulus, A cross-sectional area, G the shear
modulus, J the polar moment of the circular member,

I, the mass moment of inertia per unit length of the
member, o volume mass density, |, the area moment
of inertia of cross-section of the section about z-axis and
I, the area moment of inertia of cross-section of the

section about the y-axis. For circular members, the
following relations hold:

4
L=l,=1 |:”£R1

R ®)
l,=pd ;1=
0= P 2

(d)
Figure 1. The studied space frame: (a) schematic model; (b)
member one properties; (c) member two properties; (d)
member three properties
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in which R is the radius of the member. It should be
mentioned that no warping occurs for the circular
sections.

The solutions of Equations (1)-(4) have the next
appearance:

u, (x)=c,sin 4,x +c,cosA,x
6, (x) =c;sin 4 x +c, Cos A4 X
u, (x) =cgsin 4,x +cg €0s A, x +c;sinh 4,x +c, cosh 4,x

(6)

u, (x) =CgSin A X +Cjy COS A X +C;, sinh A x +cj, cosh A x

where ¢/ to ¢, are unknown constants, which are to be

determined. The parameters A4,, 4 and A, have the
coming form:

pA0*
EA

%

A =

A= PAR %0’ )

In the next section, the eigenvalue problem governing
the vibratory behavior of the mentioned space frame is
formulated.

3. FORMULATION OF EIGENVALUE PROBLEM

This section presents the eigenvalue problem which
governs the space frame with attached dynamic
vibration absorber. The dynamic vibration absorber is
modeled as a six-degree-of-freedom mass-spring
system, which is connected to the space frame by means
of six springs. This system has three translational
springs of stiffness K,, K, and K, inthe X, y and z

directions, respectively, and three rotational springs of
stiffnress K,, k, and K, in the X, y and Z

directions, correspondingly. Figure 1 demonstrates a
schematic diagram of the mechanical system under
study.

The related eigenvalue problem includes governing
differential equations and boundary and compatibility
conditions. It should be noted that upon solution of this
problem, the eigenvalues and eigenfunctions of the
problem which are the frequency parameters and mode
shapes of the system are in hand. In the subsequent
subsections, the differential equations and boundary and
compatibility conditions are given.

3. 1. DIFFERENTIAL EQUATIONS As mentioned
in Section 2, considering the interaction of in-plane
bending, out-of-plane bending, axial deformation and
torsional deformation, four differential equations are
needed to study the behavior of a space frame member.
These four differential equations are introduced by

Equations (1)-(4). Totally, twelve differential equations
exist for the three-member space frame and six
differential equations govern the behavior of the mass-
spring system. Using index notation, the differential
equations of the space frame may be written in the
shapes shown hereunder:

2
%0, )
Gy S5+ 1y =0 ©
o'u,,
E, I, axf‘ -p AU, =0 (10)
4
El, aa)l:f;i -pA U, =0 1

where =123 indicates the member number. The

solutions of Equations (8) - (11) have the following
forms:

u,,(x)=c,sin A,x +c, cosA,,x

6,,(x)=c,sin 4,x +c, CoS A,X

Uy, (X) =C4SiN Ay, X +Cq COS A, X +C, sinh A X +Cq cOsh 4,,X
u,,(x) =cysin 4 ,X +¢,, COSA,X +C,, sinh 4 X +c¢,, cosh 4;,x
U,,(X)=C,sin A,,X +C,, COS A,,X

0, ,(X) =CysSiNA,X +Cyg COS A, ,X

Uy, (X) =€y SIN A ,X +Cpq COS Ay )X +Cyg SINN A,,X +C, COSN 4,,X (12)
U,,(X)=CySin A ,X +C,, COS A ,X +C,, Sinh 4 ,X +C,, COSh 4, ,X
U, 5(X) =Cpg SIN 45X +Cyq COS A,.X
6,5(X) =C,; SIN A ;X +C,g COS A X
Uy5(X) =Cpq SN 45X +Cgy COS 45X +Cyy SiNN 45X +C;, COSN 4, X
U, ;(X) =Cg SIN A ;X +Cyy COS A 5X +Cyq SINN A ;X +Cy COSD 4 X
in which
1= po’ . _ PAR @ _ PAW?
al — E 1 /111 - 2G .] ! Z‘nl - E I
1 ™M1 171
2 2 2 2
PO PARY @ LA
Az = ; == = f 13
2 E2 jtZ 2G2J2 th E2| ) ( )
A= P’ _ PAR D _ PA
a3 E 1 AtS - ZG J 4 ﬂbS =4 E |
3 3v3 3'3

It is observed that thirty six unknown constants are
presented in Eq. (12). Therefore, thirty six boundary and
compatibility conditions should be specified. The
differential equations of the mass-spring system will be
introduced in Section 4.

3. 2. BOUNDARY AND COMPATIBILITY
CONDITIONS The boundary and compatibility
conditions of the problem may be expressed as follows.

1) Boundary conditions at each end support. At each
end support, six boundary conditions exist. For the fixed
end conditions, axial, angular, in-plane and out-of-plane
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displacements along with in-plane and out-of-plane
rotations are zero. These lead to the following
mathematical relationships:

Uy (L)=0 U,,(L,)=0 Uy,(L;) =0
0,.(L,)=0 0,(L,)=0 0,5(L;) =0
uyl(L1)=0 Uyz(l-z):o uyS(L3)=0 14
u,,(L)=0 U,,(L,)=0 U,,(L;) =0 ( )
u;1('-1)=0 U;Z(L2)=O u;a(L3)=0
ug (L) =0 U;,(L,)=0 U;5(Ls) =0

2) Equilibrium of forces at the intersecting joint. The
shear forces and axial forces of the frame must be in
equilibrium with the forces of the springs of the mass-
spring system in the x, y and z directions. Using
Newton's second law results in the following equations:
E1A1U;1(0) + Ezl 2“;,/"2(0) - Es' 3u;”3(0) - F1 =0
E2A2u;2(0)+E3|3UZ'"3(O)—E1|1U§'1(0)—F2 =0 (15)
EAU(0) +E,1,u5(0) +E ;i (0)+F, =0

inwhich F, F, and F, are the forces of the translational
springs of the mass-spring system in the x, y and z
directions, respectively. These forces can be written as:
F =K, [u,,(0)-u,]

F, =K, [u,(0)-u, | (16)
F, =K,;[u,,(0)-u, ]

where u,, U, and u, are the displacements of the

y
mass-spring system in the x, y and z directions,
respectively. Furthermore, K,, k, and K, indicate the
stiffness of the translational springs of the mass-spring
system in the x, y and z directions, respectively.

3) Equilibrium of moments at the intersecting joint. The
bending moments and torques of the space frame
members and moments of the rotational springs of the
mass-spring system must be self-equilibrated in the x, y
and z directions. Writing Newton's second law gives the
coming equalities:

61‘119;1(0) +E,l zu;,z(o) —E3|3U;'3(0)— M, =0
G2J20;2(0)+E3|3UZ”3(O)—E1|1U;1(O)—M2 =0 (17)
G3J,0,5(0) +E 1u),(0) +E, 1 u/,(0) + M, =0

in which, M,, M, and m, are the moments of the
rotational springs of the mass-spring system in the x, y
and z directions, respectively. They are defined as:

M, = KA[HM(O)—HX ]

M, =K,[6,,(0-, | (18)
M, =K, [921(0)—92]

where K,, K, and K, demonstrate the stiffness of the

rotational springs of the mass-spring system in the x, y
and z directions, respectively.

4) Compatibility of rotations and angular displacement
at the intersecting joint can be expressed as:

Uy, (0)=uj,(0) v up(0)=6,,(0)

Uys(0)=—u;(0) 5 u;,(0)=6,,(0) (19)
uz’2(0)=_uz’3(o) uz’Z(o):_gxl(O)

5) Compatibilities of displacements at the intersecting
joints are satisfied by:
U,;(0)=-u,,(0) ;

u,,(0)=u,,(0) ;
U,5(0) =-u,,(0) i

Uy, (0) =u,4(0)
uy;(0) =-u;5(0) (20)
uzl(o) :uzlz(o)

All thirty six boundary and compatibility conditions
given by Equations (14), (15), (17) and (19), (20), along
with twelve differential equations expressed in
Equations (8)-(11) form the governing eigenvalue
problem for this space frame. In order to use the
compatibility conditions of the forces and moments of
the intersecting structural joint, given by Equations (15)

and (17), the values of F, F, and F; along with M,
M, and M, should be found. In the next section, these

forces and moments are obtained, considering the
behavior of the mass-spring system.

4. MASS-SPRING SYSTEM FORMULATION

The mentioned oscillator is modeled as a six-degree-of
freedom mass-spring system. In this section, six
differential equations governing the vibratory behavior
of the mass-spring system are investigated. To
formulate the mass-spring system, the Newton's second
law of motion is employed. Writing the translational
Newton's second law of motion in the X direction, i.e.,
ZFX =Ma_, gives the following equality:

Fl = Mux (21)

in which, M is the mass of the dynamic vibration
absorber. Substituting Equations (16) into Equation (21)
yields:

Kl[uxl(o)_ux]:Mu.x (22)
or
Mu.x + Klux = Kluxl(o) (23)

Using u, =Ue'*" results in:

-Mo’u, +Ku, =Ku,,(0) (24)
which gives
Kluxl(o)
u, =—x =
YK, -M &’ (25)
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Defining

Elll

K, =k, L3
1

M =apAl, (26)

Equation (25) becomes:

kl ELlllqu(o)
b= @7
k, L13 —apALo’

1

where Kk, denotes the stiffness of the translational
spring of the dynamic vibration absorber in the X
direction. It should be added that « is a constant.
Equation (27) can be simplified as:
u = kluxl(o)

x = 4

k, —a(4,L,)

Likewise, it can be shown that the following relations

hold for U, and u, :

(28)

K.,u..(0
=K ya( )2 S Ksuzl(O)Z 29)
K,-Maw K;-Mao
These relations can be written in the form:
- k,u,,(0)
v E,I L
kz - El|1L23 (/loll-l)4 0
u. = k uzl(o) ( )
t , Eil L
k., —
3 E3|3L3 (/ibl 1)
in which:
E.l E.,l
K,=k,—2%2 ; K, =k, =22 31
2 2 Lsz‘ 3 3 Lg ( )

In Equation (31), k, and k, are the stiffness of the

translational springs of the dynamic vibration absorber
in the y and z directions, respectively. The three

remaining equations are obtained using the rotational
form of Newton's second law of motion, i.e., SM =14,

where |, is mass moment of inertia. Findings are:

g, = Kibul®
K,-l,o
K46,,(0)
0 — 57yl
K- (32)
o - Kebu(0)

z 2
Ke =1,

Using:

K,=k St Ky =k E,l,
a =% s =85
1 2
El ; (33)
3ls
Ks =ke L ) =8 pAL
3

The values of 6, , 6, and 0, take the following form:

0 = k48xl(o)
" kA _ﬁ(ﬂblLl)A
0 - 6,,(0)
v E1|1L2
k= AE L)’ (34)
272
0 — k 921(0)
ke-pibgLy
6 E3|3L 1 1
where k,, k; and k, are the stiffness of the rotational

springs of the dynamic vibration absorber. Furthermore,
B is a constant. The expressions obtained for degrees of

freedom of the mass-spring system can be substituted
into Equations (16) and (18). Consequently, the
boundary and compatibility conditions introduced
previously can be utilized in the following sections. It is
worth  mentioning that the six natural circular
frequencies of the mass-spring system, when it is not
coupled with the space frame, have the following
shapes:

[ K
o = % Wy = TA
0

K K
“=\w 20,
0

K
a)3=1lﬁs @, = %

(3%)

5. EIGENVALUES AND EIGENFUNCTIONS

In order to obtain the eigenvalues and eigenfunctions of
the problem under study, the following strategy is
employed. According to the boundary and compatibility
conditions, the required derivatives of functions u,,, 4,

Xi

u,; and u, should be calculated. Afterward, these

yi
derivatives, as well as functions u,, 6,, u; and uy,

are substituted in the thirty six boundary and
compatibility conditions, which are expressed by
Equations (14), (15), (17), (19) and (20). This action
leads to form the coming homogeneous system of

algebraic equations with ¢, to Cy; as unknowns:

[A]{C}=1{0} (36)
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To have a nontrivial solution, the determinant of the
coefficient matrix must be equal to zero, as it is
demonstrated in the following relationship:

A[=0 @7

Calculating the determinant yields the frequency
equation of the problem under study. Close attention
should be paid to the fact that the resulting frequency

equation has nine unknowns, ie., A4,, A,, 4, 4.,
Aov Avps Augs As and A, In order to have the

frequency equation with a single unknown, i.e., 4, the
following relations are used:

R2 E, R2
A =1 g2 = |E1Ry g
al 2 //i‘bl j'Il Gl 2 /101

RZ ’E RZ E,p ’R

A =22 2. _ 2 R 42, _ 2P 2

2= Ao A G, 2 Ay Ay =2 E.p, lem (38)
R? E, R? E.po, |IR

A, =282 _ 3 s g2 _ 3P R

a3 =™, Aoz s G, 2 Aozi Ay =2 E.p, Riﬂm

Having these, the resulting complicated frequency
equation can be numerically solved using the well-
known Newton-Raphson method. Consequently, upon
solution of the frequency equation, the values of A,,s

are in hand. Then, Equation (13) is utilized to find the
natural circular frequencies of the space frame, i.e., o.

Finally, substituting the A,;s into the matrix Equation

(29), the mode shapes of the mechanical system under
study are obtained. As a second way, a finite element
solution is developed. Comparing the results obtained
by both exact and numerical solutions demonstrates the
accuracy of our formulation.

6. Finite Element Formulation

A finite element solution is presented in this section for
the complex problem under study. Figure 2 shows the
degree of freedom of elements for each member of the
space frame. It is observed that each node has six
degrees of freedom, namely, three translational and
three rotational. Therefore, the total nodal displacements
are given in the equation below:

(D} ={u, uy u; 6 6, 6, u, uy U, 6, 6, 0, }T (39)
All displacement functions can be written using the
shape functions:

{ux}:[Na]{uxl ux.}

01 =INJ{o. 0}

{uy}:[Nb]{uyl eyi Uy 6’”} (40)
{ul}z[Nb]{uu 0, U 921}

where [N,] [N,] and [N,] are the shape functions for

axial displacement, torsional displacement and in- and
out-of-plane bending. Herein, the well-known Hermit
shape functions are used with following appearance:

X X
N ]=L-= =
[NJ=n-+
X X
[N]=-= -
L L (41)
x2 _x° x? x®
N=B=se2s X2
2 3 2 3
FLANPL S S

L? L? L L

%/
" ™

"
@)
|

|
N
\\<</

e

—
(=3}
=

2 | ey

(©)
Figure 2. Degrees of freedom for elements in each member:
(a) member one; (b) member two; (c) member three
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Using the shape functions and their needed derivatives,
the stiffness and mass matrices for each member are
found. It should be pointed out that the final stiffness
and mass matrices have (ndof +6)x(ndof +6) entries,

where ndof indicates the number of degrees of freedom
of the space frame. This modification is due to the
interaction of the six-degree-of-freedom mass-spring
system and the space frame. In order to obtain the
natural frequencies of the space frame, the following
equation of motion should be solved:

[M]{B}+[K]{D} = {0} (42)
Assuming harmonic motion, one obtains:

{B}={Dje 43)
Substituting this equation into Eq. (36) esults in:
(I<]-@*[M]){D} = {0} (44)

For a nontrivial solution:
[K]-o*[M]]=0 (45)

From the last system of equations, the natural
frequencies of the space frame under study may be
calculated.

7. NUMERICAL RESULTS

This section is devoted to solve sample problems of the
free vibration of the space frame with and without
attached mass-spring system. Figure 3 indicates the first
three circular frequencies, i.e., @ and three-dimensional
mode shapes of the space frame without mass-spring
system, with steel members, having properties of
R,=R,=R,=01m, L, =L,=L,=2m, E,=E,=E, =2x10"Pa,
P =p, =p, =1850kg/m* and v, =v, =v,=0.3. It should
be noted that the ratio L /R =20 is selected for each
member. This limitation is usually required for using the
Euler-Bernoulli beam theory.

In order to investigate the effect of the member
lengths on the natural frequencies of the system, the
length of the third member is assumed to be L, =6 m.
The first eight circular frequencies and three-
dimensional mode shapes of the space frame in this case
for R =R,=R,=01m, L=L,=2m, L,=6m,
E,=E,=E,=2x10"Pa, P, = p, = p, = 1850kg/m®
and v, =v, =v,=0.3 are indicated in Figure 4. It is
observed that by increasing the length of the third
member from 2m to 6m, the natural frequencies of the
space frame is dramatically decreased. For instance, the
first natural frequency decreases from 977.609 to
141.101 when L, increases from 2m to 6m.

977.609

977.609

993.856

Figure 3. The first three natural frequencies and mode shapes
of the bare space frame

Figure 5 may be advantageous for studying the effect of
the radius of members on the frequencies of the space
frame. In this figure, the first eight natural frequencies
and mode shapes of the mechanical system under study
for R,=R,=01m, R,=02m L, =L,=L,=2m,
E,=E,=E,=2x10"Pa, p, =p,=p, =7850kg/m®
and v,=v,=v,=03 are illustrated. As expected,

increasing the stiffness of the space frame, by increasing
the radius of the third member, results in a boost in the
natural frequencies of the frame. For instance, the
fundamental natural frequency of the space frame
increases from 977.609 to 1135.250 when the radius of
the third member increases from 0.1m to 0.2m.

At this stage, a space frame with clamped ends and
general  properties of R,=0.1m, R,=02m,
R, =0.3m, L,=2m, L,=4m, L,=5m,
E,=E,=E,=2x10"Pa, p, = p, = p, = 7850kg/m?,
v, =0.2 and v, =v, =0.3 is considered. The first eight
natural frequencies and mode shapes of the frame are
presented in Figure 6.

Next, the space frame with attached dynamic
vibration absorber is taken into account. Table 1
represents the values of the first ten natural frequencies
of the coupled system when the dynamic vibration
absorber is connected to the frame via just one
translational spring, i.e, K.
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141.101

141.374

393.528

Figure 4. The first three natural frequencies and mode shapes
of the bare space frame with different lengths

1135.250

1332.420

1343.380

Figure 5. The first three natural frequencies and mode shapes
of the bare space frame with different raduis

The properties of the frame are the same as the one in
Figure 6. The properties of the dynamic vibration

absorber are =10, p=10, and k, has different

values. It should be noted that the first five natural
frequencies of the system are zero. This is because the
stiffness of five springs of the dynamic vibration
absorber are assumed zero. Furthermore, the value of
the sixth natural frequency, which can be considered as
the fundamental one, has decreased from 447.034 to
287.177 for k, =1.

For k,=5 and k,=10 the fourth and fifth natural
frequencies are changed. Other natural frequencies are
almost the same as the bare space frame. It can be

concluded that increasing the stiffness of the spring
increases the value of the natural frequencies.

447.034

460.329

538.334

Figure 6. The first three natural frequencies and mode shapes
of the bare space frame with different properties

TABLE 1. The values of natural frequencies of the coupled
frame for different values of K,

Mode number

k3
1 2 3 4 5

1 287.177 447.034 460.329 538.334 680.248
5 447.034 460.327 538.334 640.338 680.724
10 447.034 460.328 538.334 680.089 902.86
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In order to study the effect of the mass of the dynamic
vibration absorber, Table 2 is used. The natural
frequencies of the system are given for the properties of
the previous example in Table 1, but for k,=5 and
different values of o and g. From Table 2, it is seen
that increasing the mass of the dynamic vibration
absorber decreases the value of the fundamental natural
frequency. For instance, the value of the fundamental
natural frequency decreases from 447.034 to 370.03,
when « and g increase from 20 to 30.

Finally, the coupled frame with the properties of the
bare frame in Figure 7 and k,=1, k,=18, k,=8,
k,=2, k;=15, ky,=12, «=5 and pg=30 are
considered. The first eight mode shapes of the systems
are depicted in Figure 7.

TABLE 2. The values of natural frequencies of the coupled
frame k, =5 and different values of ¢ and 3.

Mode number

a and
1 2 3 4 5
10 447.034 460.327 538.334 640.338 680.724
20 447.034 45311  460.372 538.334 680.335
30 370.03 447.034 460.333 538.334 680.314

16.1903

82.9836

92.6148

Figure 7. The first three natural frequencies and mode shapes
of the coupled space frame with different properties

Comparing Figures 6 and 7, it can be concluded that
the natural frequencies of the coupled system are
significantly changed. These results show that one can
obtain the optimum value of the natural frequencies of
the system by adjusting the values of the system
parameters.

8. CONCLUDING REMARKS

Exact solutions for free vibration analysis of space
frames with clamped and free ends joined by a dynamic
vibration absorber are proposed in this article. A
coupled three-dimensional formulation, including the
effects of axial deformation, torsional deformation, in-
and out-of-plane bending is carried out. This action
leads to a governing boundary value or an eigenvalue
problem. The mathematical model includes eighteen
differential equations and thirty six boundary and
compatibility conditions. All of mentioned formulations
are derived in detail. Furthermore, a general finite
element solution is presented and dynamic properties of
the space frame are found. The natural frequencies and
three-dimensional mode shapes of the system are
calculated for different values of member mechanical
and geometrical properties. The authors' results can be
used as a benchmark problem to study the free vibration
analysis of space frames. It is shown that increasing the
stiffness of the dynamic vibration absorber increases the
values of the natural frequencies of the coupled frame.
Moreover, increasing the mass or mass moment of
inertia of the dynamic vibration absorber decreases the
values of natural frequencies of the space frame. The
optimum value for the natural frequencies can be
obtained by tuning the values of the properties of the
dynamic vibration absorber, such as, stiffness of springs
Or mass.
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