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A B S T R A C T  
 

 

The two-fluid flow is produced by the combined effects of electroosmotic force in a conducting liquid 
and pressure gradient force in a non-conducting liquid. The Poisson-Boltzmann and Navier-Stokes 

equations are solved analytically; and the effects of governing parameters are examined. Poiseuille 

number increases with increasing the parameters involved. In the absence of pressure gradient, the two 
fluids demonstrate plug-like velocity profiles. The results reveal that the two-fluid electroosmotic 

pumping flow rate is feasible for a relatively small interface zeta potential; or large wall zeta potential 

and electrokinetic radius. For particular values of the governing parameters, the flow rate approaches a 
specific value as the electrokinetic radius tends to infinity. A back flow (a negative value of the 

resultant flow rate) occurs for sufficiently small values of the wall zeta potential or sufficiently large 

values of the interface zeta potential (even in the case of pressure-assisted flow). Zero-value flow rates 
may also be attained. 

doi: 10.5829/idosi.ije.2016.29.10a.18 
 

 

NOMENCLATURE 

dp dz  pressure gradient [Pa/m]   

e  electron charge [C] z  axial coordinate [m] 

E  axial electrical field strength [V/m] Z  Dimensionless wall zeta potential 

f
 friction factor 

0
Z  dimensionless interface zeta potential 

 I x


 modified Bessel function of the first kind of order     Valence of ionic species 

 K x


 modified Bessel function of the second kind of order   Greek symbols 

B
k  Boltzmann constant [J/K] 

 liquid dynamic viscosity [kg/m.s] 

0
n  bulk ion concentration [m-3] 

rz


 
shear stress [Pa] 

Po  Poiseuille number 


 
dimensionless shear stree 

q
 liquid-2 flow rate ratio   the electro-kinetic radius 

Q
 dimensionless volumetric flow rate   electric permittivity of solution [F/m] 

r  radial coordinate [m]   Debye-Huckel parameter [m-1] 

  radius of the micro-channel [m]   fluid density [kg/m3] 

0


 
Radius of interface [m] e

  net volume charge density [C m-3] 

R  dimensionless radial coordinate 
s

ei


 
dimensionless interface charge density 

0
R

 
Dimensionless radius of interface   electrical potential [V] 

Re  Reynolds number   dimensionless electrical potential 

T  absolute temperature [K] 
 

zeta potential at the wall [V] 

Hs
U

 
Helmholtz-Smoluchowski velocity [m/s] 

0
  zeta potential at the interface [V] 

PD
U

 
pressure-driven reference velocity [m/s] 

 liquid dynamic viscosity [kg/m.s] 

V  dimensionless axial velocity subscripts 

z
V  axial velocity [m/s] 1, 2  conducting , non-conducting liquids 
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1. INTRODUCTION 
 

Unlike flows in conventional macro-sized channels, the 

analysis of flow in micro-channels has to take into 

consideration the presence of the electric double layer 

(EDL), which is formed as a result of the interaction 

between the charged wall surface and ionized solution. 

The fluid is then moved by applying an electric field to 

the EDL. Since the surface to volume ratio in 

microscale is large, electroosmotic flow (EOF) would 

be more efficient than ordinary pressure-driven flows. 

EOF micropumps contain no moving parts and are 

relatively easy to integrate in microfluidic circuits 

during fabrication. Microfluidic devices utilizing EOF 

have great applications with medical research as well as 

some other fields such as physics and chemistry (in fuel 

cells, soil analysis and processing, and chemistry 

analysis). Understanding the electrokinetic-driven flows 

in various geometries and the complete control of the 

flows at micro-scales will allow the construction of 

highly complex and efficient microsystems, where 

fluids can circulate in a controlled manner, performing a 

large number of tasks in a maze of microchannel [1, 2]. 

Extensive studies have been conducted to explore 

the behavior of electro-osmotic flow in micro-scale 

devices. Squires and Bazant [3] described the general 

phenomenon of induced-charge electro-osmosis (ICEO) 

which includes a wide variety of techniques for driving 

micro-flows around conducting or dielectric surfaces 

using AC or DC electric fields. Arulanandam and Li [4] 

studied the liquid movement in a rectangular micro-

channel by electro-osmotic pumping. They used a 2D 

Poisson-Boltzmann equation and the 2D momentum 

equation to model the problem. The flow field and 

volumetric flow rate were presented as functions of the 

zeta potential, the ionic concentration, the aspect ratio, 

and the applied electrical field. Dutta and Beskok [5] 

presented analytical results for velocity distribution, 

mass flow rate, pressure gradient, wall shear stress, and 

vorticity in mixed electro-osmotic/pressure driven flows 

for two-dimensional straight channel geometry. Tang et 

al. [6] investigated the electro-osmotic flow in 

axisymmetric micro-ducts. They presented 

axisymmetric lattice Boltzmann models to solve the 

electric potential distribution and the velocity field. 

Wang and Kang [7] presented a numerical solution 

based on coupled lattice Boltzmann methods for electro-

kinetic flows in micro-channels. Xuan and Li [8] used a 

semi-analytical approach to investigate electro-osmotic 

flows in micro-channels with arbitrary cross-sectional 

geometry and distribution of wall charge. Kang et al. [9] 

solved the electro-osmotic flow problem in a cylindrical 

channel for only sinusoidal waveform by the Green’s 

function method. Tsao [10] studied the electroosmotic 

flow through an annulus under the constant electric field 

condition. Kang et al. [11] investigated the steady-state 

electroosmotic flow in a capillary annulus under the 

situation when the two cylindrical walls carry high zeta 

potentials. In their study, the non-linear term of the 

Poisson-Boltzmann equation (i.e. hyperbolic sine) has 

been approximated by some proposed relations. 

Erickson and Li [12] presented a combined 

theoretical and numerical approach to investigate the 

time periodic electro-osmotic flow in a rectangular 

micro-channel. Comprehensive models for a slit channel 

have also been presented by Dutta and Beskok [13] who 

developed an analytical model for an applied sinusoidal 

electric field. Green et al. [14] experimentally observed 

peak flow velocities on the order of hundreds of 

micrometers per second near a set of parallel electrodes 

subject to two AC fields, 180 degrees out-of-phase with 

each other. The effect was subsequently modeled using 

a linear double layer analysis by Gonzalez et al. [15]. 

Using a similar principal, both Brown et al. [16] and 

Studer et al. [17] presented microfluidic devices that 

incorporated arrays of non-uniformly sized embedded 

electrodes which, when subject to an AC field, were 

able to generate a bulk fluid motion. Moghadam [18-20] 

obtained exact solutions of AC electroosmotic flows in 

circular and annular microchannels by using the Green’s 

function method. The flow fields excited by various 

time-periodic electric currents were also examined. 

Moghadam and Akbarzadeh [21] examined time-

periodic EOF of a non-Newtonian fluid in 

microchannels using a numerical scheme. Also, the 

problem of thermally-developing electroosmotic flow in 

a circular microchannel [22] was studied under DC 

electric field; and some analytic solutions were 

obtained. Wang et al. [23] studied the mixing 

enhancement by the electroosmotic flow in 

microchannels using the Lattice-Boltzmann methods. 

Also, the numerical results of electroosmotic flows in 

micro- and nanofluidics using a Lattice Poisson-

Boltzmann method were presented [24] to solve the 

non-linear governing equations. 

Some liquids, such as non-polar fluids with very low 

electrical conductivity, cannot form EDLs; hence, they 

cannot be directly pumped using electroosmosis. A 

conducting pumping liquid driven by EOF can pull a 

non-conducting working fluid by viscous forces. In 

some biochemical analysis, on the other hand, EOF 

pumps may not be suitable to be used directly with the 

water solutions, because the voltage applied can lead to 

electrochemical decomposition of the solute, fluctuation 

of the buffer solution pH and generation of gases [25]. 

In these cases, an EOF, which is driven thru layers of 

the conducting liquid, is utilized to pump a non-

conducting liquid. This allows for new types of analysis 

in the field of micro Total Analysis Systems (µTAS) 

which may prove important in the drug industry and for 

environmental monitoring. The characteristics flow rate 

and pressure of the pump are in the range of nL/s and 



1471                                  A. Jabari Moghadam / IJE TRANSACTIONS A: Basics  Vol. 29, No. 10, (October 2016)   1469-1477 
 

kPa, respectively; but depends largely on geometrical as 

well as electrical properties. In order to drive low EO 

mobility liquids and also avoid the aforementioned 

problems, Brask et al. [26] and Watanabe et al. [25], 

independently, proposed the idea of using high EO 

mobility liquids as driving mechanism to drag another 

fluid. The flow of two immiscible fluids was modeled 

by Ngoma and Erchiqui [27] in a parallel-plate 

microchannel; and the effects of pressure gradient and 

electroosmosis were studied. Gao et al. [28] studied 

two-fluid EOF in a rectangular microchannel, and 

examine the effects of various variables on the flow 

field. Analytic solutions of transient electroosmotic and 

pressure-driven flow of two-layer fluids was obtained 

by Su et al. [29] and Gao et al. [30] in slit and 

rectangular microchannels, respectively. Stiles et al. 

[31] proposed a simple method to focus the sample 

stream by using either a single suction pump or 

capillary pumping effect. The focused stream width was 

controlled by varying the relative resistances of the side 

and inlet channel flows. Fu at al. [32] presented 

experimental and numerical results electrokinetic flow 

injection. By applying different voltages at different 

parts of the channel, the sample fluid can be directed 

into a specific outlet channel. An analytical model was 

presented by Afonso at al. [33] to describe a two-fluid 

electroosmotic flow of Newtonian and viscoelastic 

fluids in a planar microchannel. 

While the previous studies consider the flow in 

microtubes under various conditions, there is a distinct 

lack of discussion on the hydrodynamic behavior of the 

combined electroosmotic and pressure-driven flow in 

circular microchannels. This paper presents an analytic 

solution of two-fluid EOF in a circular microchannel 

which is driven by electroosmosis and pressure gradient 

effects; the surface charge at the liquid-liquid interface 

is also taken into account. This EOF pump consists of 

two immiscible liquids: a high EO mobility or 

conducting liquid near the channel wall and a low EO 

mobility or non-conducting liquid around the channel 

centerline. The liquid-liquid interface has excess surface 

charge density. The applied external electric field 

interacts with net charges within the double layers (at 

the wall and at the interface) and creates an 

electroosmotic body force on the bulk conducting 

liquid; a pressure gradient may also be applied across 

the non-conducting liquid. The non-conducting liquid is 

delivered by the applied pressure gradient force as well 

as the interfacial viscous force of the conducting liquid 

driven by electroosmosis. The resultant body force 

drives the two-liquid field whose characteristics depend 

on the relative intensity of each body force. 
 
 

2. GOVERNING EQUATIONS AND SOLUTIONS 
 

A circular microchannel is filled with two immiscible 

fluids (illustrated in Figure 1), in which, the inner fluid 

is a non-conducting liquid and the outer fluid is a 

conducting liquid. Electric double layers form at the 

wall as well as at the liquid-liquid interface, which are 

in contact with the high EO mobility liquid. The zeta 

potential at the wall and at the interface are   and 
0 , 

respectively. The electroosmosis body force (applied on 

the liquid 1) and the pressure-gradient body force 

(applied on the liquid 2) are along the z-direction. 

 

2. 1. Potential Field         The electric potential 

distribution for a symmetric electrolyte due to the 

presence of EDL is determined by the Poisson-

Boltzmann equation [34, 35]: 

2

0

2

21
sinh

B

end d e

dr r dr k T

  



  
   

 

 
(1) 

where,  ,  , e , 
0n ,  , 

Bk , and T  are the electrical 

potential, the valence, the electron charge, the bulk ion 

concentration, the electric permittivity of the electrolyte, 

the Boltzmann constant, and the absolute temperature, 

respectively. The boundary conditions are: 

 r    (2a) 

 0 0r    (2b) 

Introducing the following dimensionless variables: 

,
B

r e
R

k T



  


 
(3) 

and under the Debye-Huckel approximation 

 Be k T  , we write Equation (1) in dimensionless 

form as follows: 

2
2

2

1d d

dR R dR


 
    (4) 

in which,     is the electrokinetic radius (the length 

scale ratio);   is the Debye-Huckel parameter defined 

as: 

1 2
2 2

02

B

e n

k T




 
  
 

 (5) 

 

 

Figure 1. cross-section of the two-fluid microchannel 
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The boundary conditions (2) in dimensionless form are: 

 1R Z    (6a) 

 0 0R R Z  
 (6b) 

It is noted that 
00 1R  . Solution of (4) subjected to 

(6) is: 

 
           

       
0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

K R Z I x Z I R I R Z K Z K R
R

K R I K I R

    

   

         


 
(7) 

It should be noted that the electric potential for 

00 R R   is zero; while it is specified by Equation (7) 

for 
0 1R R  . 

 

2. 2. Velocity Field       It is assumed that the two 

immiscible liquids are Newtonian; so the fully-

developed EOF for the conducting liquid is described by 

the following simplified momentum equation [34, 35]: 

2

1 1
1 02

1
2 sinhz z

z

B

V V e
en E

r r r k T




    
      

    

 
(8) 

where, 
1zV  is the only non-zero velocity component of 

liquid 1 along the microchannel, 
1  is the viscosity of 

liquid 1, and 
zE  is the electric field strength. For the 

non-conducting liquid, the momentum equation gives: 

2

2 2
2 2

1z zV V dp

r r r dz

  

  
  

 
(9) 

At the interface  0r  , matching conditions must be 

satisfied. They are the continuities of velocity and shear 

stress which are represented as: 

0

1 2

1 2
1 2

at 

z z

sz z
z ei

r

V V

V V
E

r r
  



 
 
  

  
  

 
(10) 

in which, the interface charge density, s

ei , is calculated 

from: 

   0 0in dimensionless form
s s

ei eir R R
r R


  

 
     

 

 
(11) 

The latter can be determined by differentiating Equation 

(7) evaluated at 
0R R : 

            
       

1 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0

s

ei

I R Z K ZK R K R Z I ZI R

K R I K I R

      


   

        




 
(12) 

To non-dimensionalize Equations (8)-(10), we would 

introduce Equation (3) together with the following 

reference quantities: 

1 2
1 2,

,

z z

HS HS

z PD

HS

V V
V V

U U

E L U
E

U

 

  

 
(13) 

where, L  is the distance between the two electrodes,   

is the body force ratio, 
PDU  and 

HSU  are the pressure-

driven and Helmholtz-Smoluchowski reference 

velocities, respectively, expressed by: 

2

2 1

;
4

B z
PD HS

k TEdp
U U

dz e



 

  
   

 

 
(14) 

Then, Equations (8)-(10) become: 

2
21 1

2

1
0

d V dV

dR R dR
     (15) 

2

2 2

2

1
4 0

d V dV

dR R dR
     (16) 

0

1 2

1 2
21

s

ei

R R

V V

dV dV

R R
 



 
 
 

  
  

 (17) 

in which, 
21  is called the viscosity ratio. There are, in 

addition, two further boundary conditions: 

   2

1
1 0 , 0 0

dV
V R R

dR
     (18) 

Equations (15) and (16) are now solved with respect to 

boundary conditions (17) and (18). 

   

           

       

2

1 21 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0

2 lnV R Z R R

I R Z K Z K R K R Z I R Z I

K R I K I R



     

   

  

        


 

(19) 

    2 2

2 0 21 0 01 2 lnV R R R R Z Z       
 (20) 

One the flow field is determined, the Poiseuille number 

 Po , the non-dimensional volumetric flow rate  Q , 

and the liquid-2 flow rate ratio  q  can be obtained by 

the following formula: 

1.Re 2 W RPo f  

    (21) 

0

0

1

1 2 1 2

0

R

R

Q Q Q RV dR RV dR    
 

(22) 

2q Q Q  (23) 

in which,  2

1
2

w HS
f U  , 

1 1
Re

HS
U    and 

 
1 1rz HS
U V R  



     . The above quantities 

are presented below: 

            
       

2

21 0

1 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0

2Po R

I Z K ZK R K Z I ZI R

K I R K R I



      

   

 

        




  
(24) 

   

       

2 4

0 0
21 0 21

0 0 0 0 0 0

1 2
2 2 4

.

R RZ
Q Z

Nume

K R I K I R

 

   

      




 

(25) 
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     

     

     

     

0 1 0 0 0 0 0

0 1 0 0 0 0 0

1 0 0 0 0

1 0 0 0 0

.Nume R K R Z I R Z I

R I R Z K R Z K

I Z K Z K R

K Z I Z I R

  

  

  

  

   

   

   

   

 

(26) 

    
2

20
0 0 21 02 1 4 ln

4

R
q Z Z R R

Q
     

 

(27) 

 

 

3. Results and Discussion 
 

The effects of non-dimensional governing parameters 

on the hydrodynamic features of two-fluid 

electroosmotically and pressure-driven flow are 

examined in a circular micrichannel. A non-conducting 

liquid (low EO fluid) holds the central portion of the 

channel, and a conducting liquid (high EO fluid) holds 

the area close to the wall. The normalized zeta 

potentials (at the wall and at the interface) are selected 

within the bounds imposed by the Debye-Hückel 

linearization. The characteristic scale of the 

microchannel to Debye length (the electrokinetic radius) 

is considered in the range of 100 1000    to 

investigate the essential features of EOF in a 100 m  

microchannel.  

Figure 2a shows the non-dimensional potential 

distribution in the microchannel cross-sectional area for 

two different values of  . Two electric double layers, 

close to the wall and near the liquid-liquid interface, are 

formed in the high EO mobility liquid due to the 

existence of wall and interfacial zeta potentials, 

respectively. The value of   determines the EDL 

thickness; a larger value of   (a larger bulk-ionic 

concentration and/or a larger channel size) corresponds 

to a thinner EDL. Figures 2a and 2b may be comparable 

with Figures 3b and 5a, respectively, in [28]; and show 

similar trends. The flow velocity of the conducting fluid 

(Figure 2c) was favorably compared with Figure 1b in 

[25] achieved using the analytic approach employed for 

a single conducting fluid flow thru a circular 

microchannel. 

The two-liquid flow is driven by the pressure-

gradient body force of the non-conducting liquid as well 

as the electric body/surface force of conducting liquid. 

It is noted that the electric body force results from the 

interaction of the external electric field with the 

volumetric local net charges in the high EO mobility 

liquid, while, the electric surface force is due to the 

effect of the external electric field on the interface free 

charges. 

The combined effects of driving forces on 

dimensionless velocity profiles of the two liquids are 

illustrated in Figure 3. 

 
(a) 

 
(b) 

 
(c) 

Figure 2. (a) Dimensionless potential distributions for 

0
0.8R  , 0.5Z  , 

0
0.25Z   and two values of  , (b) and 

(c) Dimensionless velocity profiles for comparison 
 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 3. Variations of non-dimensional velocity profiles 

with (a)   (b) 
0

Z  (c) Z  (d) 
21

  (e)  (f)   

 

 

As shown in Figure 3a, higher electrokinetic radius 

corresponds to higher velocity gradients at the wall and 

at the interface; also, maximum velocity within the EDL 

increases. Figure 3b shows that a decrease in 
0Z  causes 

the velocity of liquid 2 to increase, since the surface 

charges at the interface generate a force acting in the 

opposite direction to the EOF body force in the EDL 
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region at the vicinity of the interface. When zeta 

potential at the wall is decreased (Figure 3c), the flow 

velocity is obviously decreases. When 
21  is high, the 

flow resistance of the non-conducting liquid is higher 

than that of the conducting liquid, hence maximum 

velocity of liquid 1 is enhanced and so its velocity 

gradient (Figure 3d). In the case of small viscosity ratio, 

the non-conducting liquid is relatively easy to be 

dragged by the conducting liquid, and therefore the 

velocity gradient of liquid 1 reduces. Figure 3e 

demonstrates that larger   results in higher values of 

velocity, as well as a larger curvature of liquid-2 profile 

and a steeper incline of liquid-1 profile. Effect of 0  , 

as illustrated in Figure 3f, is to produce plug-like 

velocity profiles for both liquids (independent of 
21  

selection). 

Variations of the Poiseuille number versus   and 

Z are illustrated in Figure 4. It can be seen that 

increasing   has the same effect as Z  which is 

increasing the Poiseuille number. By increasing  , the 

Debye length is reduced, resulting in a higher velocity 

gradient inside the EDL and consequently a more 

Poiseuille number. The Poiseuille number value grows 

by increasing Z  too, since higher electroosmotic force 

and therefore larger velocity gradient within the EDL 

will be produced. 

Variables 
0R , 

21  and   have also increasing effects 

on the Poiseuille number (Figure 5). According to 

Equation (24), Po  has a linear relationship with 
21  

and   and almost a quadratic relationship with 
0R . All 

these variables cause the velocity gradient inside the 

Debye length to increase, hence Po  increases. 

Figure 6 depicts dimensionless volumetric flow rate 

as a function of  , Z , 
0Z , 

0R , 
21  and  . As can be 

seen in Figure 6a, for each individual set of data, the 

two-fluid flow rate approaches a specific value as 

  ; for instance, 0.2788Q   for set of given 

parameters 0.5Z  , 
0

0.25Z  , 
0

0.8R  , 
21

1  , and 

0.5  . 

 

 

 
(a) 

 
(b) 

Figure 4. Poiseuille number against (a)   with 0.5Z  , and 

(b) Z  with 1000   for 
0

0.25Z  , 
0

0.8R  , 
21

1   and 

0.5   

 

 
(a) 

 
(b) 

 
(c) 

Figure 5. Poiseuille number against (a) 
0

R  with 
21

1  and 

0.5  , (b) 
21

 with 
0

0.8R   and 0.5  and (c)   with 

0
0.8R   and 

21
1   for 1000  , 

0
0.25Z   

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 6. Variations of volumetric flow rate with (a)   (b) 

Z  (c) 
0

Z  (d) 
0

R  (e) 
21

  and (f)   

 

 

The flow rate has an ascending behavior with the wall 

zeta potential (Figure 6b), since higher electroosmotic 

force is produced by increasing Z ; on the contrary, an 

increase of 
0Z  causes a decrease in Q  due to generating 

an opposite force (Figure 6c). An increase of 
0R  may 

increase or decrease the flow rate, depending on  .  
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Interestingly, in this case, there are two values of 
0R  

which produce the same flow rate (Figure 6d). Figures 

6e and 6f show that increasing 
21  and   cause the flow 

rate to increase. Higher 
21  means relatively lower 

viscosity and so higher velocity of liquid 1; higher   

means relatively higher velocity of liquid 2. 

Effects of parameters involved in liquid-2 flow rate 

ratio are illustrated in Figure 7. The non-conducting 

liquid is slightly affected by   and Z . Figure 7c shows 

that 
0Z  has descending influence on q , because the 

interface free charges induce a resistance to the flow and 

cause a smaller flow rate of the non-conducting liquid. 

For some special value of 
0Z , q  will be zero; and 

beyond that particular 
0Z , a reversing flow will be 

observed. As shown in Figure 7d, the proportion of non-

conducting liquid is obviously increased with increasing 

0R . When 
21  increases, the relative importance of 

non-conducting liquid viscosity increases (or 

conducting liquid viscosity decreases); as liquids 1 and 

2 are driven by electroosmosis and pressure-gradient, 

respectively, the combined effect is to enhance the 

liquid-2 flow rate slightly (Figure 7e). Liquid 2 is 

directly influenced by  , and its flow rate increases 

with increasing the body force ratio. 

The volumetric flow rate may be negative for 

sufficiently small values of Z  or sufficiently large 

values of 
0Z  (Figure 8). 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 7. Variations of the liquid-2 flow rate ratio with (a) 

  (b) Z  (c) 
0

Z  (d) 
0

R  (e) 
21

  and (f)   

At some special values of Z  and 
0Z  where 0Q  , the 

q  curves demonstrate singularities due to diminishing 

the denominator of Equation (23). 

 

 

4. CONCLUSIONS 
 
Analytic solutions of linear Poisson-Boltzmann and 

Navier-Stokes equations are obtained in a circular 

microchannel, considering the electroosmosis-driven 

force and the pressure-driven force as body forces in a 

conducting and non-conducting incompressible fluids, 

respectively. The flow behavior depends on the 

coupling effect between the two liquids. The external 

electric intensity interacts with the free charges at the 

liquid-liquid interface to generate a surface force. Upon 

the application of the electric field, the flow is activated 

in regions close to the channel wall and the interface. 

The results of the current research are summarized 

below: 

I. Larger values of electrokinetic radius 

correspond to smaller values of Debye length 

and higher velocity gradients near the wall; this 

leads to larger electroosmotic forces. 

II. The interaction between the interface free 

charges and the external electric field produces 

a force acting in the opposite direction to the 

electroosmotic body force in the EDL. 

III. A steeper velocity gradient is observed in the 

conducting liquid for higher viscosity ratio. 

IV. An increase in the body force ratio results in 

increasing the flow velocity, and also curving 

the non-conducting fluid velocity profile and 

inclining the conducting fluid velocity profile. 

V. When body force ratio is zero, both liquids 

attain plug-like velocity profiles. 
 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8. Variations of volumetric flow rate with (a) Z  and 

(b) 
0

Z , and variations of the liquid-2 flow rate ratio with (c) Z  

and (d) 
0

Z  



A. Jabari Moghadam / IJE TRANSACTIONS A: Basics  Vol. 29, No. 10, (October 2016)   1469-1477                           1476 
 

VI. Poiseuille number is an increasing function of 

electrokinetic radius, wall zeta potential, 

interface radius, viscosity ratio, and body force 

ratio. 

VII. Dimensionless volumetric flow rate approaches 

a specific value as    (for the 

parameters involved). It is enhanced with 

increasing the wall zeta potential, while an 

opposite trend is observed with increasing the 

interface zeta potential. The flow rate may 

have ascending or descending trend with the 

interface radius, depending on the body force 

ratio. Viscosity ratio and body force ratio both 

are means of flow rate enhancement. For 

sufficiently small values of the wall zeta 

potential or sufficiently large values of the 

interface zeta potential, the volumetric flow 

rate may become negative (an entirely back 

flow). A zero flow rate is clearly attainable. 

VIII. Beyond some particular value of the interface 

zeta potential, a back flow may be observed. 

IX. The proportion of non-conducting liquid flow 

rate is enhanced by increasing the viscosity 

ratio as well as the body force ratio.  
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 هچكيد

 

 

 شًد.ی اثز تزکیبی ویزيی الکتزياسمًتیک در مایع رساوا ي گزادیان فشار در مایع وارساوا ایجاد میيسیلٍجزیان ديسیالٍ، بٍ

گزدد. عذد شًوذ؛ ي اثز پارامتزَای حاکم بزرسی میاستًکس بٍ صًرت تحلیلی حل می-بًلتشمه ي وايیز-َای پًاسًنمعادلٍ

-َای تًپی شکل را بٍ ومایش میشًد. دي سیال ،در غیاب گزادیان فشار، پزيفیلپًاسی با افشایش پارامتزَای درگیز، سیاد می

شًد کٍ دبی پمپاص الکتزياسمًتیک ديسیالٍ، بٍ اسای پتاوسیل ستای وسبتا کًچک مزس دي سیال، یا گذاروذ. اس وتایج آشکار می

پذیز ي قابل دستزسی است. بزای مقادیز بخصًصی اس ستای دیًار ي شعاع الکتزيسیىتیک بشرگ، امکان مقادیز بشرگ پتاوسیل

رسذ. بٍ اسای مقادیز بٍ قذر کافی کًچک پارامتزَای حاکم، با میل شعاع الکتزيسیىتیک بٍ بیىُایت، دبی بٍ یک مقذار خاص می

دَذ )حتا ل ستای مزس، جزیان بزگشتی )مقذار مىفی بزآیىذ دبی( رخ میپتاوسیل ستای دیًار یا مقادیز بٍ قذر کافی بشرگ پتاوسی

 َای صفز ویش ممکه است بٍ دست آیذ.در حالت جزیان یاری شًوذٌ تًسط فشار(. دبی

doi: 10.5829/idosi.ije.2016.29.10a.18 

 

 

 

 


