
IJE TRANSACTIONS B: Applications Vol. 29, No. 11, (November 2016) 1549-1557

Please cite this article as: Y. Rastegari, Z. Sajadi, F. Shams, Web Service Choreography Verification Using Z Formal Specification, International
Journal of Engineering (IJE), TRANSACTIONS B: Applications Vol. 29, No. 11, (November 2016) 1549-1557

International Journal of Engineering

J o u r n a l H o m e p a g e : w w w . i j e . i r

Web Service Choreography Verification Using Z Formal Specification

Y. Rastegari*, Z. Sajadi, F. Shams

Department of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran

P A P E R I N F O

Paper history:
Received 30 November 2015
Received in revised form 12 September 2016
Accepted 30 September 2016

Keywords:
Web Service Choreography
Compatibility
Verification
Adaptation
Z Formal Specification

A B S T R A C T

Web Service Choreography Description Language (WS-CDL) describes and orchestrates the services

interactions among multiple participants. WS-CDL verification is essential since the interactions would

lead to mismatches. Existing works verify the messages ordering, the flow of messages, and the
expected results from collaborations. In this paper, we present a Z specification of WS-CDL. Besides

verifying the mentioned concerns, we find out whether the choreographies are realizable by web

services protocols at orchestration level. In this regard we detect the interactions between each two
distinct participants which lead to deadlock or unspecified reception. An „itinerary purchase‟ case

study for prototyping the transformation rules is presented and the Z/EVES tool is used to demonstrate

the protocol compatibility. Also, we define multiple attributes to compare the choreography description
languages/models from the verification and adaptation viewpoints.

doi: 10.5829/idosi.ije.2016.29.11b.08

1. INTRODUCTION1

Choreography describes peer-to-peer collaborations of

service consumers and service providers (i.e.

choreography participants) from a global viewpoint.

Choreography defines ordered message exchanges

which result in accomplishing a common business goal.

Web Service Choreography Description Language (WS-

CDL) [1] is the W3C recommended language for

describing service choreographies.

WS-CDL is protocol-compatible if every joint

execution of each two distinct participants leads to a

proper final state, i.e. a state in which both participants

are in a final state in their respective protocols. Protocol

mismatches are defined in two main types: unspecified

reception and deadlock [2]. Unspecified reception

occurs when one party sends a message while the other

is not expecting it. Deadlock refers to the case where

both parties are mutually waiting to receive some

messages from the other. WS-CDL has a static structure

and does not consist of dynamic elements and

management rules which govern the behaviors of

1*Corresponding Author‟s Email: y_rastegari@sbu.ac.ir (Y.
Rastegari)

participants; therefore it is essential to transform WS-

CDL into adaptable and verifiable models.

There are two types of transformation including

model-driven [3-6] (with the goal of adaptation) and

formal [7-11] (with the goal of verification) in the

literature. The model driven approaches translate a WS-

CDL element to its respective replacement in terms of

BPEL as well as WSCDL. This enables tracing down

changes from choreography to orchestration and vice

versa which is an important issue in the choreography

adaptation scope. On the other hand, some studies

formalize the WS-CDL elements. They tried to verify

several aspects of service choreography like protocol

compatibility, time constraints, and message ordering. It

might also be observed that these works are limited to a

specific subject and does not check whether the

committed choreography is realizable by the existing

services protocols at the orchestration level.

In this paper, we aim at transforming WS-CDL into

Z models that are modifiable to overcome new

requirements and also verifiable to prevent unexpected

faulty behaviors that are mentioned in the related

studies. Furthermore, we detect the interactions between

each two distinct participants which lead to deadlock or

unspecified reception. This is significant because web

services protocols defined in WS-BPEL processes,

Y. Rastegari et al. / IJE TRANSACTIONS B: Applications Vol. 29, No. 11, (November 2016) 1549-1557 1550

underlie and realize the dependent WS-CDL

specification.

The rest of this paper is organized as follows. We

explain the related studies and compare those regarding

adaptation and verification issues in section 2. Section 3

describes an overview of WS-CDL specification and

presents the itinerary purchase scenario as a running

example. We present formal specification of WS-CDL

and discuss about the rationale behind the

transformation of each element in section 4. Section 5

verifies the correctness of the transformation and the

compatibility of services protocols. The paper is

concluded in section 6.

2. RELATED WORK

There are two types of transformation including model-

driven [3-6] (with the goal of adaptation) and formal [7-

11] (with the goal of verification) in the literature.

Verification is used to check the process (application)

consistency, after performing adaptation actions. If we

consider MAPE (Monitor, Analysis, Plan, Execute)

feedback loop, verification is performed after planning

for suitable adaptation actions and before executing the

actions. Verification checks whether the adaptation

actions preserve process (application) consistency or

not.

The model driven approaches translate a WS-CDL

element to its respective replacement in terms of BPEL

as well as WSCDL. This enables tracing down changes

from choreography to orchestration and vice versa

which is an important issue in the choreography

adaptation scope.

The formal approaches verify several aspects of

service choreography like protocol compatibility, time

constraints, and message ordering.

Mendling el al. [3] proposed a model driven

transformation approach to drive BPEL process

definitions from a global WS-CDL model. The

approach includes a mapping between WS-CDL and

WS-BPEL building blocks. In addition, the mapping

can be used to generate WS-CDL description from

existing WS-BPEL processes. In another model-driven

approach, CDL2BPEL [4] algorithm translates WS-

CDL to “BPEL and WSDL” elements, according to a

knowledge base. The knowledge base contains generic

patterns to translate a WS-CDL entity to its respective

replacements in terms of BPEL as well as optional

WSDL. The algorithm extracts WSDL interfaces from

interactions and “tokens / token locators”. BPEL4Chor

[5] is an intermediary language to align choreography

and orchestration. BPEL4Chor is a non-executable

choreography language, forming an additional layer on

top of the BPEL standard [6].

The transforming of source models to formal

specifications is addressed in some works with the goal

of quality evaluation [12, 13]. Nematzadeh and

Nematzadeh [7] proposed the mapping rules from eflow

and BPEL to colored petri net for reliability and

performance measurement. In reference [8], a simple

CDL is introduced to formalize the WS-CDL‟s

participant roles, and the collaborations among roles.

They used SPIN model-checker to reason about

properties that should be satisfied by the specified

system automatically. Furthermore, in order to verify

WS-CDL protocol mismatches, the transformation rules

were proposed to correspond the WS-CDL entities with

timed automata [9], and colored petri-net [10, 11]

elements. These formal languages are suitable for

choreography verification, but they cannot realize the

requirements of an adaptive process. For example, CDL

and timed automata do not support all workflow

patterns; colored petri-net does not support the

separation of business logic and implementation code,

nor abstract modeling, nor distinct control model.

From the adaptation and verification viewpoints, we

consider the below attributes to compare the

choreography description languages/models. The

comparison results are shown in Table 1.

1) Structure

- Dynamism: Dynamic structure means that the

structure of a process must be flexible to being

reconfigured and regulated dynamically in response to

the management rules.

- Workflow support: It refers to both supporting of

workflow and services interaction patterns (e.g.

sequence, parallel, synchronization, sending, receiving,

etc.).

- Hierarchical (nested): A hierarchical process is

designed level-by-level in order to hide the unnecessary

details at each abstraction level. At each level, there is a

composite operation that may be broken down at the

next lower level.

- Separation of concerns: Separation of concerns

enables the separate development of the business logic,

and the crosscutting concerns of a process (e.g. quality

of service, implementation code) [14].

2) Control

- Reconfigurable: It refers to modifying the structure

and runtime behaviors of a process by management

rules.

- Verifiable: Choreography verification consists of two

main types of protocol mismatches. Service

interoperability verification which includes message

ordering and time constraints at design time [11] and

deadlock, in which both parties are mutually waiting to

receive some messages from the other [15].

3. AN OVERVIEW OF WS-CDL

As shown in Figure 2, a choreography element contains

activity, exception handling and finalizer parts.

1551 Y. Rastegari et al. / IJE TRANSACTIONS B: Applications Vol. 29, No. 11, (November 2016) 1549-1557

TABLE 1. The comparison of choreography modeling and description languages

Language / Model Goal

Structure Control

Dynamism
Workflow

support
Hierarchical

Separation

of concerns
Reconfigurable Verifiable

WS-CDL [1] Specification - - - -

WSCI [16] Specification - - - - -

BPEL4Chor [8] Specification - - - -

CDL [13]
Specification

Verification
- - - -

Timed automata [14] Verification - -

Colored Petri net [15,16] Verification

Z (our work)
Specification

Verification

Complete support | Partial support | - Lack of support

Choreography: The attribute name specifies a distinct

name for a choreography element. The root

choreography is the only choreography that is enabled

by default; it performs other non-root choreographies

subsequently.

Activity: Activities describe the actions performed

within a choreography. The activity notation is used to

define basic actions, ordering structures, and work-unit

of activities. The activity notation provides all required

elements for describing services interactions, ordering

of interactions, and choreography composition.

Exception handling: The exception block is used to

handle performance failures. The failures emerge while

an exceptional circumstance or an error occurs, like

interaction or security failures, timeout or validation

errors, etc. When an exception occurs, a work-unit

within the exception block is performed.

Finalizer: The finalizer block is enabled when a

choreography is successfully completed. The activities

within a finalizer block are performed to confirm, cancel

or modify the effects of completed actions.

Here we adopt the „itinerary purchase‟ collaborative

business process [17] for prototyping the transformation

rules. The itinerary purchase process is handled by the

following independent and collaborating parties:

Customer, Travel agency, Airline, Hotel, and Payment

system.

Figure 2 shows the „itinerary purchase‟ process

model in BPMN choreography notation. The itinerary

purchase scenario is as follows. (1) First, the customer

requests the travel agency for available itineraries, and

then the travel agency sends all available itineraries to

the customer. (2) Next, the customer selects the desired

itinerary and requests the travel agency for reservation.

(3) The travel agency starts two parallel choreographies

with the hotel and the airline parties, and waits until

reservation responses arrive. If both of the reservations

are done, then the travel agency calculates the total cost

of itinerary. (4) After the total cost is determined, the

choreography between the travel agency and the

payment system is started. Again, the travel agency

waits until the payment is confirmed by the payment

system. (5) Finally, a choreography is started to notify

the customer about the purchase status. Figure 1 shows

the specification of „itinerary purchase‟ process in WS-

CDL format.

4. TRANSFORMATION

4. 1. Ordering Structures Ordering structures are

used to combine activities and express the ordering rules

of actions. WS-CDL presents the Sequence, Parallel and

Choice ordering structures. An ordering structure can

include other ordering structures recursively; hence an

activity is combined with other ordering structures in a

nested way.

Sequence: The activities within a sequence element

must be performed one after another. After transforming

enclosing activities to their corresponding operation

schemas, the composition operator could be used to

perform the operations sequentially. The sequence

element in the „itineraryPurchase‟ choreography is

transformed to the following specification:

sequenceOp1 ≙ getItineraries⨟ requestReservation⨟
itineraryReservation⨟ paymentProcessing

Parallel: The activities within a parallel element are

enabled concurrently. The parallel activity completes

successfully when all its enclosed activities complete

successfully.

Y. Rastegari et al. / IJE TRANSACTIONS B: Applications Vol. 29, No. 11, (November 2016) 1549-1557 1552

<choreography name="itineraryPurchase" root="true">
 <sequence>
/* (1) customer , travel agency */
 <interaction name="itinerary" operation="getItineraries">
 <participate relationshipType="Customer_TravelAgency"
 fromRole="CustomerRole" toRole="TravelAgencyRole" />
 <exchange name="requestItineraries" action="request">
 <send variable="tripProfile"/>
 <receive variable="tripProfile"/>
 </exchange>
 <exchange name="itinerariesList" action="respond">
 <send variable="itinerariesList"/>
 <receive variable="itinerariesList"/>
 </exchange>
 </interaction>

/* (2) customer , travel agency */
 <perform choreographyName="requestReservation"></perform>
/* (3) travel agency , airline | travel agency , hotel */
 <perform choreographyName="itineraryReservation"></perform>
/* (4) travel agency , payment system */
 <perform choreographyName="paymentProcessing"></perform>
 </sequence>

 <exceptionBlock name="exceptionHandling">
 <workunit guard="cancel">
 <sequence>
 <perform choreographyName="itineraryCancelation"></perform>
 <perform choreographyName="cancelNotification"></perform>
 </sequence>
 </workunit>

 <workunit guard="handleTimeout">

<noAction>
</workunit>

 </exceptionBlock>

 <finalizerBlock>
 <workunit name="finalizing">
/* (5) travel agency , customer */
 <perform choreographyName="successNotification"></perform>
 </workunit>
 </finalizerBlock>
</choreography>

<choreography name="itineraryReservation">
 <parallel>
/* (3.1) travel agency , airline */
 <perform choreographyName="flightReservation"></perform>
/* (3.2) travel agency , hotel */
 <perform choreographyName="roomReservation"></perform>
 </parallel>
</choreography>

Finalizer block

Exception block

Interaction block

Figure 1. The specification of “itinerary purchase” process in WS-CDL format

After transforming enclosing activities to their

corresponding operation schemas, the conjunction

operator could be used to perform the operations in

parallel. The parallel element in „itineraryReservation‟

choreography is transformed to the following

specification:

expandedItineraryReservation ≙ flightReservation ∧

roomReservation

Choice: The choice ordering structure realizes a

dynamic conditional branch. Although the choice

element encompasses one or more activities, only one

activity is selected and the other activities are disabled.

After transforming enclosing activities to their

corresponding operation schemas, the exclusive-or

operator could be used to perform only one operation at

a time.

4. 2. Basic Activities A basic activity provides the

lowest level actions for service interaction,

choreography composition, and describing silent/hidden

activities. It also provides building blocks for handling

exceptions, and finalizing choreographies.

Interaction: Interaction is the most important activity

of the WS-CDL specification. It leads to an information

exchange between participants. In fact, an interaction is

a pair of message exchanges for delivering data between

a consumer and a provider, and defining the actual

values of the delivered data. Furthermore, an interaction

specifies the service operation that should be consumed

to prepare the response message. An interaction is

initiated when the consumer sends a message to the

provider. Meanwhile, the provider performs the

requested operation, and

1553 Y. Rastegari et al. / IJE TRANSACTIONS B: Applications Vol. 29, No. 11, (November 2016) 1549-1557

responds with a normal response message or a fault

message.

To describe the interaction in Z, first we describe

system state schema and initialization schema. Then

each exchange element is transformed to Z operation

schema which will be performed sequentially by

composition operator. The „Action‟ free type defines the

right action type of each exchange. The 'RoleType' free

type defines the collaborating parties. The „allMessages‟

free type defines all messages of collaborations. We

used „OrderedMessages‟ axiom to show the valid order

of messages. In „itineraryPurchase‟ state schema,

„customer‟ and „travelAgency‟ are two sequences of

ordered pair of action type and message. To describe the

relation between services, the channel state variable is

used in the declaration part of „itineraryPurchase‟

schema. The „msg‟ state variable is used to show the

right message exchange between right participants. The

state variable „exchange_message‟ is a subset of

„OrderedMessages‟ and represents the current message

with its order number. The order number is used to

check the message ordering.

Action ::= send | receive
RoleType ::= customerRole | travelAgencyRole
allMessages ::= init | tripProfile | itinerariesList |

selectedItinerary | selectedAirline | selectedHotel |

airlineConfirm | hotelConfirm | paymentProfile |

paymentConfirm | notifySuccess | notifyCancel
OrderedMessages == {0↦init, 1↦tripProfile,

2↦itinerariesList, 3↦selectedItinerary,

4↦selectedAirline, 4↦selectedHotel,

5↦airlineConfirm, 5↦hotelConfirm,

6↦paymentProfile, 7↦paymentConfirm,

8↦notifySuccess, 8↦notifyCancel}

To describe the interaction, first we describe the

„itineraryPurchase‟ state schema and the

„itineraryPurchaseInit‟ initialization schema.

 ItineraryPurchase________

customer:seq(Action × allMessages)

travelAgency:seq(Action × allMessages)

channel:RoleType↔RoleType

msg:allMessages→(RoleType↔RoleType)

exchange_message:OrderedMessages

act:allMessages

last_msg:allMessages

dom(msg)=ran(exchange_message)

msg={act↦channel}

last_msg={notifySuccess} ∨ last_msg={notifyCancel}

#(last_msg)=1

To initialize the system state variables, the

„itineraryPurchaseInit‟ is described as follows:

 itineraryPurchaseInit________

itineraryPurchase′

customer′=⟨⟩

travelAgency′=⟨⟩
channel′=∅

exchange_message′={0↦init}

msg′=∅

act′=init

We describe the „requestItineraries‟ exchange block

with the action type of „request‟, by the following

operation schema:

 requestItineraries________

ΔitineraryPurchase

dom(exchange_message)={0}

channel′={customerRole↦travelAgencyRole}

act′=tripProfile

exchange_message′={1↦tripProfile}

msg′={tripProfile↦{customerRole↦travelAgencyRole}

}

customer′=customer⁀⟨(send,tripProfile)⟩

travelAgency′=travelAgency⁀⟨(receieve,tripProfile)⟩

Similarly, we describe the „itinerariesList‟ exchange

block with the action type of „respond‟, by the following

operation schema:

 itinerariesList________

ΔitineraryPurchase

dom(exchnage_message)={1}

channel′={customerRole↦travelAgencyRole}

act′=itinerariesList

exchange_message′={2↦itinerariesList}

msg′={itinerariesList↦{customerRole↦travelAgencyR

ole}}

travelAgency′=travelAgency⁀⟨(send,itinerariesList)⟩

customer′=customer⁀⟨(receive,itinerariesList)⟩

The „requestItineraries‟ operation schema and the

„itinerariesList‟ operation schema are performed

sequentially by the composition operator.

getItineraries ≙ requestItineraries⨟ itinerariesList

No-action, Silent-action: The no-action and the silent-

action activities are used when a participant does not

perform any action, or perform an action without any

observable operational details, respectively. Since no-

action does not change the „itineraryPurchase‟ state, the

following operation schema describes its logic in Z:

 noAction________

ΞitineraryPurchase

Perform: The perform activity enables a choreography

to reuse and combine other existing choreographies

hierarchically. It has „name‟ attribute for referencing the

name of the choreography to be performed. In our

example, the „itineraryReservation‟ perform element, is

transformed to the following schema:

 itineraryReservation________

expandedItineraryReservation

The „expandedItineraryPurchase‟ performs the

„flightReservation‟ choreography and the

„roomReservation‟ choreography in parallel.

expandedItineraryReservation ≙ flightReservation ∧

roomReservation

Y. Rastegari et al. / IJE TRANSACTIONS B: Applications Vol. 29, No. 11, (November 2016) 1549-1557 1554

Exception block, Finalizer block: The exception

handling block and the finalizer block are described in

section 3. The exception block contains one or more

work-units, each work-unit handles an exceptional

circumstance. The finalizer block contains required

activities for finalizing its enclosing choreography

performance. After transforming enclosing work-units

to their corresponding operation schemas, the exclusive-

or operator could be used to perform only one work-unit

at a time. In our example, the „exceptionBlock‟ encloses

two work-units to handle the cancel notification and the

timeout error. So, we defined the following

specification:

exceptionHandling ≙

(exceptionHandlingCancel ∨

exceptionHandlingTimeout)

 ∧

¬(exceptionHandlingCancel ∧

exceptionHandlingTimeout)

4. 3. Work-unit A work-unit encloses activities,

and defines the constraints that should be fulfilled to

perform them. A work-unit has the „guard‟ attribute for

specifying the condition of variables in XPATH format.

If the guard condition of a work-unit is satisfied, then its

enclosed activities are enabled. In our example, the

„success‟ work-unit, the „cancel‟ work-unit and the

„handleTimeout‟ work-unit are transformed to the

following operation schemas:
 finalizer________

ΞitineraryPurchase

guard?:String

guard?=success⇒successNotification

 exceptionHandlingCancel________

ΞitineraryPurchase

guard?:String

guard?=cancel⇒itineraryCancelation⨟
cencelNotification

 exceptionHandlingTimeout________

ΞitineraryPurchase

guard?:string

guard?=handleTimeout⇒noAction

4. 4. Total Specification After transforming each

WS-CDL element to its respective Z element, the

„Itinerary Purchase‟ process is defined by the following

formal specification:

T_itineraryPurchase ≙ (sequencOp1 ∧

exceptionHandling) ∨

(sequenceOp1 ∧ finalizer)

If an exception occurs while performing the

„sequenceOp1‟, then the „exceptionHandlingCancel‟ or

the „exceptionHandlingTimeout‟ is enabled, otherwise,

the „finalizer‟ operation schema is performed to finalize

the process performance.

5. VERIFICATION

5. 1. Correctness In this section, we describe

semantic preservation of Z models to prove the total

correctness of proposed transformation rules. The

semantic of source models (i.e. WS-CDL) is preserved,

if transformation rules produce behaviorally equivalent

target models (i.e. Z). In the following list, we show that

our proposed transformation rules preserve the message

ordering, the flow of messages, and the expected results.

 WS-CDL‟s ordering and composing structures are

corresponded with Z elements in a straightforward

form (see the transformation rules in section 4).

 To control the flow of messages, WS-CDL uses

guard conditions in exception block and work-unit.

Similarly, Z controls the flow of messages by

evaluating guards associated with schemas.

 The „exchange_message‟ variable preserves the

message ordering as defined in WS-CDL. We define

the following Z specification to preserve the order of

messages in our example:

OrderedMessages == {0↦init, 1↦tripProfile,

2↦itinerariesList, 3↦selectedItinerary,

4↦selectedAirline, 4↦selectedHotel,

5↦airlineConfirm, 5↦hotelConfirm,

6↦paymentProfile, 7↦paymentConfirm,

8↦notifySuccess, 8↦notifyCancel}

exchange_message ∈ OrderedMessages

 It is necessary to prove whether the messages are

exchanged between the right source and destination

web services. To prove this property, we define two

following Z axioms in our example:

dom(msg) = ran(exchange_message)

msg = {act↦channel}

 The last message of choreography represents the

expected results. To verify the last message of

itinerary purchase process, we define the following

axioms:

last_msg ∈ allMessages

last_msg = {notifySuccess} ∨ last_msg =

{notifyCancel}

#(last_msg) = 1

5. 2. Protocol Compatibility After describing

choreography commitment in Z, it is necessary to check

whether the participants could realize the commitment

regarding their local processes and the order of

messages they send and receive.

If we consider a multi-party choreography and

restrict it to those interactions that involve a given pair

of service - e.g. the interactions between the customer

and the travel agency in our example - we obtain a

bilateral service protocol. Two services are protocol-

compatible if every joint execution of these services

leads to a proper final state, i.e. a state in which both

services are in a final state in their respective protocols

1555 Y. Rastegari et al. / IJE TRANSACTIONS B: Applications Vol. 29, No. 11, (November 2016) 1549-1557

[18]. Yellin & Strom [2] identified two main types of

protocol mismatches: unspecified reception and

deadlock. Unspecified reception occurs when one party

sends a message while the other is not expecting it.

Deadlock refers to the case where both parties are

mutually waiting to receive some message from the

other. Figure 3 illustrates the protocol mismatches and

their detection patterns (consider the protocols Ps of

service Ss, and Pc of service Sc). As shown in Figure

3(a), Ps expects to receive message c after sending a,

while Pc is waiting to receive b; this is a deadlock case.

On the other hand in Figure 3(b), Ps sends message b

while Pc does not expect to receive it; this is an

unspecified reception case.

To detect the mentioned protocol mismatches we

applied the detection patterns proposed by Motahari

Nezhad, et al. [18]. They decomposed protocol tree into

distinct paths. Then the best candidate pair of messages

is considered as a reference pair (RP) in the same path-

pair. For example, Figure 3(a) shows two paths from

protocol Ps and Pc. The message pair -c and +c are

selected as a reference pair. We use reference pair to

check the order of exchanging messages and find out

the mismatches as described in the following patterns.

Deadlock detection pattern: As shown in Figure

3(a), given reference pair +c and -c the candidate

matching pair -b and +b is called a conflicting match.

This is because -b (an outgoing message) with a bigger

depth than +b (an incoming message) leads to a

deadlock in the interaction of two services in case this

matching is allowed.

Unspecified reception detection pattern: As

shown in Figure 3(b), given reference pair -b and +b the

candidate matching pair -a and +a is called a conflicting

match. This is because -a (an outgoing message) with a

bigger depth than +a (an incoming message) leads to an

unspecified reception in the interaction of two services

in case this matching is allowed.

To describe the above patterns in Z, we define two

sequences of ordered pair Ps and Pc in which their

domain define the operation type (send or receive) and

their range define the exchanging messages between

two web services (e.g. a, b, c, etc.).

To detect the deadlock mismatch, we search for two

pairs which have the same range and unequal domains.

They are called reference pairs (e.g. +c and -c). Then we

search for pairs which have the same range and unequal

domains, from the RP to the end of sequence Ps, and

from the beginning of Pc to the RP (e.g. –b and +b). We

call these pairs conflicting pairs. The domain of CP in

Ps, and the domain of CP in Pc must be unequal with

the domain of RP in the relevant path. Also the domain

of RP in Pc must be from send (-) type.

Detecting the unspecified reception mismatch is the

same as deadlock, where it is expected that the domain

of CP in Ps, and the domain of CP in Pc must be equal

with the domain of RP in the relevant path. Also the

domain of RP in Pc must be from receive (+) type. The

formal specification of the deadlock detection pattern

and the unspecified reception detection pattern are

shown below.

Deadlock

∃ i, j, x, y:ℤ | i∈1..#Ps ∧ j∈1..#Pc ∧ x∈1..j-1 ∧

y∈i+1..#Ps ⦁

dom{(Psi)}≠dom{(Pcj)} ∧ ran{(Psi)}=ran{(Pcj)} ∧

dom{(Psy)}≠dom{(Pcx)} ∧ ran{(Psy)}=ran{(Pcx)} ∧

dom{(Psi)}≠dom{(Psy)} ∧ dom{(Pcj)}≠dom{(Pcx)}∧

dom{(Pcj)}={send}

Unspecified reception

∃ i, j, x, y:ℤ | i∈1..#Ps ∧ j∈1..#Pc ∧ x∈1..j-1 ∧

y∈i+1..#Ps ⦁

dom{(Psi)}≠dom{(Pcj)} ∧ ran{(Psi)}=ran{(Pcj)} ∧

dom{(Psy)}≠dom{(Pcx)} ∧ ran{(Psy)}=ran{(Pcx)} ∧

dom{(Psi)}=dom{(Psy)} ∧ dom{(Pcj)}=dom{(Pcx)}∧

dom{(Pcj)}={receive}

The deadlock scenario and the unspecified reception

scenario are described in the following state schemas,

according to Figure 3. We use invariant theorems in

Z/EVES tool [19] to demonstrate how to verify these

protocol mismatch scenarios.

First we describe the order of messages between Ps

and Pc, which leads to a deadlock case. Consider Ps as

customer, and Pc as travel agency in the itinerary

purchase process.

 deadlockScenario________

ΔstateSchema

channel′={Ps↦Pc}

Ps′=Ps⁀(send,a)⁀(receive,c)⁀(send,b)

Pc′=Pc⁀(receive,b)⁀(receive,a)⁀(send,c)

We also describe the order of messages between Ps and

Pc, which leads to an unspecified reception case.

 unspecifiedReceptionScenario________

ΔstateSchema

channel′={Ps↦Pc}

Ps′=Ps⁀(send,b)⁀(send,a)

Pc′=Pc⁀(receive,a)⁀(receive,b)

Figure 4 shows the proof of deadlock, and Figure 5

shows the proof of unspecified reception. Z/EVES

verifies the syntax of specifications and proves the

theorems. The „Y‟ character in the Proof column

meaning that the scenario leads to the corresponding

mismatch.

Y. Rastegari et al. / IJE TRANSACTIONS B: Applications Vol. 29, No. 11, (November 2016) 1549-1557 1556

Figure 3. Protocol mismatches and their detection patterns

Figure 4. Invariant deadlock theorem

Figure 5. Invariant unspecified reception theorem

6. CONCLUSION

In this paper, we described the WS-CDL standard using

the Z formal language. We presented the transformation

rules and the rationale behind each rule. The benefits of

this transformation include:

 Z is useful for both specification and verification of

collaborative business processes.

 Z supports process hierarchy in which a process

activity could be expanded in the lower levels.

Therefore it is possible to transform both WS-CDL

and WS-BPEL into their corresponding Z

specifications, and integrate them in a nested way.

 Since Z is a verifiable language, the process

designer could verify the processes and prevent

them from mismatches during performance.

When a new requirement arises at choreography-level, it

must be realized at orchestration-level. Therefore, the

adaptive model must cover all choreography, and

orchestration entities in different abstraction levels, and

also consider the interoperability between them. In

future, we will present a Z specification for BPEL

language and create the interoperability between

choreography and orchestration entities. This could be

done with the help of hierarchical attribute of Z

language. Also, we will try to deploy the state schemas

at the Meta level, and their corresponding source code at

the base level according to the reflective-state design

pattern [20]. We consider concrete states and concrete

services to realize the functionalities that are defined at

the Meta level. Consequently, the adaptation designer

(or an automatic adaptation unit) could easily modify

the Meta level‟s state schemas, which mirror the system

functionalities.

7. REFERENCES

1. Kavantzas, N., "Web services choreography description
language (ws-cdf) version 1.0", http://www. w3. org/TR/ws-cdl-

10/, (2004).

2. Yellin, D.M. and Strom, R.E., "Protocol specifications and
component adaptors", ACM Transactions on Programming

Languages and Systems (TOPLAS), Vol. 19, No. 2, (1997),

292-333.

3. Mendling, J. and Hafner, M., "From ws-cdl choreography to

bpel process orchestration", Journal of Enterprise Information

Management, Vol. 21, No. 5, (2008), 525-542.

4. Weber, I., Haller, J. and Mulle, J.A., "Automated derivation of

executable business processes from choreographies in virtual

organisations", International Journal of Business Process

Integration and Management, Vol. 3, No. 2, (2008), 85-95.

5. Decker, G., Kopp, O., Leymann, F. and Weske, M., "Bpel4chor:

Extending bpel for modeling choreographies", International
Conference on Web Services, IEEE., (2007), 296-303.

6. Weib, A., Karastoyanova, D., Molnar, D. and Schmauder, S.,

"Coupling of existing simulations using bottom-up modeling of
choreographies", GI-Jahrestagung., (2014), 101-112.

7. Nematzadeh, H. and Nematzadeh, Z., "Deterministic

measurement of reliability and performance using explicit

colored petri net in business process execution language and

eflow", International Journal of Engineering-Transactions A:

Basics, Vol. 28, No. 10, (2015), 1439.

8. Hongli, Y., Xiangpeng, Z., Zongyan, Q., Geguang, P. and

Shuling, W., "A formal model for web service choreography

description language (WS-CDL)", School of Mathematical

Science. Peking University, (2006).

9. Diaz, G., Pardo, J.-J., Cambronero, M.-E., Valero, V. and

Cuartero, F., "Automatic translation of WS-CDL choreographies
to timed automata, in Formal techniques for computer systems

and business processes." (2005), 230-242.

10. Valero, V., Macia, H., Pardo, J.J., Cambronero, M.E. and Díaz,
G., "Transforming web services choreographies with priorities

and time constraints into prioritized-time colored petri nets",

Science of Computer Programming, Vol. 77, No. 3, (2012),
290-313.

11. Benabdelhafid, M.S. and Boufaida, M., "Toward a better

interoperability of enterprise information systems: A cpns and

http://www/

1557 Y. Rastegari et al. / IJE TRANSACTIONS B: Applications Vol. 29, No. 11, (November 2016) 1549-1557

timed cpns-based web service interoperability verification in a

choreography", Procedia Technology, Vol. 16, (2014), 269-
278.

12. Motameni, H. and Nemati, M., "Mapping crc card into stochastic

petri net for analyzing and evaluating quality parameter of
security", International Journal of Engineering-Transactions

B: Applications, Vol. 27, No. 5, (2013), 689-696.

13. Mhamdi, L., Dhouib, H., NSimen, A. and Liouane, N., "Using
interval petri nets and timed automata for diagnosis of discrete

event systems (des)", International Journal of Engineering-

Transactions A: Basics, Vol. 27, No. 1, (2014), 113-122.

14. McKinley, P.K., Sadjadi, S.M., Kasten, E.P. and Cheng, B.H.,

"A taxonomy of compositional adaptation", Rapport Technique

numeroMSU-CSE-04-17, (2004).

15. Kongdenfha, W., Motahari-Nezhad, H.R., Benatallah, B. and

Saint-Paul, R., "Web service adaptation: Mismatch patterns and
semi-automated approach to mismatch identification and adapter

development", Web services foundations. (2014), 245-272.

16. Arkin, A., Askary, S., Fordin, S., Jekeli, W., Kawaguchi, K.,
Orchard, D., Pogliani, S., Riemer, K., Struble, S., Takacsi-Nagy,

P. and Stand. Propos. by BEA Syst. Intalio, S., Sun

Microsystems, . "Web service choreography interface (WSCI)
1.0", (2002).

17. Douglas, A., " “Ws-cdl eclipse,” (2013). [online]. Available:

Http://sourceforge.Net/projects/wscdl-eclipse/".

18. Motahari Nezhad, H.R., Xu, G.Y. and Benatallah, B., "Protocol-

aware matching of web service interfaces for adapter

development", in Proceedings of the 19th international
conference on World wide web., (2010), 731-740.

19. Saaltink, M. and Canada, O., "The z/eves 2.0 user‟s guide",
(1999).

20. Ferreira, L.L. and Rubira, C.M., "The reflective state pattern",

Proceedings of the Pattern Languages of Program Design,
TR# WUCS-98-25, Monticello, Illinois-USA, (1998).

Web Service Choreography Verification Using Z Formal Specification

Y. Rastegari, Z. Sajadi, F. Shams

Department of Computer Science and Engineering, Shahid Beheshti University, Tehran, Iran

P A P E R I N F O

Paper history:
Received 30 November 2015
Received in revised form 12 September 2016
Accepted 30 September 2016

Keywords:
Web Service Choreography
Compatibility
Verification
Adaptation
Z Formal Specification

 هچكيد

(تِ هٌظَر تَصیف تعاهلات ٍ ّواٌّگی تیي چٌذیي ٍاحذ ّوکار WS-CDLّا) سزٍیس آرایی ٍب ستاى تَصیف ّن

ّا آرایی سزٍیس ّایی هوکي است در سهاى تعاهل رخ دٌّذ، تٌاتزایي ضزٍرت دارد تا سٌذ ّن استفادُ هی ضَد. ًاساسگاری

سٌجی غیزجاهعی تزای سٌجی ضَد. کارّای هزتثط درستی یا تعذ اس تغییز ٍ قثل اس اجزای هجذد، درستیدر سهاى طزاحی ٍ

آرایی تا اًذ. در تحقیق جاری، تَصیف صَری سٌذ ّن اًتظار اًجام دادُ ّا ٍ ًتایج هَرد ّا، جزیاى هٌطقی پیام تزتیة پیام

آرایی پذیزی سٌذ ّن ّای پیطیي، ها تحقق جاهع تزای پَضص رٍش تز ارائِ رٍضی ارائِ ضذُ است. علاٍُ Zاستفادُ اس ستاى

ضَد کِ آیا پزٍتکل تعاهلی هَجَد تیي کٌین. در ٍاقع تزرسی هی سٌجی هی ّا را ًیش درستی تَسط پزٍتکل تعاهلی سزٍیس

ز. در ایي راستا تا ضَد یا خی آرایی هی ًَایی، هٌجز تِ تَافقات صَرت پذیزفتِ در سطح ّن ّز دٍ ٍاحذ ّوکار در سطح ّن

ضًَذ را ضٌاسایی کٌین. ًحَُ تست ٍ یا پذیزش ًاهطخص هی تَصیف الگَّای تعاهلی تَاًستین تعاهلاتی کِ هٌجز تِ تي

ارائِ گزدیذ ٍ اس اتشار "فزآیٌذ خزیذ تزًاهِ سفز"ّای صَری تا استفادُ اس هطالعِ هَردی آرایی تِ تَصیف تثذیل سٌذ ّن

Z/EVES ّا ٍ ّا استفادُ ضذ. در ضوي تا تعزیف هعیارّایی تِ هقایسِ هذل َُ ضٌاسایی ًاساسگاریتزای ًوایص ًح

 سٌجی پزداختین. پذیزی ٍ درستی آرایی اس ًقطِ ًظز تطثیق ّای تَصیف ّن ستاى
doi: 10.5829/idosi.ije.2016.29.11b.08

