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A B S T R A C T  
 

 

The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper 
using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is 

a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The 

dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is 
predicted using ELM and the results are compared to those obtained using a Support Vector Machines 

(SVM). The comparison of the ELM and SVM methods indicates a good performance for both 

methods in the prediction of Fr. In addition to being computationally faster, the ELM  method has a 
higher level of accuracy (R2=0.99, MAE=0.10; MAPE=2.34; RMSE=0.14; CRM=0.02) compared with 

the SVM approach. 

doi: 10.5829/idosi.ije.2016.29.11b.03 

 

 

NOMENCLATURE 
  

A cross-sectional area of flow (m/s2) s specific gravity of sediment 

b bias terms of the equation V flow velocity (m/s) 

bi threshold of the ith hidden neuron w weighting vector 

CV volumetric sediment concentration y flow depth (m) 

D pipe diameter (m) Greek Symbols  

d median particle diameter (m) λs sediment friction factor 

Dgr (=((d(s-1)/ν2)1/3)) dimensionless particle size ν kinematic viscosity (m2/s) 

Fr (=V/(g(s-1)/d)0.5) densimetric Froude number ζi, ζi* slack variables 

g gravitational acceleration ρ water density (kg/m3) 

g(x) membership function ρs sediment density (kg/m3) 

H neural network output matrix φ a nonlinear function 

K(xi-xi
*) kernel function Subscripts  

N
~

 number of hidden neurons s sediment 

R hydraulic radius (m)   

 

 

1. INTRODUCTION1 
 

One of the most important issues in open channel 

design is the economic and optimized planning of it. 

                                                           

1
*Corresponding Author’s Email: bonakdari@yahoo.com 

 (H.Bonakdari) 

Due to the through path of flow before reaching the 

channel, the inflow may erode and suspend sediments 

which are then transported with the flow into the open 

channel. If the flow velocity for a given channel slope 

(limiting velocity) is insufficient to transport the 

sediment in the flow, the sediment will be deposited 

within the channel. In the case of fine sediment, the 
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longer it remains on the bed, the more likely 

consolidation will occur which may lead to a permanent 

reduction in channel depth and a reduction in the flow 

cross section and changes to the velocity and shear 

stress in the channel. Sediment deposition occurs more 

often in dry weather, when the discharge flows are low 

or at a minimum. Hence, in the design of open channel 

systems sediment deposition should be avoided as much 

as possible; as this will minimize maintenance and 

operational costs. 

One of the easiest approaches used in open channel 

design is constant velocity or constant shear stress. In 

this method of design, the minimum velocity value (in 

the range of 0.3-0.9 m/s) or shear stress (in the range of 

1-2.5 N/m
2
) is determined [1]. However, using this 

approach is not considered to be a good practice, due to 

the lack of consideration of other hydraulic parameters 

including the sediment and the flow and channel 

characteristics. Therefore, numerous experimental and 

theorical studies to evaluate the flow hydraulic in the 

open channels were conducted by many researchers [2-

6]. From this research a range of different relationships 

were presented, which were mostly based on regression 

analysis. The main problem of using regression 

equations is they generally perform well for data upon 

which they have been derived, however, for other 

datasets the performance is often less good leading to 

limiting velocity predictions which are either an 

underestimate or overestimate with large errors. 

In recent years the use of artificial intelligence 

techniques has increased due to their good performance 

in identifying relationships between the parameters in 

non-linear systems and across a range of different 

engineering fields, but particularly in hydraulics and 

hydrology where the results have often been remarkably 

good [7-13]. Kumar et al. [14] presented predictor 

models based on genetic programming for incipient 

motion, sediment transport in vegetated flow and total 

bedload. Kumar et al. developed their models and 

compared with several previous regression models and 

found the accuracy of the results to be better than these 

earlier models. Bonakdari & Ebtehaj [15] compared two 

different data driven methods, namely Gene-Expression 

Programming (GEP) and Group Method of Data 

Handling (GMDH) for the prediction of sediment 

transport in pipe channels. They presented two 

equations which were derived from a wide range of 

hydraulic parameters for use in practical design. 

Azamathulla et al. [16] proposed a functional 

relationship to predict sediment transport in pipes using 

Adaptive Neuro-Fuzzy Inference Systems (ANFIS) as 

an alternative approach obtaining results with high 

accuracy. Najafzadeh et al. [17] predicted critical 

velocity for preventing sedimentation by Evolutionary 

Polynomial Regression (EPR) and the Model Tree 

(MT). The authors compared the results of proposed 

technique with benchmark equations and found that the 

new artificial intelligence methods (MT and EPR) are 

more stronger than others method. 

One of the newest soft computing approaches is 

Extreme Learning machines (ELM). ELM is a Single-

Layer Feed-Forward Neural Network (SLFNN) which 

removes the problems of general neural networks such 

as computational time and overfitting. The use of this 

method in different fields of science such as feature 

selection [18], non-linear time-series data analysis [19], 

bioinformatics [20], and environmental engineering [21, 

22] indicated a high level of accuracy.  

In this study the ELM approach is developed to predict 

sediment transport in open channels. The performance 

of the ELM is compared with another powerful 

techniques used in soft computing, namely the Support 

Vector Machines (SVM) method. For this purpose, it is 

first necessary to determine the effective dimensionless 

parameters to represent sediment transport without 

deposition in open channel flow using dimensional 

analysis. Following this, the ELM and SVM methods 

are used to predict the limiting velocity. 
 

 

2. METHODS 
 
2. 1. Extreme Learning Machine (ELM)          One of 

the classical neural networks (NN) problems is the 

computational time taken to perform the calculations 

due to using gradient-based learning algorithms and 

iterative tuning parameters. Therefore to overcome this 

problem, Huang et al. [23] introduced a new training 

algorithm, a single-hidden layer feed-forward neural 

network (SLFNN), with random determination of the 

hidden layer neurons to establish the output weights. 

Unlike gradient-based training algorithms, which only 

minimize the model training error, the ELM method, in 

addition to considering this issue, also randomly assigns 

weights connecting inputs to the hidden nodes. In 

addition, ELM solves the classic gradient-based 

algorithm problem that are used only for differentiable 

activation functions, and in a SLFNN they can be 

trained with a non-differentiable activation function as 

well [23]. Also this method avoids the problems 

associated with the gradient method such as overfitting, 

local minimum, and improper learning rate [24]: 

With N samples defined as ),( ii tx where 

mT
imiii Rxttt  ],...,[( 21 ; )],...,[ 21

nT
iniii Rxxxx  , a 

standard neural network with a hidden layer, 

membership function (g(x)), and the number of hidden 

neurons N
~

 is defined as follows: 

 




N

i

jtjtt NjObxwg

~

1

,...,2,1.  (1) 

where T
inii www ],...,[ 1  and T

imiii ],...,,[ 21    are the 

vector weights that connect the input and output neurons 
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to i
th

 neuron of the hidden layer, bi is the threshold of 

the i
th

 hidden neuron and the ―.‖ in jt xw .  is the inner 

product of wi and xi. 

SLFNN aims to minimize the difference between the 

predicted values (oj) and actual values (tj) which is 

defined as follows: 
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i
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,...2,1.  (2) 

which can be present as a compact form as follows: 

TH β  (3) 

where 
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where H is known as a neural network output matrix. 

According to the provided description, the training 

process in an ELM algorithm can be explained in a 

general stage: In the first stage, random values are 

dedicated to weights and bias in the hidden layer 

neurons, and the output value of the hidden layer using 

matrix H is estimated. In the second stage, the output 

weights using matrix H, and the desired values (target) 

for different samples are calculated. Using matrix H to 

determine the weights gives much higher computational 

speeds than existing methods such as Levenberg-

Marquardts [23, 24].  

The number of hidden neurons not only affects the 

network complexity in order to model a nonlinear 

system but also affects the ability of network to 

generalize and learning. Considering many number of 

hidden neurons will lead to overfitting. Due to no 

existence of unique relation to calculate the number of 

hidden neurons before training it should be determine 

through trial and error. In this study, trial and error is 

utilized to determine the maximum permissible number 

of ELM hidden neurons. It is clear that increasing the 

number of hidden neurons results in higher prediction 

performance with the training dataset. However, 

overfitting should also be considered. Increasing the 

number of hidden neurons  may  lead to a model  that 

predicts the  training dataset very well but has high error 

in predicting the testing dataset. In such cases, 

overfitting occurs.  

In the present case, the number of hidden neurons 

are incresed considering that the difference between the 

training prediction accuracy and the testing prediction 

accuracy is very low. So that, it could be mentioned that 

there is no overfitting here. The number of hidden 

neurons in the ELM models were considered as 15. 

Also, the used activation function was sigmoidal. 

 
2. 2. Support Vector Machine (SVM)         SVM is a 

new modelling technique that uses the statistical 

learning theory principles [25]. This modelling 

technique applies an optimized linear regression model 

in a feature space to estimate the unknown values. The 

feature space is defined using input data mapping from 

the main space in an m-dimensional space. For a given 

observational dataset with an input vector as p-

dimensional and the target vector as one dimensional, 

the relationship between the input and output can be 

expressed as follows: 

bxwcf T  )()(   (7) 

where φ is a nonlinear function and b and w are the bias 

terms of the equation and weighting vector, 

respectively. Optimal values of these parameters whilst 

minimizing the risk function using variables ζi and ζi* 

known as the slack variables, are calculated as follows. 
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where C is a constant parameter defining the trade-off 

between the determination error and flatness. Equation 

(9) is solved based on defining Lagrange multipliers 

]),0[,( * Caa ii   and the dual problematic formulation. 

The solution of this equation is presented as follows: 

bxxKaaxf ii

l

i

ii 


)()()( *

1

*  
(10) 

where K(xi-xi
*
) is called a kernel function and xi and xi

*
 

are two vectors in the input space (training or testing). 

The Radial Basis Function (RBF) kernel function has 

been applied to problems in a number of fileds and has 

shown good performance due to features such as 

computational efficiency and reliability [26, 27]. 

Therefore, in this study, the kernel function is applied 

and calculated as follows: 
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)(
2

ii x-x-γexp)xK(x,   (11) 

It should be note that the good performance of SVM 

modeling is depended on accurate determination of 

three parameters γ, ε and C. In this study, the values of 

these parameters were considered as 0.45, 0.05 and 

0.95, respectively, through trial and error. 

 

 

3. METHODOLOGY 
 
3. 1. Dimensional Analysis       From the assessment 

of experimental and analytical studies in the field of 

sediment transport in open channels [2, 5, 28] a number 

of different parameters such as hydraulic radius (R), 

flow depth (y), cross-sectional area of flow (A), flow 

velocity (V), water density (ρ), sediment density (ρs), 

kinematic viscosity (ν), pipe diameter (D), median 

particle diameter (d), sediment friction factor (λs) and 

volumetric sediment concentration (CV) were considered 

to be important to estimate the minimum velocity to 

prevent sediment deposition (limiting velocity). The 

functional equation of limiting velocity is presented as 

follows: 

 sVs λA,R,y,D,,C,d,g,V ,  (12) 

In the above equation, the volumetric sediment 

concentration (CV) and sediment friction factor (λs) 

parameters are dimensionless parameters. Using 

dimensional analysis, the effective dimensional 

parameters in the relationship are represented by 

different dimensionless parameters as follows: 

densimetric Froude number (Fr=V/(g(s-1)/d)
0.5

); 

dimensionless particle size (Dgr=((d(s-1)/ν
2
)

1/3
)), the 

ratio of median diameter particle size to hydraulic radius 

(d/R), the ratio of median diameter to pipe diameter 

(d/D),  the ratio of hydraulic ratio to pipe diameter 

(R/D) and the square pipe diameter to the cross-

sectional area of flow (D
2
/A) [8, 29, 30]. Regarding the 

nature of each dimensionless parameter, Ebtehaj and 

Bonakdari [8] categorized the dimensionless parameters 

into five different groups. 
The five groups are ―movement‖ (Fr), ―flow 

resistance‖ (λs), ―transport‖ (CV), ―transport mode‖ (d/R, 

R/D, D
2
/A) and ―sediment‖ (Dgr and d/D). The Fr 

parameter provides the limiting velocity as a 

dimensionless value and is the only member of the 

―movement‖ group and is considered as the target 

parameter. Among the residual four groups, the ―flow 

resistance‖ and ―transport‖ groups only have one 

parameter whilst the ―sediment‖ and ―transport mode‖ 

groups, respectively, have 2 and 3 different 

dimensionless parameters. Hence, to consider the 

parameters of all four groups, 6 different combinations 

are required to calculate the limiting velocity, which can 

be expressed as a dimensionless parameter, Fr, as 

follows:  

),/,,(11 sgrV RdDCFr   (13) 

),/,,( 2
22 sgrV RDDCFr   (14) 

),/,,(33 sgrV DRDCFr   (15) 

),/,/,(44 sV RdDdCFr   (16) 

),/,/,( 2
55 sV RDDdCFr   (17) 

),/,/,(66 sV DRDdCFr   (18) 

Recent study of the authors [30] showed that among the 

different combinations of the above relationships, the 

relationship (Fr4) shown in Equation (16) provides the 

best results compared to the other relationships. 

Therefore, in this study, the performance of the ELM 

and SVM method is evaluated utilizing Equation (16). 

 

3. 2. Used Data     In this study to evaluate the Fr 

variable, three different datasets; Vongvisessom jai et 

al. [5], Ab Ghani [28] and Ota and Nalluri [31], have 

been applied. Vongvisessom jai et al. [5] conducted 

their experimental tests at two pipe channel with 

different diamters, 100 and 150 mm. The pipes legth are 

16 m. The authors used three slopes 0.002, 0.004 and 

0.006. The uniform sands with different median particle 

diameter (d = 0.2, 0.3 and 0.43mm) were used. Also, the 

Maning roughness coefficient for clear water tests was 

0.0125. Using three pipes of 154, 350 and 450 mm of 

diameters, 20.5 m length and maximum flow discharge 

of 0.04 m
3
/s, Ab Ghani [28] conducted their 

experimental tests. The bed of pipes was considered 

smooth and rough. The test conducted on different 

slopes so that the maximum was 0.006. Ota and Nalluri 

[31] conducted their experimental test using a pipe with 

18 m length and 305 mm diameter. The authors 

surveyed the effect of sediment gradation on sediemnet 

transport by considering uniform and non-uniform 

conditions. The specific gravity of all used sediment 

was 2.65. More details of the datasets are presented in 

previous studies [8, 29, 30]. 
Based on presented descriptions, the experiments 

have been conducted in different experimental 

conditions and, therefore, provide a wide range of 

hydraulic parameters for use in the analysis.  

To train the model in this study, all the data were 

divided into two categories: train and test. Among the 

218 different datasets, 70% of all datasets (151 samples) 

were selected randomly to train the model and other 

datasets (67 samples) were used to test the model. 
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3. 3. Goodness of Fitness        In this paper, different 

statistical indices such as the correlation coefficient 

(R
2
), Root Mean Square Error (RMSE), Mean Absolute 

Error (MAE), Mean Absolute Percentage Error (MAPE) 

and Coefficient of Residual Mass (CRM) which is an 

index for trend recognition of prediction are used for 

performance evaluation of each soft computing method 

(ELM & SVM). The calculation of the above mentioned 

indices are as follows: 
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where Tim and Tip are the measured and corresponding 

predicted value of the densimetric Froude number (Fr), 

respectively, and n is the number of samples. The 

combination of these statistical indices is sufficient to 

evaluate model performance. 

 
 

4. RESULTS AND DISCUSSION 

 

In this section, the results of modelling the densimetric 

Froude number (Fr) using SVM and ELM artificial 

intelligence methods are provided. Figure 1 compares 

the Fr modelling results using SVM and ELM methods 

in both the train and test modes to the observed 

experimental values. According to Figure 1 it can be 

seen that in model training mode, both the SVM (R
2
 = 

0.97) and ELM (R
2
 = 0.98) methods have a relatively 

good performance, as the majority of the estimated 

values have errors in the range of ± 10%. The average 

relative error for both methods, SVM (MAPE = 5.82%) 

and ELM (MAPE = 5.94%) is almost equal and less 

than 6%. Values for the other are presented in Table 2, 

and also show good performance of SVM (MAE = 0.24 

& RMSE = 0.36) and ELM (MAE = 0.22 & RMSE = 

0.29) methods in estimating the value of Fr. The CRM 

index value for both the SVM and ELM method in 

model training is positive, which indicates the 

overestimate performance of the models. It is 

noteworthy that the index value is relatively small 

(SVM = 0.01 & ELM = 0.02). As a result, using these 

methods to estimate Fr, does not lead to a significant 

increase in the economic cost of the design. For small 

values of Fr (Fr< 5), ELM estimations are associated 

with a relative error of more than 10%, and for large 

values of Fr (Fr> 5), SVM method has estimations with 

errors more than 10%. But as can be seen, these method 

would not be reliable in Fr estimation. Test data results 

indicate that both methods for all Fr values, estimates 

the variable value with less than 10% relative error, in 

fact using test data that have not any role in model 

training, not only reduce the SVM (R
2
 = 0.99) and ELM 

(R
2
 = 0.99) performance, but also increase the model 

accuracy as well. Table 1 shows that CRM index value 

for both methods is similar to model training mode with 

positive value. In fact, the modeling process is not 

changed. 

Table 1 presents the statistical indices which report 

the model performance as an average, whilst in Figure 

2, the cumulative relative error value for both the SVM 

and ELM methods is provided. The general conclusion 

that can be obtained from this figure is that both the 

SVM and ELM methods have relatively similar 

performances, as both methods present about 90% of 

the estimated values with relative errors less than 10%. 

Also 60% of estimations have a relative error less than 

5%. The figure shows that less than 2% of the estimated 

values of Fr using SVM and ELM have an error of 

more than 15%. 

According to the given description in Figures 1 and 

2 and Table 1, it can be concluded that both presented 

models in this study have a very good performance in 

Fr estimation. But the computational speed of the SVM 

and ELM methods are not comparable as the ELM, 

trains the model much more quickly. Also in the ELM 

approach only the determination of the hidden layer 

neuron values is needed; whilst in the SVM method the 

coefficients of the kernel function and the coefficient C 

need to be optimized simultaneously and may lack 

proper selection, leading to poor modelling results. 

Figure 3 shows the Discrepancy Ratio (DR) for the 

SVM and ELM methods. The DR is the average of the 

relative predicted value to actual value. According to the 

figure, most of the estimated values using the SVM 

method are in the range of 0.95 <DR <1.0. It is also 

observed that the minimum and maximum DR value in 

the SVM method are 1 ± 0.15. The SVM and ELM 

methods show the same degree of scatter indicating that 

the minimum and maximum values of the DR for both 

models is the same. Tables 2 and 3 indicated the results 

of sensitivity analysis for ELM and SVM techniques, 

respectively. Based on these tables, the weakest result is 

related to model 4-4 which removed the variable CV  in 

comapred with Equation (16). The mean absolute 

relative error of model 4.4 is 6 time more than Equation 

(16). 
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The best performance of presented model in Tables 

3 and 4 except model 4, is regard to model 4-2 for Elm 

(R
2
 = 0.96, MAE = -0.09; MAPE = 6.15; RMSE = 0.69; 

CRM = -0.02) and SVM (R
2
 = 0.95, MAE = -0.09; 

MAPE = 6.82; RMSE = .047; CRM = -0.03). The 

difference of this model with model 4 is the lack use of 

d/D as an effective pararmeters in Fr predicting.  

 

 

 
Figure 1. Comparison of ELM and SVM performance in 

prediction of Fr (Train & Test) 

 

 
TABLE 1. Statistical indices for performance evaluatation of 

ELM and SVM (Train & Test) 

 
Index SVM ELM 

Train R2 0.97 0.98 

 
MAE 0.24 0.22 

 
MAPE 5.82 5.94 

 
RMSE 0.36 0.29 

 
CRM 0.01 0.02 

Test R2 0.99 0.99 

 
MAE 0.14 0.10 

 
MAPE 3.24 2.34 

 
RMSE 0.19 0.14 

 
CRM 0.03 0.02 

Because the effect of d and D are considered in d/R 

dimnsionles parameters. Based on the statistical indices 

presented in Table 1 and 2, the lack use of each 

dimensionless variable presented in Equation (16) as an 

input parameter in predicting Fr lead to reduction of 

modeling accuracy. Therefore, all four variables in 

Equation (16) are essential to reach high modeling 

pefromance. 
 

 

 
Figure 2. Error distribution for ELM and SVM methods 

 

 
Figure 3. Histogram of DR for Fr predicted by ELM and 

SVM 
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TABLE 2. Results of sensitivity analysis for ELM 

Input variables R2 RMSE MAE MAPE CRM 

4. Fr=Ф(CV, d/R, d/D, 

λs) 
0.99 0.1 2.34 0.14 0.02 

4-1. Fr=Ф(CV, d/R, d/D) 0.95 0.52 -0.12 8.11 -0.03 

4-2. Fr=Ф(CV, d/R, λs) 0.96 0.36 -0.09 6.15 -0.02 

4-3. Fr=Ф(CV, d/D, λs) 0.87 0.63 -0.15 11.62 -0.04 

4-4. Fr=Ф(d/R, d/D, λs) 0.75 0.83 -0.04 12.57 -0.10 

 
 

TABLE 3. Results of sensitivity analysis for SVM 

Input variables R
2
 RMSE MAE MAPE CRM 

4. Fr=Ф(CV, d/R, d/D, λs) 0.99 0.14 3.24 0.19 0.03 

4-1. Fr=Ф(CV, d/R, d/D) 0.95 0.58 -0.10 8.84 -0.02 

4-2. Fr=Ф(CV, d/R, λs) 0.95 0.47 -0.09 6.82 -0.03 

4-3. Fr=Ф(CV, d/D, λs) 0.86 0.69 -0.14 12.09 -0.03 

4-4. Fr=Ф(d/R, d/D, λs) 0.76 0.83 -0.05 12.92 -0.01 

 
 

5. CONCLUSION 
 

Concerning the importance of sediment transport in 

open channels with the aim of limiting sediment 

deposition, this study has used a new artificial 

intelligence method to obtain an estimate of the limiting 

value of velocity to minimize sediment deposition. The 

numerical approach combines the fast and powerful 

Extreme Learning Machines (ELM) method with the 

Support Vector Machines (SVM) method. The key 

parameters used in the model were obtained using 

dimensional analysis. The densimetric Froude number 

(Fr) was represented by a number of different 

dimensionless parameters and its value was predicted by 

using the ELM and SVM methods. The results showed 

that both methods, SVM (R
2
 = 0.99, MAE = 0.14; 

MAPE = 3.24; RMSE = 0.19; CRM = 0.03) and ELM 

(R
2
 = 0.99, MAE = 0.10; MAPE = 2.34; RMSE = 0.14; 

CRM = 0.02) compared against the data used in this 

study to train and test the models accurately estimated 

the value of Fr. The error description for both methods 

showed that about 90% of the estimated values using 

these methods had a relative error less than 10%. Also, 

the calculated DR value in this study for the ELM 

showed that the index value in the weakest condition 

was 1 ± 0.15. The results show that the ELM method, in 

addition to giving a good accuracy in the modelling, 

was computationally very efficient and, therefore, can 

be used as a good alternative to the classical artificial 

intelligence methods that are normally used to achieve 

the optimised solutions. The results of  sensitivity 

analysis for ELM and SVM show that the lack use of 

each dimensionless parameters which are presented in 

Equation (16), result in significant decrease in Fr 

predicting. The results indicated that he d/D and CV 

have the lower and higher impact on Fr predicting. 
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 هچكيد
 

 

َای باس بٍ مىظًر جلًگیزی اس رسًبگذاری طًلاوی مدت با استفادٌ اس یک ريش در ایه مطالعٍ سزعت حداقل در کاوال

خًر ضًد.ایه ريش یک ضبکٍ عصبی پیصبیىی میقدرمتىد مبتىی بز ًَش مصىًعی بٍ وام ماضیه آمًسش قدرتمىد، پیص

ضًد، با بعد سزعت حداقل کٍ تحت عىًان عدد فزيد  ضىاختٍ میت آمًسش بسیار بالا است. پارامتز بیتک لایٍ با سزع

ضًد. ضًد ي وتایج آن با وتایج بدست آمدٌ اس ماضیه بزدار پیطتیبان، مقایسٍ میاستفادٌ اس ماضیه آمًسش قدرتمىد بزآيرد می

بیىی عدد فزيد است. َمچىیه، علايٌ بز سزعت در پیصمقایسٍ ایه دي ريش وطان دَىدٌ عملکزد قًی َز دي ريش 

اس  (R2=0.99, MAE=0.10; MAPE=2.34; RMSE=0.14; CRM=0.02)محاسبات بالا، ريش ماضیه آمًسش قدرتمىد 

 دقت بالاتزی وسبت بٍ ريش ماضیه بزدار پطتیبان بزخًردار است.

doi: 10.5829/idosi.ije.2016.29.11b.03 

  


