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A B S T R A C T  
 

 

In many processes in real practice at the start-up stages the process parameters are not known a priori 
and there are no initial samples or data for executing Phase I monitoring and estimating the process 

parameters. In addition, the practitioners are interested in using one control chart instead of two or 

more for monitoring location and variability of processes. In this paper, we consider a simple linear 
profile in which the relationship between a response variable and one explanatory characterizes the 

quality of a process. We proposed a self-starting Max-CUSUM control chart based on recursive 

residuals to monitor mean vector (including intercept and slope) and variability (variance of error term) 
of a simple linear profile simultaneously from the start-up stages of the process. We developed Max-

CUSUM control chart to monitor simple linear profile in Phase II. Then, we compared our proposed 

control charts with the best one in the literature through simulation studies. The simulation results 
showed that our proposed control charts have better performance compared to competitive control 

charts under moderate and large shifts in terms of out-of-control (OC) ARLs. Finally, the application 

of the proposed self-starting control chart is illustrated through a real case in the leather industry. 

doi: 10.5829/idosi.ije.2016.29.09c.12 
 

 
1. INTRODUCTION1 
 

Statistical process control (SPC) has been widely used 

to monitor industrial processes in which control charts 

are the most important tools. In ordinary processes, 

there are always one or more quality characteristics 

which should be monitored over time. However, in 

some cases the quality of a process is characterized by a 

relationship between a response variable and one or 

more explanatory variables referred to as profile in the 

literature. There are many researches on monitoring 

profiles, especially simple linear profiles that we will 

mention here. Kang and Albin [1] developed two 

control charts to monitor simple linear profiles in Phase 

II. Kim et al. [2] proposed three exponentially weighted 

moving average (EWMA) control charts which monitor 

intercept, slope and standard deviation in simple linear 

profiles. Zhang et al. [3] proposed a control chart based 

on likelihood ratio (LR) to monitor simple linear 
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profiles. Niaki et al. [4] proposed a control chart based 

on the generalized linear test (GLT) to monitor 

coefficients of a simple linear profile and an R-chart to 

monitor the error variance. Saghaei et al. [5] applied 

cumulative sum (CUSUM) control charts to monitor 

simple linear profiles in Phase II. Khedmati and Niaki 

[6] proposed an approach to monitor simple linear 

profile in multistage processes. In their proposed 

approach, all parameters in all stages are simultaneously 

monitored by one statistic at a time. The proposed 

approach can identify the out-of-control stages and 

parameters as well. Khedmati and Niaki [7] also 

proposed a new control scheme for Phase II monitoring 

of simple linear profiles in multistage processes which 

is based on U transformation applied to remove the 

effect of the cascade property. Gupta et al. [8] compared 

the performance of two monitoring schemes for Phase II 

monitoring of simple linear profiles. Kazemzadeh et al. 

[9] proposed variable sampling interval (VSS) schemes 

to monitor simple linear profiles in Phase II. De 

Magalhaes et al. [10] proposed a model for the 

statistical design of a VSS chi-square control chart to 
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monitor linear profiles. Mahmoud & Woodall [11] 

investigated the Phase I analysis of data in simple linear 

profiles.  

In the literature of SPC, Phase I and Phase II need to 

be distinguished. In Phase II monitoring, the process 

parameters are presumed to be known. Before Phase II 

monitoring, we need to analyze Phase I to ensure that 

the process is statistically in-control (IC) and to estimate 

process parameters. However, there is not always 

enough data to perform Phase I analysis and estimate 

the parameters. The self-starting control charts start 

monitoring the process without the need for large 

amount of preliminary observations. These control 

charts are used when production process is slow or the 

cost of out-of-control production at the beginning of the 

process is high. Self-starting method updates the 

parameter estimates with each new observation and 

simultaneously checks for out-of-control condition. 

Hawkins [12] proposed a self-starting cumulative sum 

(CUSUM) control chart for location and scale 

parameters, by using some theoretical properties of 

residuals independency. Sullivan and Jones [13] 

considered a self-starting control chart for monitoring 

multivariate individual observations. The proposed 

control chart uses the deviation of each observation 

vector from the average of all previous observations. Li 

et al. [14] proposed a self-starting control chart to 

monitor process mean and variance simultaneously 

based on likelihood ratio test (LRT) method and 

EWMA procedure. Cappizi and Masarotto [15] 

suggested a self-starting control chart which uses 

sequential observations to both update the parameter 

estimates and check for OC condition. In fact, they 

introduced a charting procedure that updates the 

reference pattern of a cumulative score (CUSCORE) 

control chart using an adaptive EWMA. Li et al. [16] 

proposed a self-starting control chart for monitoring 

high-dimensional short run processes. The proposed 

control chart solved a key challenge about traditional 

Hotelling’s T
2
 chart with high dimensionality 

measurements. The problem was that monitoring could 

not begin until the number of observations exceeds the 

dimensionality of the measurement.  

In addition to problems noted above about the lack 

of sufficient initial samples and unknown parameters, 

practitioners are interested in developing some kinds of 

control charts which can simultaneously monitor 

processes mean and variability. In fact, the quality 

engineers are interested in having a single control chart 

instead of two or more. Zhang et al. [17] proposed a 

single control chart based on the combination of 

EWMA procedure and generalized likelihood ratio 

(GLR) test statistic for joint monitoring of both the 

process mean and variance. Zhang et al. [18] suggested 

a new single control chart based on the combination of 

EWMA control chart and the GLR test for joint 

monitoring of multivariate process mean and variability. 

Sheu et al. [19] proposed maximum chi-square 

generally weighted moving average (MCSGWMA) 

control chart based on the combination of two generally 

weighted moving average (GWMA) control charts into 

a single one. Ghashghaei et al. [20] investigated the 

effect of measurement errors on joint monitoring of 

process mean and variance when simple random 

sampling (SRS) and ranked set sampling (RSS) 

procedures are used in the process. Maleki et al. [21] 

proposed a new control chart for simultaneous 

monitoring of multivariate process mean vector and 

covariance matrix in the presence of measurement 

errors with linearly increasing variance under additive 

covariate model. 

This paper is motivated from the research work of 

Zou et al. [22]. They proposed a self-starting control 

chart based on recursive residuals to monitor simple 

linear profiles. The proposed control chart can detect 

shifts in the mean vector of a simple linear profile 

(intercept and slope), and/or the variability of a simple 

linear profile (error term variance). The aim of this 

paper is developing a Max-CUSUM control chart for 

simultaneous monitoring of the regression parameters 

and error variance of simple linear profile in Phase II as 

well as a self-starting Max-CUSUM (SSMax-CUSUM) 

control chart for simultaneous monitoring of mean and 

variance of a simple linear profile. The proposed control 

charts have the identification feature of determining the 

out-of-control source of variation as well. The 

performance of the proposed control charts is evaluated 

in terms of ARL criterion and compared with SS control 

chart proposed by Zou et al. [22].  

The remainder of this paper is organized as follows: 

in the next section, we present a brief introduction of 

simple linear profiles. In Section 3, we present our 

proposed control charts, Max-CUSUM and SSMax-

CUSUM for monitoring simple linear profiles. The 

simulation studies, results and comparisons are 

presented in Section 4. In Section 5, we apply the 

SSMax-CUSUM control chart in a real world example. 

The concluding remarks are given in the final Section.  
 
 

2. SIMPLE LINEAR PROFILE MODEL 
 

If ( , )i ijx y  is the thj  random sample observed over 

the time, then when the process is in-control, the 

relationship between response variable 
ijy  and the 

explanatory variable ix  is presumed to be as follows: 

0 1
,

ij i ij
y B B x   

      
;     1,2,...,i n   ,  (1) 

where ij  is an independent and identically distributed 

(I.I.D) standard normal random variable. The regression 

parameters 0B  , 1B  and 2  in jth  profile are estimated 

by 0 jb ,
1 jb  and 

jMSE , respectively:   
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3. PROPOSED CONTROL CHARTS 
 

According to the previous sections and the aim of this 

paper, in this section we develop control charts for 

simultaneous monitoring of mean and variance of 

simple linear profiles based on the condition that the 

profile parameters are known and unknown. Then, in 

order to check the constancy of the regression 

relationship over time, we should do the following 

hypothesis tests in the proposed control charts: 

0 0 1

1

: 0,  0,  1

: otherwise                  ,

H

H

    



 
(5) 

where
0

 , 
1
  and   are shifts values which may occur 

in intercept, slope and standard deviation of the simple 

linear regression model, respectively.  

Since the importance of joint monitoring in practical 

applications in industries is clear, so the engineers of 

quality control (QC) department of a manufacturing unit 

prefer to have only one control chart instead of two or 

more for monitoring the process. Cheng and Thaga [23] 

proposed a new kind of CUSUM procedure called Max-

CUSUM chart for simultaneous monitoring of mean and 

variance of a univariate process. In this section, we use 

the Max-CUSUM procedure to monitor simple linear 

profile in Phase II and under the condition that the 

parameters are unknown a priori. In this situation that 

there is no initial data and information about the 

process, according to the literature, we should use self-

starting procedure to monitor simple linear profiles. 

 
3. 1. Max-CUSUM Control Chart                       Let 

1 2( , ,..., 1,2,3,...j j j jne e e e j )  ;   denote the sequence 

of residuals of size n . Residual is the difference 

between the observed value of the response variable 

( )ijy  and the corresponding predicted value ˆ( )ijy  as 

given in Equation (6). The residuals are independent 

and identically distributed and follow normal 

distribution with mean 0 and variance 2

 . Here, we use 

Max-CUSUM control chart and accommodate it with 

the simple linear profile structure to monitor residuals. 

0 1 1,2,...,

1,2,3....

ij ij ie y B B x i n

j

   



   ;      

                                               
. (6) 

In order to monitor residuals, we need 
1

(1 )
n

j ij

i

e n e


   

and 2 2

1

1
( )

1j

n

e ij j

i

S e e
n 

 

  as mean and variance of thj  

sample, respectively. These estimators are unbiased and 

independent, and also follow different distributions. 

Equations (7) and (8) are used to transform the 

distribution of the mentioned statistics, je  and 
2

jeS , to 

standard normal distribution, respectively.  

 
,

j
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e

n e
Z


  (7) 

2

1

2

( 1)
; 1 ,

j

j

e

j

e

n S
F H n




   

    
    

 (8) 

where 
jZ  has standard normal distribution and 

[ ; ] ( )H X P X x    is chi-square cumulative 

distribution function of X  with   degrees of freedom, 
1  is the inverse of the standard normal cumulative 

distribution function. Now 
jZ  and 

jF  have the same 

distribution, so the Max-CUSUM control chart can be 

applied. At first, we apply the traditional CUSUM 

statistics as follows: 

1 1max(0, ),j j jC Z k C 

    (9) 

1 1max(0, ),j j jC Z k C 

     (10) 

and 
 

2 1max(0, ),j j jS F k S 

  
 

(11) 

2 1max(0, ),j j jS F k S 

     (12) 

where 
0 0C =  and 

0 0S =  are starting points and 1k and 

2k  are reference values for CUSUM control charts. 

Combining 
jC and 

jS defines statistic for a single 

control chart as: 

 , , , .j j j j jM Max C C S S     (13) 

Since jM is the maximum of , ,j j jC C S   and 
j

S  which 

are based on four cumulative sum (CUSUM) statistics, 

it is natural to name the control chart based on 
jM , 

Max- CUSUM control chart. A large value of jM means 

that mean and/or variance of the processes have shifted. 

Because jM is non-negative, only an upper control 

limit (UCL) is used for monitoring purposes. If 
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jM UCL , the control chart triggers an out-of-control 

alarm, where 0UCL   is chosen to achieve a specified 

in-control ARL. 

 
3. 2. Self-Starting Max-CUSUM Control Chart        
Recursive residuals first were applied by Brown et al. 

[24] to test the constancy of regression relationships 

over time. Also, it has been shown that the recursive 

residuals are useful in a variety of applications in linear 

models. The use of these kinds of residuals in data 

analysis is attractive when a relevant ordering of the 

observations exists. Recursive residuals at first were 

proposed for data which has natural ordering such as 

time series data, but they have been effectively used in 

tests for structural change (i.e., change in regression 

coefficients), serial correlation, heteroscedasticity, and 

functional misspecification. 
In this section, we use recursive residuals to design a 

self-starting control chart. As noted above, self-starting 

control charts uses moving statistics which can update 

the estimations of parameters during the process while it 

is checking the out-of-control state simultaneously. 

Now suppose that there are 1m   IC historical data and 

, 1,...m m   future sample of size n . If we pool all the 

1m   IC historical and , 1,...m m   future data in one 

sample, i.e. 

{ }1, , 1...( , ), 1,2,..., , 1,2,...,i ij m m mx y i n j - += = , then 

we can calculate the standardized recursive residuals for 

each future sample as Zou et al. [22] used in their study.  

                                   
                                     
                       
                        

1,2,...,i n   ,  , 1,...j m m   

(14) 

where  

' (1, )i ixz = , (15) 

( 1) 1 1 2 3 ( 1) 1' ( , , ,..., )j n i j n iy y y yy - + - - + -= , (16) 

           
  

                                         
⏞                              

       

  

(17) 

1( ' ) 't t t t tβ X X X y
-= , (18) 

t t t t t t

1
( ) '( )

2
tS

t
y X β y X β= - -

-
. (19) 

And for simplicity let ( 1)j n i ijy y- + =  , 1,2,...,i n , 

1,2,...j  .  

As mentioned above, the recursive residual is a 

moving equation. The ije value of each observation 

depends on estimated regression parameters ( β ), 

standard deviation ( S ) and the 'X X  value of previous 

observations, so to avoid the high volume of 

calculations to reach each observation’s ije , Zou et al. 

[22] used the following recursive formulas: 

( ) ( )

( ) ( )

( )

1 1

-1 -1

1 1

-1 -1 i i -1 -1

1

-1 -1

               ,
1

t t t t

t t t t

i t t i

X X X X

X X z z X X

z X X z

- -

- -

-

=

-
+
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' '

'
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'

 

(20) 

( )
1

1 -1 -1 1( )t t t t i t i tβ β X X z y z β
-

- -= + -' ' , (21) 

2 2

12
( 3) ( )

2

t ij

t

t S e
S

t

-- +
=

-
, (22) 

where ( 1)t j n i= - + .  

Brown et al. [24] showed that under the in-control 

linear model, ije
 

has Student-t distribution with 

( 1) 3j n i- + -  degrees of freedom. Also, it is proved 

by Lehmann et al. [25] that the ije ’s are statistically 

independent. Hence, by using a transformation, the ijQ  

statistic which is called Q-statistic by Quesenberry [26] 

is obtained as follows: 

     
  [                ]  (23) 

where     denotes the inverse of CDF of standard 

normal random variable,       
is the CDF of the 

Student-t distribution with   degrees of freedom. So, 

{ , 1,2,..., ,ijQ i n=  }1,2,..., 1, , 1...j m m m= - +  is a sequence of 

random variables which are independent and follow 

standard normal distribution.  

When an assignable cause occurs after some 

subgroups (  subgroups), the distribution of Q-statistics 

when             is different from their 

distribution when          . This difference is used to 

detect assignable causes in the process.  

For sequence of 'sijQ  in each sample ( thj  sample), 
jQ  

and 2

jQS are obtained as follows: 

 ̅     ⁄  ∑    
 
     (24) 

   
         ⁄  ∑ (     ̅ )

  
     (25) 

2

1

2

( 1)
; 1 .

j

j

Q

j

Q

n S
G H n




   

    
    

 
(26) 

Now similar to the previous subsection, we have the 

same situation and should transform the distribution of 

jQ  and 
2

jQS to standard normal distribution and then 

apply the Max-CUSUM control chart.   
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1 1max(0, )j j jU nQ k U 

   , (27) 

1 1max(0, )j j jU nQ k U 

    , (28) 

and  

2 1max(0, )j j jV G k V 

   ,
 

(29) 

2 1max(0, )j j jV G k V 

    , (30) 

where 
0 0U =  and 

0 0V =  are starting points and 
1k  and 

2k  are reference values. Hence, the final statistics is 

obtained as follows: 

 Max , , , .j j j j jM U U V V     (31) 

For some given IC ARL and sample size 3,4,...,10n   , 

the control limits for self-starting Max-CUSUM chart 

are tabulated in Table 1. 

 
3. 3. Diagnostic Procedure       As a diagnosing 

procedure for self-starting Max-CUSUM control chart, 

the following algorithm is proposed to determine the 

source and the direction of the shift: 
Case 1: if | | UCLj jM U   and | | UCLjV  , then we have a 

shift in mean of the process. The shift is increasing if 

0jU   and it is decreasing if 0jU  . 

Case 2: if | | UCLjU   and | | UCLj jM V  , then a shift 

has been only occuring in variability. The shift is 

increasing if 0jV   and it is decreasing if 0jV  . 

Case 3: if | |  jU  and | |jV  is greater than UCL , then the 

signal has occurred due to simultaneous changes in 

process mean and variance. The change direction in 

location and scale of the process is determined by 

aforesaid methods in Cases 1 and 2. 

 

 
TABLE 1. Control limits of SSMax-CUSUM chart when 

1 1k   and 
2 1.5k   

 IC ARL 

n 100 200 300 370 

3 1.575 1.889 2.085 2.189 

4 1.585 1.898 2.095 2.197 

5 1.594 1.908 2.106 2.207 

6 1.602 1.917 2.115 2.207 

7 1.604 1.918 2.210 2.208 

8 1.603 1.917 2.201 2.209 

9 1.601 1.916 2.192 2.207 

10 1.598 1.913 2.117 2.212 

4. PERFORMANCE EVALUATION AND 
COMPARISONS 
 

In this section, we evaluate the performance of the 

proposed control charts including Max-CUSUM and 

self-starting Max-CUSUM and compare them with the 

performance of self-starting (SS) control chart proposed 

by Zou et al. [22]. Hence, we assess the OC ARL 

performance of the self-starting Max-CUSUM control 

chart under different values of  for IC samples before 

a shift occurs. In this study, IC samples are including 

historical samples and future in-control samples (before 

shift).  

Tables 2, 3 and 4 represent the results of simulation 

studies on the performance of the proposed control 

charts. The IC ARL in these tables is equal to 200. 

Similar to the work of Kang and Albin [1], the 

parameters of simple linear profile is 0 3B  , 1 2B  , 

2
1   and 2,4,6,8ix  . The control limits are set 

equal to 1.898 and 1.925 for self-starting Max-CUSUM 

and Max-CUSUM, respectively and the smoothing 

constant   is equal to 0.2. The results are obtained by 

10,000 simulation runs. Also, the OC ARLs of self-

starting Max-CUSUM chart with 

3,20,50,100,300 and 500   are tabulated in aforesaid 

tables. Moreover, in all simulation runs, the reference 

value 1k  is equal to 1 (half of shift interval in the 

intercept) and 2k is equal 1.5 (half of shift interval in the 

variance). 

The results in Tables 2, 3 and 4 showed that the self-

starting Max-CUSUM control chart performs almost 

better than SS control chart under moderate and large 

shifts in intercept, slope and variance. Since the self-

starting Max-CUSUM control chart uses a recursive 

statistic, as the number of reference samples observed 

before occurring an increasing shift, the performance of 

the self-starting Max-CUSUM chart improves in 

detecting small shifts. The results showed that when 

500  , the performance of self-starting Max-CUSUM 

control chart is almost similar to the performance of 

Max-CUSUM chart which is designed in Phase II and 

better than SS control chart.  

In order to better assess the performance of the self-

starting Max-CUSUM control chart against SS control 

chart, we consider the change point 3   which is also 

tabulated in Tables 2, 3 and 4. The results also represent 

that the self-starting Max-CUSUM control chart 

performs better than SS chart under shifts in intercept 

and slope. However, the SS control chart performs 

better than the self-starting Max-CUSUM under shift in 

standard deviation. Table 5 represents OC ARLs for 

self-starting Max-CUSUM, Max-CUSUM and SS 

control charts in the situation that simultaneous shifts 

occur in intercept and variance of the considered linear 

profile 3 2ij i ijy x    .  
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TABLE 2. Out-of-control ARLs comparisons of SSMax-CUSUM, SS charts with different values of  and Max-CUSUM control 

charts under shifts from 
0  to 

0 0    

0  Charts 3   20   50   100   300   500   
Max-

CUSUM 

0.2 
SSMax-CUSUM 185.83 133.66 100.52 76.84 57.49 52.62 

48.66 
SS 215.75 161.2 125.4 94.8 59.9 53.8 

0.4 
SSMax-CUSUM 166.30 68.60 33.79 21.70 15.86 15.33 

14.58 
SS 199.27 80.2 30.0 18.2 14.6 14.1 

0.6 
SSMax-CUSUM 141.96 23.25 9.45 7.40 6.74 6.67 

6.62 
SS 176.06 22.6 8.7 7.7 7.1 7.1 

0.8 
SSMax-CUSUM 111.54 7.56 4.31 4.02 3.89 3.85 

3.84 
SS 140.81 7.1 5.1 4.9 4.7 4.6 

1.0 
SSMax-CUSUM 78.69 3.31 2.82 2.73 2.66 2.65 

2.66 
SS 98.85 4.3 3.7 3.6 3.5 3.5 

1.2 
SSMax-CUSUM 49.13 2.31 2.10 2.08 2.04 2.03 

2.04 
SS 63.86 3.2 3.0 2.9 2.8 2.8 

1.4 
SSMax-CUSUM 25.02 1.80 1.73 1.68 1.68 1.67 

1.67 
SS 34.39 2.7 2.5 2.5 2.4 2.4 

1.6 
SSMax-CUSUM 9.92 1.52 1.46 1.44 1.42 1.43 

1.42 
SS 15.58 2.3 2.2 2.2 2.1 2.1 

1.8 
SSMax-CUSUM 4.70 1.33 1.26 1.25 1.24 1.25 

1.25 
SS 7.08 2.1 2.0 2.0 1.9 1.9 

2 
SSMax-CUSUM 2.38 1.18 1.15 1.14 1.13 1.13 

1.14 
SS 3.91 1.9 1.8 1.8 1.8 1.8 

 

 

TABLE 3. Out-of-control ARLs comparisons of SSMax-CUSUM, SS charts with different values of  and Max-CUSUM control 

charts under shifts from
1  to 

1 1    

1  Charts 3   20   50   100   300   500   
Max-

CUSUM 

0.025 
SSMax-CUSUM 191.43 158.31 133.12 111.00 93.64 85.33 

81.10 
SS 218.75 181.7 166.9 152.3 117.3 108.3 

0.05 
SSMax-CUSUM 181.03 117.11 78.43 58.11 39.03 37.34 

35.13 
SS 209.33 144.9 95.4 62.6 38.7 34.5 

0.075 
SSMax-CUSUM 169.60 78.07 37.58 26.07 18.92 18.19 

16.98 
SS 204.49 92.4 37.3 22.0 16.6 15.8 

0.1 
SSMax-CUSUM 154.90 45.17 16.96 12.16 10.02 9.68 

9.25 
SS 188.59 46.6 14.5 10.7 9.6 9.4 

0.125 
SSMax-CUSUM 139.83 22.81 5.22 6.78 6.21 6.11 

6.05 
SS 172.82 19.7 7.9 7.1 6.7 6.6 

0.15 
SSMax-CUSUM 123.06 9.84 5.11 4.61 4.34 4.34 

4.30 
SS 150.47 9.0 5.6 5.3 5.1 5.1 

0.175 
SSMax-CUSUM 98.59 5.17 3.59 3.46 3.31 3.30 

3.27 
SS 121.32 5.8 4.5 4.3 4.1 4.1 

0.2 
SSMax-CUSUM 76.61 3.43 2.85 2.74 2.63 2.34 

2.65 
SS 99.76 4.3 3.7 3.6 3.5 3.5 

0.225 
SSMax-CUSUM 59.47 2.69 2.32 2.26 2.22 2.22 

2.23 
SS 76.96 3.6 3.2 3.1 3.0 3.0 

0.25 
SSMax-CUSUM 42.63 2.17 2.02 1.96 1.94 1.94 

1.91 
SS 59.15 3.1 2.8 2.8 2.7 2.7 
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TABLE 4. Out-of-control ARLs comparisons of SSMax-CUSUM, SS charts with different values of  and Max-CUSUM control 

chart under shifts from   to   

  Charts 3   20   50   100   300   500   
Max-

CUSUM 

1.2 
SSMax-CUSUM 92.35 79.18 64.77 59.46 48.12 42.95 

41.81 
SS 80.52 116.5 73.3 49.0 33.0 31.2 

1.4 
SSMax-CUSUM 50.47 32.16 22.36 17.88 14.75 14.03 

13.64 
SS 37.16 49.0 18.5 12.1 10.3 9.9 

1.6 
SSMax-CUSUM 30.66 13.79 9.12 7.73 6.86 6.71 

6.65 
SS 21.94 18.1 7.1 6.1 5.6 5.5 

1.8 
SSMax-CUSUM 20.11 7.00 5.14 4.46 4.19 4.17 

4.20 
SS 13.86 7.4 4.4 4.0 3.8 3.8 

2 
SSMax-CUSUM 14.25 4.37 3.45 3.19 3.01 3.00 

3.02 
SS 9.93 4.3 3.3 3.0 2.9 2.9 

2.2 
SSMax-CUSUM 10.24 3.15 2.61 2.48 2.39 2.38 

2.37 
SS 7.68 3.1 2.6 2.5 2.4 2.4 

2.4 
SSMax-CUSUM 7.83 2.49 2.19 2.09 2.06 2.03 

2.03 
SS 6.39 2.5 2.2 2.1 2.1 2.1 

2.6 
SSMax-CUSUM 6.04 2.09 1.89 1.80 1.78 1.77 

1.79 
SS 5.14 2.2 1.9 1.9 1.8 1.8 

2.8 
SSMax-CUSUM 4.97 1.83 1.72 1.65 1.64 1.63 

1.64 
SS 4.49 1.9 1.7 1.7 1.7 1.6 

3 
SSMax-CUSUM 4.13 1.68 1.55 1.54 1.47 1.45 

1.51 
SS 3.91 1.7 1.6 1.6 1.5 1.5 

 

 

TABLE 5. The simulated out-of-control ARL values for SSMax-CUSUM (with 20  ), Max-CUSUM and SS (with 20  ) 

control charts under simultaneous shifts in intercept from
0 to

0 0   and standard deviation from to   (in-control ARL=200) 

 Control 

Charts 

0  


 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

1.1 

SSMC 102.53 78.80 62.03 42.74 26.58 15.89 9.80 6.22 4.13 3.27 

MC 49.96 30.64 18.44 12.08 8.58 6.10 4.73 3.78 3.11 2.62 

SS 111.97 94.00 73.70 48.18 29.38 15.49 9.04 6.54 5.08 4.26 

1.2 

SSMC 65.43 52.43 38.95 27.95 19.52 12.53 7.94 5.75 4.15 3.34 

MC 28.15 20.23 13.62 10.16 7.40 5.49 4.38 3.58 3.07 2.62 

SS 60.68 53.32 43.34 29.51 19.20 12.39 8.59 6.33 4.96 4.24 

1.3 

SSMC 41.85 34.27 26.49 19.39 13.67 9.60 7.00 5.14 3.92 3.15 

MC 17.65 13.55 10.26 8.00 6.17 5.02 4.16 3.41 2.97 2.61 

SS 33.68 30.41 24.77 18.60 14.15 9.84 7.37 6.06 4.92 4.22 

1.4 

SSMC 28.40 22.63 17.50 13.65 10.00 7.64 5.97 4.57 3.73 3.14 

MC 11.60 9.38 7.90 6.34 5.31 4.43 3.78 3.29 2.87 2.53 

SS 20.14 18.10 15.65 13.08 10.43 8.20 6.68 5.62 4.85 4.12 

1.5 

SSMC 18.52 15.14 12.44 9.74 7.81 6.39 5.02 4.18 3.47 2.97 

MC 8.15 7.03 6.16 5.28 4.61 3.95 3.52 3.02 2.75 2.46 

SS 12.76 12.10 10.83 9.20 8.23 6.74 5.97 5.02 4.46 3.91 
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The IC ARL is set equal to be 200 and the number of IC 

samples for SSMax-CUSUM and Max-CUSUM control 

chart ( ) is equal to 20. The range of shifts for intercept 

and variance are 0.1 to 1 and 1.1 to 1.5 with step size of 

0.1, respectively. Since the Max-CUSUM control chart 

applied in Phase II, as a result, it totally performs better 

than two other control charts. However, the proposed 

self-starting Max-CUSUM control chart almost roughly 

performs better than SS chart.  

The Max charts can diagnose the parameters 

responsible for out-of-control signal (shift in mean, 

variance or both). In Table 6, there are three rows 

named U, V and UV that represent the mean shifts, 

variance shifts and simultaneous shifts, respectively. 

Table 6 presents the percentage of times that the self-

starting Max-CUSUM chart diagnose the parameter 

responsible for signal when the shift actually occurs in 

that parameter. For example, when there is a 0.125 shift 

of size in the slope, the self-starting Max-CUSUM 

control chart diagnoses that in 98.94%, 1.04% and 

0.02% of the times, shift has occurred in the regression 

parameters, error variance and both, respectively. The 

results showed that the performance of diagnosing 

procedure in the self-starting Max-CUSUM control 

chart under different shifts in intercept, slope and 

standard deviation is excellent. 

 

5. AN ILLUSTRATIVE EXAMPLE 
 
In this section, we adopt a case study from leather 

industry described by Amiri et al. [27]. As we know 

leather is an important and useful material for 

production of shoes. The importance of leather is due to 

its effect on customer satisfaction and their feet comfort 

in the shoes. Leather industry has numerous processes if 

a high quality leather is to be produced. The process 

investigated by Amiri et al. [27] is dying process.  

When the feet are in shoes, the temperature rises and 

the feet begin sweating. The result of this sweating is 

that the color of the leather stains the socks and makes 

them dirty. Therefore, for this reason, the dyeing 

process is important. In the dyeing process, there is a 

relationship between color effluent and temperature 

which is the most important quality characteristic in this 

process and should be monitored over time. For in-

control situation the profiles are similar, but when an 

assignable cause occurs we have OC profiles, so the 

relationship between color effluent and temperature is 

not stable over time.  

The experiment and the corresponding data 

gathering are described in detail in Amiri et al. [27]. We 

use the outputs of their experiment in our study. There 

are 11 in-control profiles which are observed from 

laboratory. The results showed that there is a simple 

linear regression model between color effluent and 

temperature.  

The IC simple linear regression profile is 

0.0509 0.0034ij i ijy x    
 

, 25,32,39,46,53ix   and 

'ij s  are identically independent distributed standard 

normal random variable. For given IC ARL=200, the 

UCL value is set to be 0.263. 

 

 
TABLE 6. The performance of diagnosing procedure in SSMax-CUSUM (accuracy percent) under individual shifts in the intercept, 

slope and the standard deviation with 20   (in-control ARL=200) 

Intercept shifts from 
0 to

0 0    

0   0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

U 93.22% 97.04% 99.36% 99.90% 99.96% 99.96% 100% 100% 100% 100% 

V 6.78% 2.96% 0.64% 0.1% 0.04% 0.02% 0% 0% 0% 0% 

UV 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

Slope shifts from 
1 to

1 1    

1  0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 

U 92.68% 94.28% 96.40% 98.04% 98.94% 99.54% 99.74% 99.72% 99.74% 99.78% 

V 7.32% 5.72% 3.58% 1.92% 1.04% 0.44% 0.26% 0.24% 0.14% 0.16% 

UV 0% 0% 0.02% 0.04% 0.02% 0.02% 0% 0.04% 0.02% 0.02% 

Standard deviation shifts from to   

   1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 

U 76.92% 58.26% 42.58% 31.32% 25.68% 19.86% 18.28% 15.68% 13.80% 13.80% 

V 22.82% 41.08% 55.82% 66.34% 70.10% 74.26% 74.06% 75.34% 76.26% 74.94% 

UV 0.26% 0.66% 1.60% 2.34% 4.22% 5.88% 7.66% 8.98% 9.94% 11.26% 
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The IC profiles presented in Table 7 are used as 

historical data to estimate the initial values of 
0

B , 
1

B

and variance used in self-starting procedure of Max-

CUSUM control chart. We generate 18 samples of size 

5n   with a sustained shift in the intercept of the 

simple linear profile from
0 0.0509B    to 

0 0.0489B    in 

sample 10 and compute the statistic values of the 

proposed self-starting control chart. The statistics of 

SSMax-CUSUM related to 18 samples are tabulated in 

Table 8. The results showed that the self-starting Max-

CUSUM control chart detects the shift in 14
th

 sample 

which shows the satisfactory performance of the 

proposed self-starting Max-CUSUM control chart. 
 

 

TABLE 7. In-control dataset of the leather color effluent 

under 5 different temperatures 
Temp 

 

profile 

25 32 39 46 53 

1 0.0218 0.0288 0.0908 0.1011 0.1257 

2 0.0302 0.0542 0.0718 0.1172 0.1313 

3 0.0288 0.0287 0.0858 0.0931 0.1355 

4 0.0306 0.0757 0.0101 0.1162 0.1285 

5 0.0488 0.0281 0.0855 0.1181 0.1188 

6 0.0310 0.0944 0.0716 0.1192 0.1497 

7 0.0231 0.0763 0.0809 0.1399 0.1571 

8 0.0455 0.0925 0.1511 0.0875 0.1410 

9 0.0209 0.0475 0.1023 0.1265 0.1230 

10 0.0578 0.0223 0.1156 0.1126 0.0920 

11 0.0463 0.0644 0.0868 0.0788 0.1063 

 

 

TABLE 8. The statistics of SSMax-CUSUM control chart 

with 9 in-control samples and a shift in the intercept from 

sample 10 (in-control ARL=200) 

j jQ  
2

Q j
S  U

U




 

V

V




 

Self-starting  

Max-CUSUM 

1 0.104 -2.909 0.209 0.00 0.209 

2 -0.003 -3.328 0.177 0.00 0.177 

3 -0.006 -4.440 0.138 0.00 0.138 

4 -0.029 -4.207 0.048 0.00 0.048 

5 0.017 -4.138 0.061 0.00 0.061 

6 0.004 -3.897 0.045 0.00 0.045 

7 -0.016 -4.646 0.000 0.00 0.000 

8 0.009 -4.328 0.000 0.00 0.000 

9 0.026 -3.837 0.033 0.00 0.033 

10 0.000 -4.713 0.008 0.00 0.008 

11 0.056 -3.754 0.107 0.00 0.107 

12 0.026 -4.119 0.141 0.00 0.141 

13 0.041 -4.327 0.207 0.00 0.207 

14 0.048 -3.965 0.290 0.00 0.290 

15 0.042 -4.093 0.359 0.00 0.359 

16 0.062 -4.316 0.472 0.00 0.472 

17 0.012 -4.982 0.473 0.00 0.473 

18 0.020 -3.789 0.493 0.00 0.493 

     UCL=0.263 

6. CONCLUSION AND FUTURE RESEARCHES 
 

In this paper, we applied a Max-CUSUM control chart 

to monitor the parameters of a simple linear profile 

simultaneously in Phase II. In addition, we proposed a 

self-starting Max-CUSUM control chart based on 

recursive residuals to monitor the parameters of a 

simple linear profile when there is not enough data at 

the start-up stages for satisfactory estimation. Moreover, 

the proposed control charts are able to diagnose if the 

mean or variance of the simple linear profile has 

changed. The results of simulation studies showed that 

the proposed control charts almost perform well under 

moderate and large shifts. Note that more IC samples 

before a shift are needed if one is interested to increase 

the sensitivity of the proposed self-starting control chart 

to detect small shifts. Finally, the application of the 

proposed self-starting Max-CUSUM control chart is 

illustrated through a real case in the leather industry. 

Developing a self-starting control chart to monitor 

multivariate multiple linear regression profiles can be 

considered as a future research. In addition, one can 

design a self-starting control chart to monitor simple 

linear profiles in multistage processes (See Niaki et al. 

[28]).   
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 هچكيد
 

 
ٍ  1فاس  یاخزا یبزا یِاٍل یّا ًوًَِ ٍ ًیستٌذهعلَم  یصاس پ یِهزاحل اٍل  در فزایٌذ یپاراهتزّا ی،ٍاقع یایدً در فزایٌذّااس  یاریبس در

چٌذ  یادٍ  خای ِب کٌتزل ًوَدار یک اس استفادُ بِ علاقوٌذ صٌعت کاراى اًذر دست ،علاٍُِب. ًذارد ٍخَد فزایٌذ یپاراهتزّا یيتخو

کِ در آى  ینا سادُ پزداختِ یخط یلپزٍفا یک یبزرس بِهقالِ،  یي. در اباضٌذ هی فزایٌذ یزیپذ ییزٍ تغ یاًگیيه یصپا یًوَدار کٌتزل بزا

 ّای هاًذُیباق یِخَدآغاسکٌٌذُ بز پا Max-CUSUMًوَدار  یکهقالِ  یيهستقل ٍخَد دارد. در ا یزپاسخ ٍ هتغ یزهتغ یاىه یا رابطِ

سادُ اس هزاحل  یخط یلخطا( پزٍفا یاًس)ٍار یزیپذ ییز( ٍ تغیب)ضاهل عزض اس هبذا ٍ ض یاًگیيبزدار ه سهاىّن پایص بزای باسگطتی

عِ دادُ ضذُ تَس 2سادُ در فاس  یخط یلپزٍفا یصپا یبزا Max-CUSUMًوَدار کٌتزل  یکضذُ است. سپس،  پیطٌْاد فزایٌذ یِاٍل

 ًتایح. است ضذُ هقایسِ ساسی ضبیِ هطالعات طزیق اس ادبیات در هَخَد رٍش با پیطٌْادی کٌتزل ًوَدارّای هقالِ یيدر ا یياست. ّوچٌ

 اس بشرگ ٍ هتَسط ّای ضیفت در رقیب کٌتزل ًوَدار بِ ًسبت بْتزی عولکزد اس پیطٌْادی کٌتزل ًوَدارّای کِ دّذهی ًطاى ساسی ضبیِ

 در ٍاقعی هثال یک طزیق اس خَدآغاسکٌٌذُ کٌتزل ًوَدار کاربزد ًْایت، در. است بزخَردار کٌتزل اس خارج دًبالِ طَل هتَسط حیث

 است ضذُ دادُ ًطاى چزم صٌعت
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