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A B S T R A C T  
 

 

Wiener filter suppresses noise efficiently. However, it makes the output image blurred. Curvelet 

preserves the edges of natural images perfectly, but, it produces visual distortion artifacts and fuzzy 
edges to the restored image, especially in homogeneous regions of images. In this paper, an efficient 

image denoising framework based on Curvelet transform and wiener filter is proposed, which can 

reduce noise better than these methods. The performance of introduced scheme is evaluated in terms of 
two important denoising criteria, PSNR and SSIM on standard test images in different noise levels. 

Three famous thresholding ‘soft’, ‘semisoft’ and ‘hard’ are applied to noisy images and results are 

fused by the wavelet transform to form restore images. Our framework outperforms the curvelet 
transform denoising by %6.3 in terms of PSNR and %5.9 in terms of SSIM for ‘Lena’ image. The 

visual outputs show that false artifacts, parasite lines and the blurring degree of output images, are 

reduced significantly. The obtained results reveal the superiority of our framework over recent reported 
methods. 

doi: 10.5829/idosi.ije.2016.29.08b.09
 

 
1. INTRODUCTION1 

 

The image enhancement and image restoration are the 

essential processes in practical applications [1-5]. The 

main goal of denoising is to suppress noise from 

observed images and present a refined image with high 

similarity to the original image. Wavelet transform is a 

powerful tool to present the singularity of images. 

However, it cannot represent smooth edges properly. 

Curvelet transform as a multiresolution geometric 

analysis is introduced by Donoho and Candes [6-8]. 

Stehly et al. have utilized curvelet transform in 

computing synthetic noise correlation to improve 

ambient noise tomography [9]. A Poisson noise removal 

algorithm based on fast curvelet transform and 

multiscale variance stabilizing transform and wave atom 

has been reported [10]. In another research, curvelet 

transform and total variation methods have been used in 

denoising CT and MRI images [11]. 

A Wiener filtering algorithm with pseudo-inverse 

technique solving the Gaussian noise problem for 
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ultrasound image by setup a constant dB of noise 

function has been introduced [12]. A denoising method 

based on nonlocal neutro-sophic set (NLNS) approach 

of Wiener filtering has been proposed and the results 

have been compared with similar methods such as 

classical Wienerfilter, the anisotropic diffusion filter, 

the total variation minimization and the nonlocal means 

filter [13]. In another paper, a gradient-based Wiener 

filter (GWF) for image denoising has been suggested 

[14]. This filter is implemented by a local adaptive 

denoising algorithm based on the Wiener-like shrinkage 

function in the gradient domain. 

In this paper, an efficient denoising framework, 

which consists of the curvelet transform and Wiener 

filter stages, is proposed. Wiener filter minimizes mean 

square error (MSE) and blocks noise efficiently. 

However, it yields an artificial denoised image, which 

has poor similarity to the original image. It means that 

the output has a cartoon-like appearance. Furthermore, 

it makes output images blurred. On the other side, 

curvelet transform does not vanish the image. However, 

it is an orientated transform and produces false curved 

lines, which are observable in the restored image. We 

combine these two methods with different properties 
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and utilize a wavelet-based fusion method to introduce 

an efficient framework with better performance. It will 

be shown that the denoised images would be less 

blurred with vanished line artifacts. 

The rest of this paper is organized as follows: section 

2 describes the proposed framework in four stages: 

Wiener filter, curvelet transform, thresholding and the 

fusion method. In each part, the subject with relevant 

formulas is explained briefly. Section 3 presents the 

results obtained in terms of PSNR and SSIM. Visual 

results are given to compare our method with the 

Wiener filter and curvelet transform. A discussion on 

fusion methods and efficiency of the curvelet and 

wavelet methods is presented in this section. Finally, a 

conclusion of the paper is given in section 4. 

 

 

2. PROPOSED FRAMEWORK 
 

Figure 1 shows the block diagram of the proposed 

scheme. The proposed denoising procedure consists of 

three main parts which are described as follows: at first, 

by applying Wiener filter to the input image, the noised 

is suppressed and diluted. However, it is not sufficient 

because, the output would be a blurred and cartoon-like 

image. For quality enhancement, the difference between 

the input image and the output of Wiener filter is 

applied to the curvelet transform stage. This difference 

has details and it is important to refine because noise 

corrupts the details more than approximation. So, the 

duty of the curvelet transform is to distinguish fake and 

real details in directional bands.To make this decision, 

three thresholding methods i.e. ‘soft’, ‘semisoft’ and 

‘hard’ are applied to subband coefficients in 

thresholding block. Then, an inverse curvelet transform 

is used to obtain refined details. This noiseless detail is 

added to the output of wiener filter to compensate the 

quality of the details.Finally, as shown in Figure 1, the 

two denoised images are applied to the fusion stage. 

This block combines two inputs and yields a restored 

image which has less blurring properties and artifact 

lines.In the following, we discuss these four blocks in 

detail. 
 

 

 
Figure 1. Proposed denoising method block diagram 

2. 1. Wiener Filter Stage     In image denoising, the 

Wiener filter is a filter used to produce an estimate of a 

desired or target random process by linear time-

invariant (LTI) filtering of a noisy input image, 

assuming known stationary signal, noise spectra, and 

additive noise. The Wiener filter minimizes the mean 

square error between the observed image and original 

image. 

The main purpose of the Wiener filter is to 

determine a statistical estimate of an unknown signal 

using a related image as an input and filtering that 

known image to produce the estimate as an output. For 

example, the known image might consist of an unknown 

image of interest that has been corrupted by additive 

noise. The Wiener filter can be used to filter out the 

noise from the corrupted image to provide an estimate 

of the underlying original image. It is based on a 

statistical theory, and a more statistical account of the 

theory is given in the minimum mean-square error 

(MMSE) article. 

The Wiener filtering is optimal in terms of the mean 

square error, where the noise is AWGN. It means that it 

minimizes the MSE in the process of inverse filtering 

and noise smoothening. The Wiener filtering is a linear 

estimation of the original image. The approach is based 

on a stochastic framework. The Wiener filter in Fourier 

transform domain can be calculated as [15]: 

 (   )  
 

 (   )

| (   )| 

| (   )|    (   )   (   )
  (1) 

Where,  (   ) is the degradation function of 

noise,   (   ) and   (   ) are the power spectrum of 

the noise and the power spectrum of the original image, 

respectively. In this paper, we use an adaptive Wiener 

filter. This filter estimates the local mean and variance 

around each pixel as: 

  
 

  
∑  (     )           (2-a) 

   
 

  
∑   (     )                   (2-b) 

Where,   is the N-by-M local neighborhood of each 

pixel in the image  . Adaptive Wiener filter uses these 

pixel wise estimates [16]: 

 (     )    
     

  
( (     )   )                 (3) 

Where,    is the noise variance. 

 
2. 2. Curvelet Transform Stage         Curvelets are 

non-adaptive methods for multi-direction object 

representation. Being an extension of the wavelet 

concept, they are becoming popular in similar fields, 

namely in image denoising and image retrieval. 

Wavelets accomplished the Fourier transform by 

using a basis that represents both location and spatial 

frequency. For images, directional wavelet transforms 

go further, by using basis functions that are also 

localized in orientation (like Dual-Tree Complex 

Wavelet Transform).  
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A curvelet transform has different properties 

compared to other directional wavelet transforms in that 

the amount of localization in orientation varies with 

scale. Specially, fine-scale basis functions are long 

ridges; the shape of the basis functions at scale   is     

by      , therefore the fine-scale bases are skinny ridges 

with a precisely determined direction. 

Curvelets are appropriate tools for representing 

images (or other functions) which are smooth apart from 

singularities along smooth curves, where the curves 

have bounded curvature, i.e. where objects in the image 

have a minimum length scale. This property holds for 

cartoons, geometrical diagrams, and text. As one zooms 

in on such images, the edges and corners they contain 

appear increasingly straight. Curvelets take advantage 

of this property, by defining the higher resolution 

curvelets to be more elongated than the lower resolution 

curvelets. However, natural images do not have this 

property; they have details at every scale. Therefore, for 

these images, it is better to use some sort of directional 

wavelet transform whose wavelets have the same aspect 

ratio at every scale. A curvelet transform is determined 

under the following steps [17]: 

Subband decomposition: With a_terous algorithm, the 

image passes through lowpass filter    and bandpass 

    

  (             )                                                 (4) 

Smoothing: Each band is smoothed and windowed as: 

                                                       (5) 

where    is window function and   is dyadic function 

which is defined at scale   as: 

 (       )  *
  

   
    

  +  *
  

   
    

  +                (6) 

where    and    indicate length of the filter. 

Normalization: Every window is renormalized in the 

range [0,1] by: 

     
       (7) 

Where,    is the normalizer function. 

Ridgelet analysis: Ridgelet of a 2D function is defined 

as: 

  (     )  ∫ (     ) (     )(     )            (8-a) 

 (     )( )   
 

 ⁄  (
               

 
)  (8-b) 

where, a, b and   are the scale, location and orientation 

parameters, respectively, and  is the wavelet function. 

Figure 2 displays the curvelet transform of a test image. 
 

2. 3. Thresholding    Hard, soft and semisoft 

thresholding are three main thresholding methods,which 

are defined as [18, 19]: 

  
    ( )  {

            | |   
           | |   

  (9-a) 

 
(a) Test image 

 
(b) Curvelet coefficients 

Figure 2. Test image and curvelet coefficients. In this image, 

the low frequency (coarse scale) coefficients are stored at the 

center of the display. The Cartesian concentric coronae shows 

the coefficients at different scales; the outer coronae 

correspond to higher frequencies. There are four strips 

associated to each corona, corresponding to the four cardinal 

points; these are further subdivided in angular panels. Each 

panel represents coefficients at a specified scale and along the 

orientation suggested by the position of the panel. 

 

 

  
    ( )     (  

 

| |
)    (9-b) 

  
        ( )  {

                                       | |    

                                       | |    

   ( )  
  | |   

     
         

  (9-c) 

Hard and soft thresholding are two specific non-

linear diagonal estimators, but one can optimize the 

non-linearity to capture the distribution of wavelet 

coefficient of a class of images. Semi-soft thresholding 

is a familly of non-linearities that interpolates between 

soft and hard thresholding. It uses both a main threshold 

   and a secondary threshold       . When    , 

the semi-soft thresholding performs a hard thresholding, 

whereas when    , it performs a soft thresholding.  

‘Block’ thresholding is another method, which 

applies the thresholding rule on a group of coefficients 

instead of a single coefficient. Each band is divided to 
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disjoint blocks and all coefficients within a block, are 

attenuated with a same factor [20]. 

 

2. 4. Fusion Stage         Image fusion is the process of 

combining relevant information from two or more 

images into a single image [21]. The resulting image 

will be more informative than any of the input images 

[22]. Image fusion methods can be broadly classified in 

two groups, spatial domain fusion and transform domain 

fusion. 

In this paper, a wavelet-based transform fusion is 

used. Image fusion by wavelet transform is a common 

way to combine two images [23]. Figure 3 indicates the 

procedure. By applying wavelet transform, two images 

are decomposed to approximation and detail 

coefficients. The fusion rule is as follows: an average of 

approximation coefficients is taken, and the minimum 

of detail coefficient belongs to each band is selected to 

form a new decomposition. Finally, with applying 

inverse wavelet transform, the denoised image is 

achieved. In the next section, we will discuss the reason 

to use this structure. 

 

 

3. RESULTS AND DISCUSSIONS 
 

In this section, we present results in various noise 

conditions to evaluate the efficiency of the proposed 

scheme. First, we review important image denoising 

criteria.Three quality criteria are considered in this 

paper. Peak Signal to Noise Ratio (PSNR) as a well-

known survey is used to calculate errors between 

original and restored images. The second one is 

Structural Similarity or SSIM. 

 

 

 
Figure 3.Wavelet-based fusion structure 

The Structural Similarity (SSIM) Index quality 

assessment index is based on the computation of three 

terms, namely the luminance term, the contrast term and 

the structural term. The overall index is a multiplicative 

combination of the three terms [24]: 

    (   )    (   )     (   )    (   )    (10) 

where: 

 (   )  
        

  
    

    
  (11-a) 

 (   )  
        

  
    

    
  (11-b) 

 (   )  
      

       
  (11-c) 

where   ,   ,   ,  , and     are the local means, 

standard deviations, and cross-covariance for images  , 

  and   ,  ,   are constant parameters. In order to 

simplify SSIM expression,        and    
  

 
 

are assumed like ref [24]. 

Third criterion is Universal Index [25]. Universal 

Index is designed by modeling any image distortion as a 

combination of three factors: loss of correlation, 

luminance distortion, and contrast distortion. 

The proposed method is compared to state-of-the-art 

methods to assess the denoising effectiveness. Namely, 

SURELET [26], Bivariate [27], Bayes [28], LLSURE 

[29], guided image filter (GIF) [30], fast bilateral filter 

(FBF) [31] and total variation (TV) [32]. Images are 

corrupted by Additive White Gaussian Noise (AWGN) 

with different noise levels from 10 to 35. PSNR (in dB), 

SSIM and FOM [33] values of the denoised images 

relative to their original images using such methods are 

reported in Tables 1, 2 and 3, respectively. In a general 

overview, our scheme has better results compared to 

state-of-art methods. 

In Figure 4, Wiener denoising, curvelet denoising and 

proposed method are compared by Universal Index for 

‘man’ image. 

The obtained results confirm that the proposed 

algorithm gives highest Universal Index compared to 

other methods.  

Figure 5 shows comparative results for denoising image 

‘Man’ in the visual mode. If we focus on details, we 

will find out the wiener filter makes images blurred, and 

the result seems artificial. 

In turn, curvelet transform does not blur images. 

However, it adds some line-shape artifacts to the 

denoised image. Our framework has a better act in 

denoising. Because, the results are not so blurred and 

line-shape artifacts are suppressed efficiently.  

The proposed approach can reduce the blurriness 

imposed by the Wiener filter. A blur metric which has 

been introduced in [34], is used to evaluate the blur 

introduced by a restoration processing. Results are 

shown in Table 4. 



E. Ehsaeyan / IJE TRANSACTIONS B: Applications  Vol. 29, No. 8, (August 2016)   1094-1102                          1098 
 

  
TABLE 1. PSNRs (in dB) of restored imagesofwell-known methods 

image sigma 
Wiener 

filter 

LLSURE 

method 

GIF 

method 

FBF 

method 

TV 

method 

SURELET 

method 

Bivariate 

method 

Bayes 

method 

Proposed 

method 

Lena 

10 30.46 31.33 30.56 30.53 30.47 30.94 30.02 29.97 34.11 

15 29.52 29.09 28.23 28.21 28.40 28.50 27.12 27.30 32.62 

20 28.63 27.76 26.56 26.12 26.92 26.99 25.14 25.96 31.21 

25 27.84 26.38 25.52 24.14 25.84 26.07 23.84 23.75 30.29 

30 27.14 25.37 24.35 23.12 24.94 25.04 23.10 23.09 29.44 

35 26.52 24.45 23.89 22.78 24.34 24.42 22.20 22.51 28.48 

Barbara 

10 27.49 30.57 30.03 29.81 29.89 30.30 29.24 29.56 32.08 

15 26.79 28.20 27.32 27.10 27.68 26.84 26.43 27.12 31.26 

20 26.09 26.65 25.78 25.86 26.26 26.19 24.40 24.93 30.08 

25 25.45 25.64 24.13 24.88 25.25 25.25 23.26 23.96 29.55 

30 24.89 24.83 23.09 23.98 24.36 24.24 22.02 22.52 28.82 

35 24.39 23.39 22.36 23.14 23.58 23.58 21.42 22.14 26.17 

Boat 

10 28.50 30.88 30.03 29.95 29.64 30.68 29.96 29.76 30.85 

15 27.78 28.60 27.62 27.69 27.43 28.07 27.12 27.16 29.79 

20 27.06 26.87 25.42 25.48 26.02 26.51 25.00 24.99 28.85 

25 26.40 25.76 24.32 24.49 24.97 25.34 23.90 24.07 28.03 

30 25.80 24.48 23.29 23.51 24.19 24.61 22.53 23.07 27.31 

35 25.27 23.81 22.59 22.87 23.55 23.95 21.85 21.95 26.65 

Peppers 

10 28.73 30.91 30.36 30.37 29.94 30.53 29.62 29.58 33.43 

15 27.95 28.60 27.71 27.72 27.61 28.01 26.63 27.04 32.17 

20 27.14 27.35 26.07 26.15 26.08 26.58 24.70 24.96 31.07 

25 26.37 25.86 24.48 24.73 24.87 25.24 23.27 23.99 30.08 

30 25.67 24.74 23.65 23.86 23.86 24.50 22.41 22.57 29.36 

35 25.05 23.97 22.76 22.89 23.07 23.86 21.13 21.59 28.39 

 

 

TABLE 2. SSIM values for standard images with different noise power 

image sigma 
Wiener 

filter 

LLSURE 

method 

GIF 

method 

FBF 

method 

TV 

method 

SURELET 

method 

Bivariate 

method 

Bayes 

method 

Proposed 

method 

Lena 

10 0.77 0.92 0.91 0.91 0.91 0.90 0.85 0.88 0.90 

15 0.74 0.89 0.89 0.87 0.87 0.85 0.76 0.82 0.87 

20 0.72 0.85 0.83 0.84 0.83 0.80 0.67 0.77 0.85 

25 0.70 0.81 0.80 0.79 0.80 0.76 0.60 0.65 0.82 

30 0.68 0.78 0.76 0.74 0.77 0.72 0.54 0.62 0.78 

35 0.66 0.75 0.74 0.71 0.74 0.68 0.48 0.56 0.75 

Barbara 

10 0.76 0.92 0.90 0.91 0.91 0.91 0.87 0.89 0.90 

15 0.74 0.88 0.87 0.89 0.86 0.85 0.77 0.83 0.86 

20 0.71 0.83 0.81 0.81 0.82 0.80 0.69 0.75 0.80 

25 0.68 0.80 0.80 0.79 0.78 0.76 0.62 0.71 0.76 

30 0.66 0.77 0.78 0.77 0.74 0.73 0.55 0.62 0.74 

35 0.63 0.74 0.71 0.72 0.71 0.69 0.49 0.60 0.70 

Boat 

10 0.70 0.92 0.91 0.92 0.90 0.90 0.85 0.87 0.80 

15 0.67 0.87 0.88 0.89 0.85 0.85 0.75 0.80 0.77 

20 0.65 0.83 0.82 0.81 0.81 0.79 0.66 0.68 0.74 

25 0.63 0.79 0.81 0.79 0.77 0.74 0.58 0.66 0.71 

30 0.61 0.74 0.72 0.70 0.73 0.70 0.52 0.62 0.68 

35 0.59 0.71 0.69 0.69 0.70 0.66 0.47 0.52 0.66 

Peppers 

10 0.81 0.93 0.91 0.90 0.93 0.91 0.86 0.88 0.85 

15 0.79 0.90 0.88 0.89 0.89 0.86 0.77 0.82 0.82 

20 0.76 0.87 0.86 0.83 0.86 0.82 0.68 0.75 0.79 

25 0.73 0.84 0.82 0.81 0.83 0.78 0.62 0.72 0.77 

30 0.71 0.81 0.79 0.78 0.80 0.74 0.56 0.63 0.74 

35 0.69 0.79 0.76 0.74 0.77 0.71 0.51 0.58 0.72 
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TABLE 3. FOM values for standard images with different noise power 

image sigma 
Wiener 

filter 

LLSURE 

method 

GIF 

method 

FBF 

method 

TV 

method 

SURELET 

method 

Bivariate 

method 

Bayes 

method 

Proposed 

method 

Lena 

10 0.86 0.92 0.92 0.91 0.90 0.94 0.96 0.94 0.97 
15 0.84 0.90 0.90 0.89 0.88 0.92 0.95 0.93 0.95 

20 0.79 0.86 0.85 0.86 0.83 0.91 0.93 0.93 0.9 

25 0.77 0.84 0.84 0.83 0.81 0.89 0.90 0.90 0.88 
30 0.76 0.84 0.82 0.83 0.80 0.88 0.88 0.88 0.87 

35 0.72 0.82 0.82 0.81 0.76 0.88 0.83 0.88 0.83 

Barbara 

10 0.85 0.92 0.93 0.92 0.89 0.93 0.96 0.95 0.96 
15 0.80 0.89 0.90 0.90 0.84 0.92 0.94 0.94 0.91 

20 0.77 0.82 0.86 0.85 0.81 0.90 0.92 0.92 0.88 

25 0.74 0.82 0.85 0.83 0.78 0.89 0.90 0.90 0.85 
30 0.71 0.80 0.81 0.81 0.75 0.87 0.88 0.88 0.82 

35 0.68 0.76 0.77 0.80 0.72 0.86 0.86 0.87 0.79 

Boat 

10 0.88 0.95 0.93 0.92 0.92 0.95 0.94 0.96 0.97 
15 0.86 0.92 0.91 0.91 0.90 0.94 0.92 0.93 0.95 

20 0.80 0.90 0.90 0.91 0.84 0.92 0.88 0.90 0.91 

25 0.79 0.85 0.86 0.87 0.83 0.87 0.85 0.85 0.9 
30 0.71 0.83 0.84 0.82 0.75 0.85 0.81 0.82 0.82 

35 0.71 0.80 0.79 0.80 0.75 0.82 0.75 0.79 0.82 

Peppers 

10 0.89 0.94 0.94 0.92 0.93 0.96 0.96 0.96 0.97 
15 0.84 0.90 0.89 0.89 0.88 0.93 0.95 0.94 0.95 

20 0.80 0.85 0.84 0.86 0.84 0.92 0.92 0.93 0.91 

25 0.77 0.84 0.83 0.84 0.81 0.89 0.91 0.91 0.88 
30 0.74 0.81 0.80 0.80 0.78 0.87 0.89 0.90 0.85 

35 0.72 0.80 0.78 0.79 0.76 0.89 0.87 0.88 0.83 

 

 

 
Figure 4. Universal Index results of three denoising methods: 

Wiener filter, curvelet transform and ours. The results have 

been calculated for ‘man’ image. 
 

Noisy image 

(    ) 

  

Wiener filter 

denoising 

  

Curvelet 

transformdenoising 

  

Proposed method 

  
Figure 5. Visual comparative denoising results for images 

‘Lena’ and ‘Man’ 

TABLE 4. Perceptual blur metric of different images in noise 

level 20 (the output is in [0,1]; 0 means sharp, 1 means blur) 

image 
Original 

image 

Recovered by 

Wiener filter 

Recovered by 

proposed method 

Lena 0.3666 0.4618 0.4363 

Barbara 0.2367 0.3902 0.3763 

Boat 0.2949 0.424 0.4108 

Peppers 0.3609 0.5136 0.4582 

 

 

It is clear that our method preserves details better 

than the Wiener filter. Furthermore, our method has 

been implemented with Discrete Wavelet Transform 

(DWT) and Double Density Wavelet Transform 

(DDWT) instead of curvelet transform.  

The double-density DWT is an improvement upon 

the critically sampled DWT with important additional 

following properties: (1) It employs one scaling 

function and two distinct wavelets, which are designed 

to be offset from one another by one half, (2) The 

double-density DWT is overcomplete by a factor of 

two, and (3) It is nearly shift-invariant. Figure 6 shows 

PSNR for ‘Goldhill’ image with applying the ‘block’ 

thresholding method. From given curves, it is obvious 

that curvelet transform has higher PSNR between all. 

As was mentioned in Section 2, two groups of fusion 

are used in the introduced scheme: spatial and transform 

fusion. A wavelet based structure as shown in Figure 3, 

has been selected in this paper. Three fusion methods 

have been implemented and examined in our 

framework: average, wavelet and Pulse Coupled Neural 



E. Ehsaeyan / IJE TRANSACTIONS B: Applications  Vol. 29, No. 8, (August 2016)   1094-1102                          1100 
 

Networks (PCNN) [35]. Results have been shown in 

Figure 7 for ‘barbara’ image with the ‘blocking’ 

threshold method. Average is the simplest way to fuse 

two images, which has low computational cost. The 

output is moderate in every noise condition. PCNN 

method acts according to focus objects. However, it is a 

high computational and noise sensitive method. Wavelet 

method has a better performance in the high noise 

polluted case with lower execution time compared to 

PCNN method. 

Among wavelet fusion methods, mean-min (average 

coefficients in lowpass band – minimum coefficients in 

highpass bands) has been selected due to better 

performance. Figure 8 shows the effects of different 

rules on PSNR of fusion ‘Barbara’ image versus noise 

levels. 

Figure 9 shows four original and corresponding 

noisy images as well as denoised images obtained 

through the application of other denoising methods 

being compared. Bayes wavelet-based methods tend to 

produce smoothed results in homogeneous regions. 

Nevertheless, certain features such as edges are 

affected. 

Table 5 compares proposed framework with other 

recent reported works. The highest PSNR is bolded in 

the specified noise level. From given data, it is clear that 

our method has a better performance to stop noise in 

most cases. 

 

 

 
Figure 6. Implementing proposed framework with wavelet, 

double density wavelet and curvelet transform  
 

 

 
Figure 7. PSNR results of three fusion methods: average, 

discrete wavelet transform (DWT) and Pulse Coupled Neural 

Networks (PCNN). The results have been calculated for image 

‘Barbara’ with ‘block’ thresholding rule. 

 
Figure 8. PSNR results of three wavelet fusion methods: 

average, minimum and maximum. The results have been 

calculated for image ‘Barbara’ with ‘block’ thresholding rule. 

 

 
Figure 9. Comparative performance of Table 1 methods on 

standard images with noise level 30 

pcs
Rectangle
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TABLE 5. Comparative PSNR results of proposed method 

and recent denoising works 

 Lena Barbara peppers 

 20 30 20 30 20 30 

[36] 30.77 29.04 28.55 27.38 30.57 28.83 

[37] 30.92 29.13 28.48 26.27 30.57 28.83 

[38] 28.25 25.7 26.81 24.49 26.96 25.03 

[39] 31.16 29.25 28.71 26.59 30.81 28.92 

our work 31.21 29.44 30.08 28.82 31.07 29.36 

 

 

The SURELET method produces a similar result on 

edges. However, as can be perceived through Figure 9, 

The proposed method outperforms SURELET in 

homogeneous regions, producing smoother results. That 

can be clearly observed in the various homogeneous 

regions in the images. The GIF, FBF, Bivariate and 

Bayes methods fail to smooth images when noise 

increases to higher levels. These produce good results at 

lower σ values but give poor denoised images at higher 

noise levels. The TV method tends to oversmooth the 

image. Due to this reason some fine structures of the 

original image are not being preserved in the filtered 

output image. 

 

 

5. CONCLUSION 
 
In this paper, an efficient noise removal framework 

based on curvelet transform and Wiener filter was 

presented. With utilizing wavelet fusion, the denoised 

image had few line artifacts (disadvantage of curvelet 

denoising) and was less blurred (disadvantage of wiener 

filter). Two criteria, PSNR and SSIM were selected to 

evaluate the performance of proposed method. The 

obtained results indicated that our method could remove 

the noise better than the curvelet transform and wiener 

filter alone. It was shown that Denoising by curvelet 

transform improved %6.3 in terms of PSNR and %5.9 

in terms of SSIM for ‘Lena’ image. Furthermore, the 

proposed framework was compared with recent reported 

method and it indicated superiority of the introduced 

framework. 
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 هچكيد
 

 
تًاوذ وًیض تصايیش سا بصًست مًثشی حزف ومایذ. اما استفادٌ اص فیلتش يیىش باعث تاس ضذن تصًیش خشيجی فیلتش يیىش می 

تبذیل کشيلت قابلیت حفع لبٍ َا سا دس تصايیش طبیعی داسد. يلی بٍ تصًیش خشيجی، اثشات مصىًعی ي لبٍ َای  می ضًد.

قالٍ، یک طشحًاسٌ حزف وًیض تصايیش بشپایٍ تبذیل مجاصی اضافٍ می کىذ. بخصًظ دس مىاطق َمگه تصًیش. دس ایه م

کشيلت ي فیلتش يیىش پیطىُاد ضذٌ است کٍ قابلیت بُتشی بشای کم کشدن اثش وًیض دس خشيجی، دس مقایسٍ با سيش َای رکش 

ضذٌ داسد. کاسایی سيش پیطىُادی تًسط دي معیاس مُم سفع وًیض، یعىی وسبت سیگىال بٍ وًیض ي ضشیب تطابٍ، بشای 

ویمٍ ‘،  ’ملایم‘تصايیش ومًوٍ دس سطًح مختلف وًیضی، مًسد اسصیابی قشاس گشفتٍ است. سٍ آستاوٍ گیشی معشيف یعىی 

اختاس س .بش تصايیش وًیض داس اعمال می ضًد ي وتایج تًسط تبذیل يیًلت، بٍ َم پیًوذ می خًسوذ’ سخت‘ي  ’ملایم

 Lenaبشای تصًیش  SSIM% اص لحاظ 9.5ي  PSNR% اص لحاظ 3.6پیطىُادی، سفع وًیض بًسیلٍ تبذیل کشيلت سا بٍ اوذاصٌ 

ايیش خشيجی، بطًس قابل تص گی، بُبًد می بخطذ. تصايیش خشيجی حاکی اص آن است کٍ اثشات پاساصیتی ي دسجٍ تاسضذ

اص سيش َای گضاسش ضذٌ  ن می دَذ کٍ عملکشد طشحًاسٌ پیطىُادی،تایج بذست آمذٌ وطاو ملاحظٍ ای کاَص می یابذ.

 اخیش، بالاتش می باضذ.
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