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In this paper, the dynamic response of a micro-beam immersed in a fluid with regard to the free
boundary of the operating fluid is investigated. In the other words, in addition to the kinematic
compatibility on the boundary between micro-beam and its surrounding fluid, equations of the
potential functions are modeled considering the free boundaries. It is also assumed that the micro-beam
is a movable electrode, and the electrostatic force is used for the actuation of the system. Galerkin’s
method is utilized to solve the governing equations of the fluid-structure system. By imposing a fixed
voltage to the system, in addition to investigating the geometrical effects, fluid type and the dimensions
of the cavity, the effect of the free boundaries on the transient response of the system is studied. It is
shown that the coefficient of relative permittivity of operating fluid, the length of the micro-beam, and
the relative position of it to the lower side of the cavity have significant impact on the instability of
system voltage. It is further shown that assuming the free boundaries in the modeling of the system,

which is closer to the physical reality of the issue, increases the pull-in voltage.

doi: 10.5829/idosi.ije.2016.29.07a.16

1. INTRODUCTION

Micro-electro-mechanical systems (MEMS) have
extensive applications in verity of devices such as
micro-sensors, micro-mirrors, micro-switches, micro-
pumps, microscopy and so fourth [1]. Nakhaei et al. [2]
proposed a simple method for transverse vibrations of a
cracked Euler-Bernoulli beam based on modeling crack
as a stepped change in cross section of the beam. They
showed that it is not necessary to model the crack as
lumped flexibility model in order to fracture mechanics.
Tadi et al. [3] derived the transverse vibration equation
of cracked nano-beam based on modified couple stress
theory. They calculated frequency parameters for
different crack positions, different lengths of the beam,
different crack properties, and some typical boundary
conditions. Maroofi et al. [4] investigated thermoelastic
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damping (TED) of the longitudinal vibration of a
homogeneous micro beam with both ends clamped. A
Galerkin method has been used to analyze TED for the
first mode of vibration of the micro beam.

In the design of the MEMS, the behavior of
electrostatically actuated beams is affected by the beam
deflections and the electric force. Therefore, these
systems have an increasing interest over the past
decades. One of the most important phenomena in
MEMS is pull-in instability which happens when the
actuated voltage exceeds the critical voltage. Abdalla et
al. [5] presented a way to increase the pull-in voltage for
an electrostatically actuated micro-beam by changing
the micro-beam shape. They obtained optimal thickness
and width designs for the micro-beam that maximize the
pull-in voltage.

Lenci and Rega [6] studied a nonlinear electrically
actuated micro-beam and its dynamic pull-in. They
showed that how appropriate controlling
superharmonics added to a reference harmonic
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excitation succeed in shifting it towards higher
excitation amplitudes. Hasanyan et al. [7] showed that
the pull-in voltage can be regulated by varying volume
fractions through the thickness of a functionally graded
plate. Moghimi and Ahmadian [8] analyzed influences
of intermolecular forces on the dynamic pull-in
instability of electrostatically actuated beams. They
developed a finite element model to discretize the
governing equations using Newmark method. They
showed that the attractive Casimir and van der Waals
forces decrease the static pull-in deflection and pull-in
voltage of micro-beam. Rezazadeh et al. [9] investigated
the forced response of an electrostatically actuated
micro-beam in an incompressible inviscid stationary
fluid. Their results showed that increasing the fluid
density and the aspect ratio of the beam increases the
added mass and decreases the natural frequencies of the
oscillating beam. Shabani et al. [10] presented the free
vibrations of a cantilever micro-beam submerged in a
bounded  incompressible  fluid  domain.  They
investigated the effect of the fluid density and
geometrical configuration on the natural frequencies of
the coupled system using Galerkin’s method. Askari and
Tahani [11] studied the size-dependent dynamic pull-in
of clamped-clamped micro-beams under mechanical
shock. They derived the non-linear governing equation
of motion utilizing Hamilton’s principle. Golzar et al.
[12] investigated the dynamic responses and pull-in
instability of the electrostatically actuated micro-beam
submerged in an incompressible viscous fluid cavity
using equivalent squeeze film damping. They assumed
all the boundaries were fixed in their model, but the
beam-fluid interface was not fixed height throughout the
length of the micro-beam along the x coordinate while
vibrating (see [13] for more details). This fact could
affect the domains of the potential functions in the
mathematical model of the system.

In this study, we are interested in sketching an
improved model based on the free boundary approach
for the same system. In Section 2, we present the model
of the system with free boundary approach. Section 3
verifies the method for various aspect and thickness
ratios. In Section 4, the electrostatical instability of the
system is analyzed with the proposed model to compare
the obtained results with the pertinent work [12].
Finally, Section 5 completes this article with a brief
conclusion.

2. MATHEMATICAL MODEL

Figure 1 illustrates a cantilever micro-beam of the
length |, the thickness h and the width b in a cavity with
the width a longer than | making it possible for two
fluid domains to interact. It is assumed that the fluid is
incompressible and inviscide. Therefore, the fluid
movement induced by vibration of micro-cantilever

could be described using velocity potential function in
each fluid domain. However, oscillation of the micro-
beam inside the chamber is subjected to a fluidic
resistance which is caused by the fluid viscosity (w). If

the micro-beam length is much greater than its width,
initial gap (go) is uniform and the vibration amplitude is
much smaller than the initial gap. Consequently, an
equivalent squeeze film damping is used in this paper
[12, 16]. Taking into account the hydrodynamic
pressures due to fluid oscillation in the lower and upper
regions which are specified by P, and P, , the governing

equation of the motion for the actuated micro-beam by
an electrostatic load of voltage V is written as [12]:

E|ﬂ ub® i+i _6““A+p hba_:‘“
-4 3" 3 B 2
ox 9° g7 ) ot
@

2
:b(Pz—P1)+—kgOb Ve
2 \g-w(x,t)

where El is the bending stiffness of the micro-beam , rg

is the mass per unit length and w(x,t) describes the
deflection at point x along the length of the micro-beam.
The second term on the right side of Equation (1)
denotes the electrostatic loading in the system.
Parameters V,. , k andg, =8.85e —12F /mare the

applied voltage, the dielectric coefficient of the gap
medium and absolute dielectric constant of vacuum,
respectively.

By the use of the following dimensionless variables:

X t
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Equation (1) is simplified as:
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Figure 1. Electrostatically actuated micro-beam submerged in
a fully contained cavity
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Bernolli’s equation and potential theory are employed to
obtain the fluid pressures P, and P, as follow:

dpn(x,y1.t
-2 ¢>1(xaty1 ) @)
t yy =1 (X t) )
Opy (X, Yot
PZ:fPf_*Oﬁl’Z(atyz ) )
t Y= (x )

where ¢ and ¢, are the velocity potential functions of

the fluids in the lower and upper regions of the micro-
beam with the density p; . These functions should be

satisfied in the following Laplace equations with free
boundary domains:

0<x <|—, O<yq<l+w
a
Via(x,y11)=0, 1 (6)
—<x<l, O0<yp<1l
a

0<X <|—, w<y,<1
a
V2pp(x,y2.) =0, ©)
—<x<l, 0O<yy<1
a

in which the boundary conditions of ¢, in the fluid
domain 1 reads as follows:

on =0, 0<y1<l, (a)

X =01
ol 0<x <1 (b)

Y1 y;=0
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In a similar way, ¢, satisfies in the fluid domain 2
such as:

opp
=0, 0<yyr<l (a
ox x=0,1
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in which :n—¢ is the directional derivative of ¢ in the
Q

direction of the unit vector n, . Conditions (8c, 9c) state

that the part of fluid immediately in contact with the
lower and upper surfaces of the micro-beam has an
equal velocity to the lateral velocity of the vibrating
micro-beam. The method of separation of variables is
applied to solve Equations (6) and (7) by imposing the
impermeability conditions (8a, 8b) and (9a, 9b).
Therefore, the following relations are obtained for the
velocity potential functions ¢, and ¢, such as:

oLX,ypt) = ZAi (t)cos(4 x)cosh(s; i),

i=1

P2(x.y2.t)= Y Ei ©)cos(4 X) (10)
i=1
x[cosh(7i y2) - tanh(s; )sinh(z; y2) ]

where the eigenvalues 4, & and p; are equal to

i i
in,ﬂTgl andﬁng, respectively. It should be noted

that Ai(t) and Ei(t) are unknown modal amplitudes of

fluid oscillation in Equation (10). The lateral motion of
the micro-beam, w(x,t) is formulated as a linear
superposition of the free vibration modes in air as
follows:

woGH =D Owi ), (11)

i=1

in which ; (x)is the natural mode shapes of the

micro-beam in air and the unknown generalized
coordinates qi(t) should be estimated. The mode shapes
are written as [14]:

wi =(sin(4 1) +sinh(51))(sin(5; X)—sinh(5 x)) 12
—(cos(5 1) +cosh(41))(cos(; X) —cosh(; X))

where values of g1 must satisfy the transcendental
equation:

cosh(1) cos(B1)=-1. (13)

The values g1 and the natural frequencies of the
dry beam (@ ) are satisfied in [13]:

o =(ﬂi')z,¢p34- (14)
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Inserting Equation (10) into the kinematic beam-
fluid conditions (8c, 8d) and (9c, 9d) by using the
orthogonality of cos(4;x) over 0<x <1 yields the

following relations:
1 o0 - - 7_% o0 ) )
E;A' 5 [MO 120, =~ leq O)aj

_égEi(t)}’i/lji tan (7 ), @)

" " (15)
1 v _ 9% . -
QE‘E' O [450)+ A0 =~ Z‘q O

+gi1iz_;Ai )8 25 sinh (5, ), ©)

where coefficients x;; , aj; and A;(t) (1<i<4) are
defined as:
r
aji :_[ & cos(4j X) i (x)dx,
0
1
Hiji :J- 2 cos(4 X)cos(4j x)dx ,
0

cos(4; X)

«/hwf

1
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1
Aq(t) :-[O cos(4 X)sinh[ & (1+w) | dx,

x M cos(4j x)dx,

1+w)%(x,t) (16)

1
As(t) = J.o cos(4 x)[sinh(yiw (x,t)) —tanh(y; )

x cosh(y;w (x ,t))]de,

~f1+wf(x 1)
1
Ag(t) = J.Osin(li x)[cosh(yiw (x,t))—tanh(y; )

Wy (X,t)

xsinh(yw (x,1)) | cos(4j x)dx,

1+w 5 (X,t)

Substituting Equation (10) into Equation (5) and
inserting the outcome into Equation (3) by using
Equation (11) gives equation of the motion for the
micro-beam as follows:

o0 3 o0
Da (t)wi(“)(x>+zl[1+g—g]2qi O ()
2/i=1

i-1 9
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2
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Making use of the orthogonality of the beam mode
shapes in Equation (17), the following equation is
derived:

[ I
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S !
- Z E; (t)J. A cos(4x)| cosh[ 7w (x,t)]
i=1 0

~tanh(z; )sinh [ 7w (x.t) ) (x )dx]

I 2
a Vdc .
+23IO {1—w (x ,t)] Vi (x)dx.

Now, the micro-beam and fluid vibration modes are
truncated to n and m modes, respectively. Therefore, the
finite set of matrix equations is derived by rewriting
Equation s (15) and (18) as follows:

[L]{A} = [D]{d} - [G]{E}. (19)
-[RI{E} = [D]{d} + [N ]{A}. (20)
[<Ja} +[sJid}+[m Jd}= [CT{A} - [DI{E}+F. (21

where the elements of the coefficient matrices are
calculated by the following relations:
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Figure 2. Dimensionless time history for the micro-beam in
CCl4
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By substituting the generalized fluid coordinates A
and E from Equations (19) and (20) into Equation (21),
the following system of n unknowns and equations is
obtained for the generalized coordinates of the micro-
beam :

([MJ+[M1]+[M2] ) (G} +[s ] {d}[K J{a} =F- @3)

where M, and M,are the added mass of the fluid
domains 1 and 2, respectively. These two-part added
mass are the result of the presence of the fluid around
the micro-beam that are defined as follows:

Mlz[CL_lD]-{CL_]G}
x([R:|+[NL’JG})71([DJ+[NL71D}), (24)
My =-[3 ][[R]+[NL’]G })71([D]+[NL’1DD.

The solution would be estimated using Newmark
method for different step DC voltages.

3. VERIFICATION OF THE METHOD

In order to validate the proposed method, Table 1 shows
the comparison of fundamental frequencies in water

B 3 . .
(s =1000kg / m?3) for various aspect ratios (%) and

thickness ratios (%) with previous studies.

This is done by omitting the nonlinear forcing term
and fluid damping. The obtained results are in
agreement with the experimental results of Lindholm et
al. [15], the analytical results of Liang et al. [16], Golzar
et al. [12] and our recent work [13]. Furthermore,
percentage of the errors between the results obtained by
the free boundary method and experimental results are
included in Table 1.

4. NUMERICAL RESULTS

The natural frequencies and mode shapes of the micro-
beam submerged in water are compared with both fixed
and free boundary approaches. The physical properties
and the values of the used parameters are listed in Table
2 and 3.

It should be mentioned that the width of the micro-
beam meets b >5h. Consequently, the micro-beam
strain conditions should be taken into considration.
Therefore, E is replaced by E/@-v?), wherevis
Poisson’s ratio. Figure 2 shows that the response of the
micro-beam varies for different input voltages incci, .

TABLE 1. Comparison of fundamental frequencies in water

Aspect ratio, I/b 5 3 2 1
Thickness ratio, h/b 0.125 0.061 0.061 0.024

wy (Hz) 15.63 18.30 42.30 51.93

Analytical
(Liang et al. [16])

14.60 17.80 40.30 51.40

Experimental

15.62 18.82
(Lindholm et al. [15])

46.80 57.90

Fixed boundary
(Golzar et al. [12])

15.62 18.82 46.80 57.90

Analytical
(Abdollahi et al. [13])

13.09 17.89 40.24 59.33

Proposed method 15.16 18.27 45.32 54.38
(Error percentage) (3%) (3%) (3.25%) (6.47%)
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TABLE 2. The data used in the calculations

Parameter Value
Micro-beam width, b 25 um
Micro-beam length, | 250 um
Micro-beam thickness, h 3.um
Container length, a 350 xm
Liquid depth of domain 1, g, 4 um
Liquid depth of domain 2, g, 10 um
Young's modulus, E 169Gpa
Micro-beam mass, pg 2330 k%s
Poisson's ratio, v 0.06
Number of fluid oscillation modes, m 5
Number of beam vibration modes, n 3

TABLE 3. The data of the fluid used in the calculations

- kg Dielectric L
Fluid / . Viscosity, Pas
m3 1 coefficient, K v H (Pas)
Acetone 785 20.70 3.08e-4
Carbon
tetrachloride 1590 2.20 8.79%-4
Water 997 80 8.59%-4
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Figure 3. Effect of density on the dynamic response of micro-
beam (x=500e —6Pas,V =20v, k =20)
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Figure 4. Effect of density on the pull-in voltage
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Figure 5. Effect of viscosity on the pull-in voltage
(V =20v, k =20, p=900e —6Pas)
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2 3 4 5
Viscosity(Kg/m.s) «10°

Figure 6. Effect of viscosity on the dynamic response of
micro-beam (o =900e —6Pas, k =20)

It is seen that as input voltage increases the
amplitude of response increases with both fixed and free
boundary states. But, the growth of the amplitude of
response obtained with the proposed approach is slower
than what presented with fixed boundary state by Golzar
et al. [12]. Figure 3 presents that for higher fluid
densities the response frequency decreases and the
micro-beam is less resilient against the input voltage. In
addition, the dynamic pull-in instability is varied
from o, —=1000 to p, =2500 Wwith the proposed
method.

Figure 4 illustrates the decrease of the values of the
pull-in voltage for higher fluid densities with both
approaches. Nevertheless, the pull-in voltage increases
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about 2% in comparision with the fixed boundary
method [12]. Figure 5 shows the effect of viscosity in
the pull-in voltages. It is demonstrated that higher input
voltages are required to cause pull-in phenomenon in
the system. But, Figure 6 reveals that the area of pull-in
voltage is more than what has been obtained with fixed
boundary approach. It means that the system becomes
more stable by free boundary approach.

Figure 7 proves that the electrostatic instability
happens at great values of the dielectric constant. It is
interesting that the system is stable for k = 21 with free
boundary approach. Figure 8 studies the effect of gap
height on the dynamic response of the micro-beam by
altering the vertical position of it (g, + g, =14.m).

It shows that pull-in voltage decreases in the lower
position of the micro-beam. Figure 9 presents that
increasing the length of the micro-beam decreases the
pull-in voltage of the system with both approaches.

Figure 10 depicts the response of the micro-beam
submerged in water, acetone and carbon tetrachloride
with fixed and free boundary states. It is clear that the
amplitude of response is lower than what obtained by
Golzar et al. [12] for three types of liquids.The effect of
fluid oscillation modes on the pull-in voltage is shown
in Figure 11. It is seen that as the number of fluid modes
increases, the rate of convergence grows as well.

1 T
[
0ol [ K= 7 - Fixed boundary | |
i K=21 - Fixed boundary
08k ! K=23 - Fixed boundary | |
i / - = 7 - Free boundary
0.7 Iy K=21 - Free boundary | |
z 2 E =23 -
2 ook / // K=23 - Free boundary
£ i/
8 o5k ;) 1
3 {
3 /
o 0.4 ‘.' /) ]
= o)
o3 4/ j
0.2f 1

15 20 25 30
Dimensionless time

@)
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60 —=—Free boundary | |

sof-|

Pull-in voltage (V)

0 : : : : :
0 10 20 30 40 50 60 70 80 90

Dielectric constant, K

(b)
Figure 7. Effect of dielectric constant on the dynamic
response of micro-beam (p=900e —6Pas, k =20,
1 =500e —6Pas)
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Figure 10. Dynamic response of the micro-beam for three
working fluids
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Figure 11. Convergency of the method (o =900e —6Pas,
4=500e —6Pas, k =20)

5. CONCLUDING REMARKS

The dynamic response of an electrostatically actuated
micro-beam submerged in an incompressible viscous
fluid cavity was analyzed. Significant transformations
occurred at the conditions of instability of micro-beams,
and as a consequence, the boundaries of the fluid
surrounding the micro-beam underwent large variations.
In this study, in addition to the conditions of kinematic
compatibility of the fluid-structure, the equations
governing the fluid have been modeled by assuming
free boundary approach and Galerkin’s semi-analytical
method was utilized to solve the coupled equations. It
was shown that assuming the free boundaries of the
fluid, which is also closer to the physical reality,
increases the stability of the system.

It was further shown that the coefficient of the fluid
permittivity and the relative position of the micro-beam
to the fixed electrode would change the amplitude of the
pull-in voltage. The effects of the density and viscosity
of the fluid and the length of the micro-beam on the
dynamic response of the system were analyzed. Finally,
it was concluded that assumption of the free boundaries
for the fluid (in the equations of the potential functions)
can be wused for improving the manufacturing
technology and design.
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