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A B S T R A C T  
 

 

Size-dependent vibrational and instability behavior of fluid-conveying magneto-electro-elastic (MEE) 
tubular nano-beam subjected to magneto-electric potential and thermal field has been analyzed in this 

study. Considering the fluid-conveying nanotube as an Euler-Bernoulli beam, fluid-structure 

interaction (FSI) equations are derived by using non-classical constitutive relations for MEE materials, 
Maxwell’s equation, and Hamilton’s principle. Thereafter, taking the non-uniformity of the flow 

velocity profile and slip boundary conditions into consideration, modified FSI equation is obtained. By 

utilizing Galerkin weighted-residual solution method, the obtained FSI equation is approximately 
solved to investigate eigen-frequencies and consequently instability (critical fluid velocity) of the 

system. In numerical results, a detailed investigation is conducted to elucidate the influences of nano-

flow and nano-structure small scale effect, non-uniformity, temperature change, and external magneto-
electric potential on the vibrational characteristics and stability of the system. This work and the 

obtained results may be useful to smart control of nano structures and improve their efficiency.   
doi: 10.5829/idosi.ije.2016.29.07a.15 

 

 

 

NOMENCLATURE 

c  Elastic constant (Gpa) 0e a  Nonlocal parameter 

p  Pyro-electric constant w
 

Transverse displacement 

e  Piezoelectric constant (C/m2) Greek Symbols  

f  Piezomagnetic constant (N/Am)   Normal strain component 

d  Dielectric constant (C/Vm)   Pyro-magnetic constant 

g  Magneto electric constant (Ns/VC)   Normal stress component 

D  Electric displacement   Magnetic permeability (Ns2/C2) 

E  Electric field   Electric potential 

B  Magnetic induction   Magnetic potential 

H  Magnetic field   Mass density (Kg/m3) 

h  Nanotube thickness 2  Laplacian operator 

R  Nanotube mean radius   Thermal moduli (N/km2) 

L  Nanotube length T  Temperature change 

A  Cross-sectional area   

cru  Critical flow velocity   
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1. INTRODUCTION 
 

Discovering carbon nanotubes in 1991 [1], draws 

attention of many scientists to their applications. Due to 

significant and noteworthy electrical, mechanical, 

physical, optical, and thermal properties [2-4], 

nanotubes have potential applications in 

nanomechanical and nanobiomedical fields like micro 

and nano electeromechanical systems (MEMS, NEMS), 

nano sensors and nano actuators, nano fluidic devices 

and systems, nano pipets, artificial muscles, scanning 

molecule microscopy and etc. [5, 6]. Their impeccable 

hollow cylindrical geometry along with high mechanical 

strength, stiffness, and elasticity make them appropriate 

for gas storage devices and conveying fluid systems 

such as nano vessels and nano channels for drug 

delivery system [6-12]. To this end, nanotubes 

conveying fluid have great significance among 

researchers. Furthermore, because of their high 

sensitivity to vibrational behavior [3], having a deep and 

profound understanding of dynamic behavior of 

nanotubes seems vital and essential, in order to prevent 

flow induced vibration and instabilities [13]. So, this 

will lead to improvement in the performance of 

nanotubes conveying fluid systems in nanomechanical 

and nanobiomedical applications. 

Advances in material science, using smart materials 

in mechanical structures in recent years as well as 

miniaturizing smart structure devices and emerging 

micro/nano electeromechanical system (MEMS, 

NEMS) devices have directed attention of many 

researchers towards mechanical problems associated 

with smart materials. Smart materials have many 

applications due to their outstanding characteristics like 

sensors and actuators and microwave devices. MEE 

composite materials are one of the newfangled smart 

materials, which are combination of piezoelectric and 

piezomagnetic phase and have capability of coupling 

among electric, magnetic and mechanical fields. Indeed 

they have piezoelectric, piezomagnetic, and 

magnetoelectric properties simultaneously [14-16]. So, 

their mechanical characteristics and consequently 

vibrational characteristics of the coupled system can be 

influenced by the applied magnetics and electric 

potentials. The three-phase nature of MEE materials 

makes it easier to control the system dynamics [17]. As 

reported by Chang [16], these composites have the new 

property of magneto-electricity with the secondary 

effect of pyro-electric, which is not found in single 

phase materials like piezoelectric and piezomagnetic. 

Also, obtained magneto-electric effects of MEE 

composite materials will be hundred times larger than 

that of a single phase piezoelectric or piezomagnetic 

material. These properties allow them to be more 

sensitive and adaptive. These new properties can be 

useful to design more efficient sensors and actuators 

used in the smart structures [18]. 

In recent years, many investigations have been 

carried out to study the vibration and instability of fluid-

conveying nano-scale pipes or tubes. Wang [19] studied 

the vibration and instability of tubular micro- and nano-

beams conveying fluid based on the nonlocal Euler-

Bernoulli beam (EBB) model. Considering single-

walled carbon nanotube as Timoshenko beam, Yang et 

al. [20] studied its nonlinear free vibration using von 

Karman and nonlocal elasticity theory. Wang [13] 

analyzed the vibration and stability of fluid-conveying 

nanotubes utilizing the modified nonlocal beam model. 

Considering Knudsen-dependent flow velocity, 

Mirramezani and Mirdamadi [6] modified FSI 

governing equation of nano-pipes conveying fluid to 

investigate the effects of nano-flow on their vibration. 

Chang [2] studied the thermo-mechanical vibration and 

instability of SWCNTs conveying fluid embedded on an 

elastic medium. They used EBB model with 

consideration of thermal elasticity and nonlocal 

elasticity. Rashidi et al. [21] proposed an innovative 

model for nanotubes conveying fluid in order to 

investigate size effects of nano-flow and fluid viscosity 

on divergence instability. They concluded that nano-

flow viscosity has no effects on vibration and instability 

of nanotubes. According to the nonlocal piezoelectricity 

theory and EBB model, Khodami Maraghi et al. [22] 

studied the vibration and instability of double-walled 

Boron Nitride nanotubes (DWBNNTs) conveying 

viscose fluid based on von Karman nonlinearity theory. 

Nonlinear vibration and instability of fluid-conveying 

DWBNNTS embedded in viscoelastic medium was 

investigated by Arani et al. [23]. Atabakhshian et al. 

[24] analyzed nonlinear vibration and instability of 

coupled nano-beam with an internal fluid flow, utilizing 

the EBB model and nonlocal elasticity. Finally, Ansari 

et al. [3] investigated vibration and instability of fluid-

conveyed single-walled Boron Nitride nanotubes 

(SWBNNTs) subjected to thermal field.  

However, to the best of the authors’ knowledge, 

there is no literature addressing the size-dependent 

vibration and instability of fluid-conveying MEE-based 

smart tubular nano-beams. Therefore, this paper is 

devoted to study the above mentioned problem. To this 

end, an Euler-Bernoulli fluid-conveying MEE nanotube 

subjected to magneto-electric potential and uniform 

temperature change is considered. Thereafter, nonlocal 

constitutive relations of MEE materials, Maxwell’s 

equation and Hamilton’s principle are employed to 

obtain the governing equation. In order to modify the 

obtained FSI equation, non-uniformity and slip 

boundary condition are applied. Solving the governing 

FSI equation analytically, numerical results are 

presented to investigate the effects of nano-flow and  
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nano-structure small scale effect, non-uniformity, 

temperature change and external magneto-electric 

potential on vibration and instability of the system. 

 

 

2. ANALYTICAL MODEL AND FORMULATION 
 
In this section, we develop a model for vibration of 

MEE tubular nano-beam containing an internal flow, 

considering the size effects of nano-flow and nano-

structure. For this aim, MEE cylindrical nano-beam 

shown in Figure 1 is considered. The mentioned nano-

beam is subjected to external magneto-electric potential 

and uniform temperature change. It is worth mentioning 

that in following mathematical modeling, size effect of 

nano-structure, non-uniformity of flow velocity profile 

and slip boundary condition have been taken into 

account. 

 

2. 1. Nonlocal Fluid-structure Interaction (FSI) 
Governing Equations For homogeneous MEE solids, 

the basic constitutive relations can be expressed as [25]: 

,ij ijkl kl mij m nij n ijc e E f H T        (1) 

,i ikl kl im m in n iD e d E g H p T    
 (2) 

.i ikl kl im m in n iB f g E H T      
 (3) 

For MEE beam structure, the nonlocal constitutive 

relations may be written as [25]: 
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where the reduced constants of the MEE nano-beam are 

given as [25]: 
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Figure 1.Schematic of fluid-conveying MEE nano-pipe under 

magneto-electric potential and uniform temperature change.  

According to the Euler-Bernoulli hypothesis the axial 

strain is written as: 

2

2xx

w
z

x



 


 (8) 

Based on Maxwell’s hypothesis, electric and magnetic 

field vectors ( E , H ) can be written respectively in 

terms of electric and magnetic potentials (   ,  )[25]: 

, ,,i i i iE H     (9) 

Ignoring in-plane magnetic and electric fields, total 

strain energy for the MEE nano-beam is derived from 

Equation (10): 

0

1
( )

2

l

b xx xx z z z z

A

U D E B H dAdx      (10) 

in which:  

dA Rdzd  (11) 

Eventually, Equation (10) can be rewritten in the 

following form: 
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where, 
xxM  is defined as: 

o

i

r

xx xx

r

M zdz   (13) 

The external forces work related to the external 

magnetic and electric potentials (
0  ,

0V  ) and uniform 

temperature change can be expressed as follows: 

2

0

1
( )( )

2

L

F t e m

w
N N N dx

x


   

  (14) 

where     ,e mN N  and 
tN  are respectively electric, 

magnetic and thermal forces in z-direction: 

31 0 31 0 12 Re ,        2 ,   2 .e m TN V N Rf N R h T           (15) 

Kinetic energy of Euler-Bernoulli beam can be written 

as: 

2

0

1
( )

2

L

b

w
T A dx

t






 (16) 

Since the operating fluid is assumed to be 

incompressible in this study, potential energy of the 

fluid is ignored, i.e., 0fU   . 

Introducing U  and fm  as average velocity and mass 

per unit length of the operating fluid, kinetic energy of 

the fluid domain can be derived from Equation (17): 
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2 2

0

1
( ( ) )

2

L

f f

w w
T m U U dx

t x

 
  

   (17) 

According to Hamilton’s Principle, we have: 

0

( ) 0

t

b f F b fT T U U dt       (18) 

Now, substituting Equations (12), (14), (16) and (17) 

into Equation (18), then integrating by parts, and 

collecting the coefficients of ,w  and  , the 

following equations can be obtained: 
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As it is seen, fluid-dynamic force appears in three terms, 

which are related to translational acceleration 
2

2

w

t




 , the 

centrifugal acceleration 
2w

U
x t



 
 and the coriolis 

acceleration 
2

2
w

U
x t



 
 of the fluid [26]. 

When Equations (20) and (21) are satisfied, the 

following matrix equation can be extracted: 

2
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Adopting Crammer’s rule yields as: 
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in which, M1 and M2 are defined as: 
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Boundary conditions of the applied magneto-electric 

potentials are prescribed as follows: 

0 0( ) , ( ) .o oz r V z r       (25) 

( ) 0, ( ) 0.i iz r z r     

 
(26) 

Eventually, according to the mentioned boundary 

conditions and Equation (23), following results are 

easily derived: 
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Considering Equation (4) and by utilizing Equation(13), 

one can obtain the following result: 

2 2
2 2
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w
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    (29) 

where 

11 11 31 1 31 2c c e M f M    (30) 

The cross-section inertia moment of the nano-beam is 

defined as: 

2 .
A

z dA I  (31) 

Finally, taking Equations (29) and (31) into account, 

and according to Equation (19) the governing equation 

takes the following form:  
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To simplify the analysis, the following non-dimensional 

parameters are arisen: 
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 (33) 

Substituting non-dimensional quantities to 

Equation(32), final dimensionless form of the governing 

equation is derived as:  

4 2 2 2
2 2
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, 2
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 (34) 

 
2. 2. Effect Of Non-uniformity Of The Flow 
Velocity Profile As Wang et al. [27] discussed, the 

non-uniformity of flow velocity profile would influence 

the centrifugal force term associated with the flow 

velocity. Considering non-uniformity of flow velocity 

profile, modified equation of motion may be written as 

follows: 
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4 2 2 2
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In which,   is a coefficient related to the flow velocity 

profile. For circular cross-section, the mentioned 

coefficient is equal to 4/3 [27]. 

 

2. 3. Modeling Slip Boundary Conditions 

According to the results reported by the other 

researchers, the nano-flow viscosity has no significant 

effect on vibration characteristics of the nanotubes 

conveying fluid and therefore is negligible. Thus, the 

average velocity correction factor that contributes the 

relation between slip and no-slip fluid velocities is 

defined as follows [28]: 

,

,

2
(4( )( ) 1).

1

avg slip v

avg no slip v

u Kn
VCF

u Kn






 


 (36) 

where, 
v  is the tangential momentum accommodation 

coefficient which is considered equal to 0.7 in most 

practical studies, and Kn  is the Knudsen number. 

 
 
3. GALERKIN PROCEDURE METHOD AND 
EIGENVALUE ANALYSIS 
 
In what follows, an approximate solution technique will 

be presented to solve the governing FSI equation and 

consequently the eigen frequencies of the system will be 

investigated. 

The boundary conditions to be satisfied are as follows: 

(0, ) (1, )
 (0, ) (1, ) , 0 doubly Clamped
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2 2(0, ) (1, )
(0, ) (1, ) 0 , Pinned Pinned

   
   

 

 
   

 


 
(37-b) 

In order to solve Equation (35), Galerkin approximate 

solution method can be used. For this aim, ( , )    is 

written as: 

1

( , ) ( ) ( )
N

j j

j

q    


   (38) 

where, ( )jq   represent the unknown generalized 

coordinates of the discretized system, and ( )j   are the 

vibration mode shapes satisfying all boundary 

conditions of the considered beam. 

Substituting Equation (38) to Equation (35), 

multiplying the resultant by ( )i  , considering the 

weighted-orthogonality of mode shapes and integrating 

over the BVP domain [0, 1], lead to following system of 

differential equations: 
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in which: 
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 (40) 

In order to calculate the complex eigen frequencies and 

investigate instability of the system, Equation (39) 

should be solved as eigen value problem. For this 

purpose, solution of the mentioned equation is sought in 

the form of: 

( ) s

j jq q e    (41) 

It should be mentioned that s   is complex eigenvalue of 

the system where its imaginary part is the natural 

frequency of the system, and jq  denote constant 

amplitudes of 
thj  generalized coordinate. 

Substituting Equation (41) into Equation (39) leads 

to following generalized eigenvalue problem: 

   

2

, ,

(

) 0 .

nl nl mech MEE

MEE nl fluid fluid nl

j

s M M s C C K K

K K K q

                  

             

 (42) 

To obtain a non-trivial solution of Equation (42), the 

determinant of the coefficient matrix should be 

vanished. Therefore, solving following characteristic 

equation yields the complex eigenvalues of the system. 

2

, ,

det(

) 0.

nl nl mech

MEE MEE nl fluid fluid nl

s M M s C C K

K K K K

              

                 

 (43) 

 
 

4. RESULTS AND DISCUSSION 
 
4.1. Validation And Convergence Study First of all, 

it should be mentioned that in our simulation in order to 

investigate the critical flow velocity, diagrams of natural 

frequencies versus flow velocity are plotted by using 

MATLAB software. For this purpose, flow velocity is 

set to be increased from 0 to a final value ( 0 : :u du u ). 
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Therefore, in order to examine the accuracy of the 

proposed solution method and verify it, our numerical 

results are compared with the results reported in [28]. 

As it is seen from Figure 2, the dimensionless critical 

flow velocity of pinned-pinned nanotube is 3.142 as it is 

expected from the results of [28]. Furthermore it is seen 

that first and second dimensionless undamped 

frequencies are 9.87 and 39.49 which agree well with 

those reported in [28]. Therefore, we could find the 

degree of accuracy of our studies on which we could 

rely. In addition, the convergence of the results of our 

simulation is presented in Table 1. 
 
4.2. Numerical results Numerical analysis of the 

problem is presented in this subsection. The geometrical 

properties of the considered MEE nano-pipe are defined 

by 11.43ir nm  , 0.075h nm  and 20
o

L
r
 [3]. Density of 

fluid passing through the nano-pipe is assumed to be 

1000 kg/m
3
. Material properties of the smart composite 

material are presented in Table 2. For convenience, in 

the following simulation, no slipu   is denoted by u . 

The evolution of first two non-dimensional natural 

frequencies with dimensionless flow velocity is 

indicated in Figure 3, considering non-uniformity and 

size effect of the nano-structure. It is found that 

considering both non-uniformity and size effect 

(predicted by the nonlocal theory) leads to a decrease in 

the natural frequencies and consequently critical fluid 

velocity. It should be mentioned that the critical fluid 

velocity is a velocity at which the fundamental natural 

frequency comes to be zero and therefore divergence 

instability (buckling) takes place. 

 

 

 
Figure 2. Imaginary parts of non-dimensional eigenvalues 

versus dimensionless fluid velocity for a pinned-pinned 

CNT conveying fluid.  

 

 

TABLE 1. Convergence of numerical solution 

0.001 0.005 0.01 0.1 0.5 du 

3.142 3.145 3.15 3.2 3.5 cru  

 

TABLE 2. Material properties of BiTiO3–CoFe2O4 composite 

[25] 

Parameters Values 

Elastic (Gpa) C11=226, C13=124,C33=216 

Piezoelectric(C/m2) e31= -2.2,e33=9.3,e15=5.8 

Dielectric(10-9 C/Vm) d11=5.64,d33=6.35 

Piezo-magnetic(N/Am) 

Magneto-electric(10-12Ns/VC) 

f31=290.1, f33=349.9 

g11=5.367,g33=2737.5 

Magnetic(10-6Ns2/C2) µ11= -297,µ33=83.5 

Thermal moduli(105N/km2) β1=4.74,β3=4.53 

Pyro electric(10-6C/N) p3=25 

Pyro magnetic(10-6N/Amk) λ3=5.19 

Mass density(103 kg/m3) ρ=5.55 

 

 

Assuming nonzero value for Kn (known as Knudsen 

number), one can model the interacting fluid flow as 

slip flow. The effect of Kn on eigenvalue diagram in 

this system is shown in Figure 4, for doubly-clamped 

MEE nano-pipe conveying fluid. It is immediately seen 

that assumption of slip boundary condition, makes the 

natural frequency and critical fluid velocity decrease. 

Finally, the variation of dimensionless critical fluid 

velocity for simply supported and clamped-clamped 

MEE nano-pipe versus nonlocal parameter is presented 

in Figure 5. It can be easily concluded that the size 

effect modeled by Eringen’s nonlocal elasticity leads to 

reduction in the critical fluid velocity. 

Figures 6 and 7 show the variations of first three 

non-dimensional eigen frequencies versus 

dimensionless flow velocity with 0.001Kn  , 4 / 3  , 

0.1  , for simply-supported and doubly-clamped 

nanotubes.  

 

 

 
Figure 3. Imaginary parts of non-dimensional eigen 

frequencies of pinned-pinned MEE nanotube versus 

dimensionless fluid velocity, considering nonlocality and non-

uniformity. 
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Figure 4. Imaginary parts of firstnon-dimensional eigen 

frequencies of clamped-clamped MEE nanotube versus 

dimensionless fluid velocity, considering slip boundary 

condition and non-uniformity.  

 

 

 

Figure 5. Non-dimensional fundamental natural frequency of 

pinned-pinned nanotube versus temperature change for 

various fluid velocities, when Kn = 0.001, 4 / 3  . 

 
 

As it is indicated in Figure 6, for simply-supported 

nanotubes, when fluid velocity increases and reaches to 

2.58 the first instability (divergence) takes place. 

Second instability occurs when flow velocity becomes 

4.6 in which first and second natural frequencies 

coalesce in nonzero value of 5.669. As it is shown in 

Figure 7, for clamped-clamped nanotubes first mode 

and second mode instabilities occur at flow velocities of 

4.58 and 6.035 respectively.  

 

 

 

Figure 6. Imaginary parts of first three non-dimensional eigen 

frequencies of pinned-pinned MEE nanotube versus 

dimensionless fluid velocity, when Kn = 0.001, 4 / 3  , 

0.1  .  

 

Figure 7. Imaginary parts of first three non-dimensional eigen 

frequencies of clamped-clamped MEE nanotube versus 

dimensionless fluid velocity, when Kn = 0.001, 4 / 3   , 

0.1  . 

 
Figure 8 exhibits the influence of external electric 

potential 
0V on the non-dimensional size-dependent 

fundamental natural frequency of the nanotube, for 

various values of dimensionless fluid velocities, with 

0T   and
0 0  . As is evident, the applied electric 

potential has decreasing effect on the natural frequency 

of the system. This occurs because of the fact that axial 

compressive/tensile forces are generated by applying 

positive/negative electric potential. In other words, the 

applied potential changes the stiffness of the nanotube. 

As it is seen, for higher values of fluid velocity, the 

natural frequency is decreased, therefore for some 

values of the fluid velocity (upper than critical velocity) 

the natural frequency may be zero and consequently 

instability would occur in the system. As an important 

result it can be concluded that by applying the electric 

potential as controlling parameter the instability can be 

delayed in the system. 

It is then of interest to investigate the effect of 

external magnetic potential 
0  on the fundamental 

natural frequencies of the MEE nano-beam conveying 

fluid. This effect has been illustrated in Figure 9, 

considering various flow velocities and for pinned-

pinned and clamped-clamped nanotubes.  

 

 

 
Figure 8. Non-dimensional fundamental natural frequency of 

pinned-pinned nanotube versus external electric potential for 

various fluid velocities, when Kn = 0.001, 4 / 3   , 0.1  . 
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In contrast with the effect of electric potential, the 

external magnetic potential has increasing effect on the 

natural frequency of the system. In other words, the 

natural frequency is decreased/increased when 

negative/positive magnetic potential is applied. 

Therefore, as another controlling parameter, applying 

magnetic potential could play an important role to delay 

the instability in such MEE-based systems. Temperature 

change is the other effective parameter that has the 

ability to change the vibration characteristics of MEE-

based structures. To illustrate this phenomenon, the 

variations of non-dimensional fundamental natural 

frequency versus temperature change for various 

dimensionless fluid velocities are plotted in Figure 10. 

Although the temperature change has decreasing effect 

on natural frequency, this effect is not considerable 

compared to the effect of external magnetic and electric 

potentials. The other result which is remarkable to 

notice is that the decreasing rate of natural frequency is 

more considerable for higher velocities of fluid. 

Now, it is of interest to discuss the effects on the critical 

fluid velocity of the applied electric potential 
0V . 

 

 

 
Figure 9. Non-dimensional fundamental natural frequency of 

clamped-clamped nanotube versus external magnetic potential 

for various fluid velocities, when Kn = 0.001, 4 / 3   , 

0.1  . 

 

 

 
Figure 10. Non-dimensional fundamental natural frequency of 

pinned-pinned nanotube versus temperature change for 

various fluid velocities, when Kn = 0.001, 4 / 3   , 0.1  . 

 

For this purpose, the evolution of imaginary parts of 

first two eigenvalues with increasing dimensionless 

fluid velocity, considering 0.1   , 0.001Kn  , and 

4 / 3   is demonstrated in Figure 11. 

It can be observed from this figure that by applying 

negative/positive electric potential, the critical flow 

velocity of the system will be increased/decreased. The 

evolution of two lowest non-dimensional natural 

frequencies of doubly-clamped nanotubes for various 

values of applied magnetic potential, with increasing 

dimensionless flow velocity is plotted in Figure 12. It is 

concluded that the critical flow velocity is 

increased/decreased when positive/negative magnetic 

potential is applied to the system. By paying attention to 

these two figures, the main objective of the paper is 

revealed that in smart MEE-based nano-pipes conveying 

fluid, the instability (critical fluid velocity) can be 

controlled by applying different magnitudes of magnetic 

and electric potentials. 

 

 

 

Figure 11. Firsttwo non-dimensional eigen frequencies of 

pinned-pinned MEE nanotube versus dimensionless fluid 

velocity for various values of applied electric potential, when 

Kn = 0.001, 4 / 3   , 0.1  .  

 

 

 

Figure 12. Firsttwo non-dimensional eigen frequencies of 

clamped-clamped MEE nanotube versus dimensionless fluid 

velocity for various values of applied magnetic potential, 

when Kn = 0.001, 4 / 3   , 0.1  . 
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5. CONCLUSIONS 
 
This paper was aimed to examine the size-dependent 

vibration and instability of MEE nano-scale pipes 

conveying incompressible fluid. The Euler-Bernoulli 

beam theory in conjunction with Maxwell’s equation 

was employed for modeling the problem. By utilizing 

nonlocal constitutive relations of MEE materials and 

Hamilton’s principle, the equations of motion were 

extracted. By satisfying the obtained coupled equations, 

final FSI equation was achieved. The Governing FSI 

equation was modified incorporating non-uniformity of 

flow velocity profile and slip boundary condition. By 

solving eigenvalue problem, vibration and instability of 

the system could be studied. For this purpose, the 

governing FSI equation was solved to obtain size-

dependent natural frequencies and critical fluid velocity 

for simply supported and doubly –clamped boundary 

conditions. It was seen that considering nonlocal 

parameter, slip boundary condition and non-uniformity 

decrease critical fluid velocity. Divergence and flutter 

instability of MEE nano-pipe for first three mods were 

discussed by plotting eigenvalue diagrams where critical 

fluid velocities were calculated. Moreover, it was shown 

that applied magneto-electric potential has considerable 

effect on natural frequencies of the MEE nano-pipes 

especially for simply supported boundary conditions. 

Compared with the applied magneto-electric potential, 

temperature change had no considerable effect on 

natural frequencies. As an important result, it was found 

that the applied potentials strongly influence the 

stability of the system. Hence, the property of sensitivity 

to applied potentials can be considered in designing 

more sensitive smart nano-pipes conveying fluid.  
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 هچكيد
 

 
پتاوسیل تحت حامل سیال ي الاستیک -الکتري-مگىتًتیرَای واوً  رفتار ارتعاضی ي واپایداری يابستٍ بٍ اودازٌ ،در ایه مقالٍ

. با در وظر گرفته واوًتیًب حامل سیال بٍ مًرد بررسی قرار می گیردالکتریکی ي میدان دمایی یکىًاخت -مغىاطیسی

الاستیک، معادلٍ ماکسًل ي اصل -الکتري-بروًلی ي با استفادٌ از ريابط غیرکلاسیک بىیادی مًاد مگىتً-صًرت تیر ايیلر

َمیلتًن، معادلات بر َم کىص بیه سیال ي سازٌ بٍ دست می آید. سپس با در وظر گرفته غیر یکىًاختی پريفیل سرعت 

ست می آید. بٍ مىظًر ارزیابی مقادیر يیژٌ ي َمچىیه واپایداری جریان ي ضرط مرزی لغسضی، معادلٍ تًسعٍ یافتٍ بد

یماودٌ َای يزوی گلرکیه معادلٍ حاکم بدست آمدٌ بٍ صًرت تقریبی حل اوی سیال(، با استفادٌ از ريش باق)سرعت بحر

-ي پتاوسیل مغىاطیسیمی گردد. در قسمت وتایج عددی، اثرات اودازٌ واوً سیال ي واوً ساختار، غیر یکىًاختی، تغییرات دما 

ایه مطالعٍ ي وتایج بدست آمدٌ بررسی می گردد. الکتریکی بر خصًصیات ارتعاضی ي پایداری سیستم بٍ صًرت تفصیلی 

 بٍ مىظًر کىترل ًَضمىد واوًساختارَا ي َمچىیه بُبًد کارایی آوُا مفید خًاَد بًد.

doi: 10.5829/idosi.ije.2016.29.07a.15 

 


