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A B S T R A C T  
 

 

The alternating current electroosmotic flow of a non-Newtonian power-law fluid is studied in a circular 

microchannel. A numerical method is employed to solve the non-linear Poisson-Boltzmann and the 
momentum equations. The main parameters which affect the flow field are the flow behavior index, the 

dimensionless zeta potential and the dimensionless frequency. At very low dimensionless frequencies 

(slow oscillatory motion, small channel size, or large effective viscosity), the plug-like velocity 
profiles similar to steady-state electroosmotic flow are observed at nearly all times. At very high 

dimensionless frequencies, the flow is shown to be restricted to a thin region near the channel wall, 

while the bulk fluid remains essentially stationary. Velocity distributions of pseudoplastics and 
dilatants may be widened at low values of the dimensionless frequency depending on the 

dimensionless zeta potential; at high dimensionless frequencies, however, both fluids represent 

enhanced velocity magnitudes with the dimensionless zeta potential. In the case of high shear rate 
and/or suddenly-started flows, pseudoplastics tend to produce higher velocities than dilatants. These 

two kinds of fluids may produce same velocity profiles relying on the value of the dimensionless zeta 

potential as well as the ratio of their flow behavior indexes. 

doi: 10.5829/idosi.ije.2016.29.05b.15 
 

 

Nomenclature* 

d  auxiliary variable = /dV dR  z  axial coordinate [m] 

D  auxiliary variable = 
2 2

/d V dR  Z  dimensionless potential at the wall 

e  electron charge [C]   Valence of ionic species 

E  electrical field strength along axial direction [V/m] Greek symbols 
m

iG  auxiliary variable =  /d dV dR dR    the electro-kinetic radius 

h  numerical step for radius direction   electric permittivity of solution [F/m] 

B
k  Boltzmann constant [J/K]   Debye-Hückel parameter [m-1] 

K  flow consistency index   dimensionless time 

n
 

flow behavior index   fluid density [kg/m3] 

0
n  bulk ion concentration [m-3] 

e  net volume charge density [C m-3] 

r  radial coordinate [m]   time scale 

  radius of the micro-channel [m]   numerical step for time 

R  dimensionless radial coordinate   frequency [s-1] 

t  time [s]   dimensionless frequency 

T  absolute temperature [K]   electrical potential [V] 

u  auxiliary variable = /d dR    dimensionless electrical potential 

V  dimensionless axial velocity   zeta potential [V] 

z
V  axial velocity [m/s] index 

Hs
V

 
the Helmholtz-Smoluchowski velocity ,i m  

1*Corresponding Author’s Email: alijabari@shahroodut.ac.ir (A. Jabari Moghadam) 
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1. INTRODUCTION 
 

Microfluidics is a technological field that deals with the 

flow and handling of fluids in micro-sized systems 

influenced by external electric forces. This field is 

mainly driven by technological applications; the vision 

is to develop entire bio/chemical laboratories on the 

surface of silicon or polymer chips. Microfluidic 

devices are significantly applied in micro-electro-

mechanical systems (MEMS) and bio-sensor areas, such 

as lab-on-a-chip (LOC). Miniaturized fluidic systems 

(consisting of micro-ducts, valves, pumps and various 

other injection systems) can be utilized in medical, 

pharmaceutical and defense applications, for instance in 

drug delivery, DNA analysis and sequencing and 

biological/chemical agent detection sensors on micro-

chips. The main advantages of these emerging 

microfluidic technologies are their low-cost, light-

weight and small-size. Electroosmosis is defined as the 

motion of ionized liquid relative to the stationary 

charged surface by an applied electric field. A dilute 

solution in contact to a surface with trapped surface 

charge experiences redistribution of its ions leading to 

formation of electric double layer (EDL). The 

electroosmotic flow (EOF) is created by applying an 

effective electric field in the streamwise direction. For a 

wide class of fluids and solution, the so-called non-

Newtonian fluids, the assumption of constant viscosity 

does not apply. If a liquid, such as polymer solutions or 

blood, contains large deformable molecules or particles, 

these can be stretched out at an increased shear stress, 

which then can lead to a decrease in viscosity. In other 

fluids containing small, strongly interacting particles, 

the inter-particle interaction can impede the flow at an 

increased shear stress, which then can lead to an 

increased viscosity. These two opposite effects are 

denoted shear-thinning and shear-thickening, 

respectively; they form a central topic in the field of 

rheology [1]. 

Various studies on EOF in microchannels have been 

conducted under different geometric and physical 

conditions. Among them, Ajdari [2] reported the effect 

of inhomogeneously charged surfaces on 

electroosmosis. Bhattacharyya and Nayak [3] studied 

effects of geometric and surface potential heterogeneity 

of EOF in micro/nano channels. They observed that 

these effects lead to a formation of vortex adjacent to 

the potential patch as well as an induced pressure 

gradient. Arulanandam and Li [4] studied the liquid 

movement in a rectangular micro-channel by electro-

osmotic pumping. The electrokinetic and hydrodynamic 

transport effects under the application of combined 

pressure and DC electric fields were examined by 

Bhattacharyya and Bera [5] for different values of EDL 

thickness and channel patch potential. Kang et al. [6] 

solved the electroosmotic flow in a cylindrical channel 

for the sine waveform. Cho et al. [7] presented a 

numerical solution of time-periodic EOF in a 

microchannel with a complex-wavy surface. As an 

alternative to traditional DC electroosmosis, a series of 

novel techniques have been developed to generate bulk 

flow using AC fields. Experimental and analytical 

studies were reported on the flow induced by non-

uniform AC electric fields in electrolytes [8, 9]. Using 

similar patterns, both Brown et al. [10] and Studer et al. 

[11] presented microfluidic devices that incorporated 

arrays of non-uniformly sized embedded electrodes 

which, when subject to an AC field, can generate a bulk 

fluid motion. Alternating current EOF through 

microchannels was conducted by some other researchers 

[12, 13]; the latter presented analogies to Stokes’ second 

problem. Also, Moghadam [14-16] presented analytical 

solutions, via Green’s functions formulation, for AC 

electroosmotic flow in circular and annular 

microchannels. 

A theoretical investigation of electroosmotic 

mobility of non-Newtonian fluids was reported by Zhao 

and Yang [17]. Electroosmotic flow of power-law fluids 

in a circular microchannel was studied by Zhao and 

Yang [18], and some analytical expressions were 

obtained for special cases. Tang et al. [19] reported a 

numerical study of EOF in microchannels considering 

the non-Newtonian behavior. Mondal and De [20] 

studied mass transport together with EOF of a power-

law fluid in a porous microtube. 

The technological demands on microfluidic systems 

require a better understanding of the micro-scale fluidic 

transport phenomena. To the authors’ knowledge, time-

periodic EOF of non-Newtonian fluids in microdevices 

has not been considered in the literature. In this 

research, a numerical analysis is performed on AC 

electroosmotic flows of non-Newtonian incompressible 

fluids (based on the Ostwald-de Waele power-law 

model) in microchannels. Effects of governing 

parameters on the flow characteristics of pseudoplastics 

(shear-thinning fluids) and dilatants (shear-thickening 

fluids) are also investigated. 

 

 

2. Model Description 
 

At equilibrium, solid surfaces have a net surface charge 

density, because of ionization and adsorption processes. 

The immobile charge on the surface is balanced at 

equilibrium by a mobile diffuse volumetric charge 

density. Equivalently, ions with like charge to the wall 

(coions) are repelled from the region near the wall, 

whereas ions with opposite charge to the wall 

(counterions) are attracted to the region near the wall. In 

the current study, the fully-developed pure EOF of a 

non-Newtonian power-law fluid is considered in a 

circular microchannel. It is assumed that the fluid is 
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composed of one symmetric electrolyte, the channel 

wall is uniformly charged, and an external periodic 

electric field is applied along the microchannel. The 

electric potential distribution in the EDL region and the 

velocity distribution in the cross-sectional area of the 

microchannel are governed by the following non-linear 

Poisson-Boltzmann and modified Cauchy momentum 

equations, respectively [1, 21, 22]: 

021
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where, 
zV  is the only non-zero velocity component 

along the channel,  and   are density and viscosity of 

liquid, respectively, and    zE t E F t   is a general 

time-periodic function with a frequency 2 f   that 

describes the applied electric field strength. 
zE  is a 

constant and  F t  is the oscillatory function of unit 

magnitude. The quantities K  and n are the flow 

consistency index and the flow behavior index, 

respectively. 

The above equations are subjected to the following 

boundary conditions: 
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where,   and   are the channel radius and the wall 

zeta potential, respectively. 

Consider the following dimensionless variables: 

, ,

,
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(5) 

in which, the Helmholtz-Smoluchowski velocity HSV  

and the time scale  are given by: 
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  is the Debye-Huckel parameter defined as follows: 
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Substituting the non-dimensional variables (5) into 

Equations (1) and (2), we find: 
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(10) 

in which,     is the electrokinetic radius. The 

dimensionless boundary conditions are: 

0 : 0
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3. Solution Procedure 
 

In order to obtain the value of electrical potential 

variable   , the non-linear 2
nd

-order boundary value 

problem of Relation (9) is replaced by two 1
st
-ODEs as 

follows: 

2 sinh 0
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(13) 

By using central difference method and discretizing 

Equation (13) around space grid-point 1/ 2i  , the 

following relations are achieved: 
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(14) 

where, h R   is the step for radial direction. Finally, 

Equations (14) and (11) are solved using Newton’s 

method (i.e., 
1k k k

i i i


     and 1k k k

i i iu u u   , 

where k  is the iterative index) and a block tridiagonal 

matrix solver (such as Tomas Algorithm) [23]. After 

calculating  , Equation (10) is solved by a discretized 

version of it, using the forward difference 
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approximation in term of time and the central difference 

approach in the space direction both 1
st
-order derivative 

and 2
nd

-order derivative as follows: 
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where,     is the time-step, m  is the index for 

march of time, m m   is the spending time, 

  2

1 12m m m m

i i i iD V V V h    ,    1 1 2m m m

i i id V V h   , and 

   
1 1

1 1

n n
m m m m m

i i i i iG V V h V V h
 

     . 

 

 

4. Results and Discussion 
 

Investigations into the AC electroosmotic flow of 

power-law fluids in microchannels reveal that the 

dimensionless potential distribution is a function of the 

electrokinetic radius    and the non-dimensional wall 

potential  Z ; the dimensionless velocity profile 

depends on   and Z  as well as on the flow behavior 

index  n , the dimensionless frequency   , and time 

  . The periodic function of unit magnitude is selected 

as    sinF     . An EOF micropump with 500   

and 0.5Z   is equivalent to 7 12 10 m    in a 50 m  

channel with a uniform surface potential of  12.5mV  . 

The key governing parameter in our formulation is   

which can be interpreted as the ratio of the diffusion 

time scale, 1 n

D efft      , to the period of the 

applied electric field, 1Et  . 
eff  is defined as the 

fluid effective viscosity. 

Figure 1 shows the dimensionless potential 

distribution as a function of various   and Z . As the 

value of   is increased (by increasing the bulk ion 

concentration in the liquid), the electric double layer is 

confined to the channel wall, resulting in sharp 

variations in the electric potential. The electric potential 

at the middle of the channel is practically zero. A 

comparison of the current numerical solution to the 

exact solution [14] is represented in Figure 2 for 

different values of the governing parameters. It is 

obviously found that the results of each set are in great 

agreement.  

Figure 3 depicts the dimensionless velocity profiles 

in one period of the sinusoidal waveform for 0.5Z  , 

300  , and different values of n  and  . 

 
(a) 

 
(b) 

Figure 1. Dimensionless potential distribution for various 

values of   and (a) 0.5Z  and (b) 2Z   

 

 

As the value of   is increased, the amplitude of change 

in the middle-area velocity is decreased; for sufficiently 

high values of  , the bulk fluid is not moving, while 

the fluid within the EDL oscillates rapidly. 

The steady-state time-periodic motion of the fluid 

influenced by a very low frequency (e.g. 0.3 ) is 

illustrated in Figure 3a (and also Figure 4a), that 

demonstrates the plug-like velocity distributions at 

nearly all times. The influence of the flow behavior 

index on the flow field (for 0.5Z  ) is to broaden the 

velocity profile, especially at the near-wall regions 

where peaks are observed. A reverse behavior is shown 

for 2Z   in Figure 4. 

 

 

 
(a) 

 
(b) 

Figure 2. Steady-state time-periodic non-dimensional velocity 

distribution of Newtonian fluids for various values of , ,Z   
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 3. Steady-state time-periodic dimensionless velocity 

profiles for one period  ,2, 3 2, 2       of the 

sinusoidal waveform for 0.5Z   

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. Steady-state time-periodic dimensionless velocity 

profiles for one period  ,2, 3 2, 2       of the 

sinusoidal waveform for 2Z   

 

 

A comparison of Figures 3 and 4 (for instant, Figure 

3a and Figure 4a) reveals that higher values of the 

dimensionless zeta potential lead to enhanced velocity 

distribution for 1n  ; since in this case, effective 

viscosity decreases with increasing shear rate, and the 

flow field is enlarged. 

A comprehensive study of the effect of non-

dimensional zeta potential on the velocity profiles is 

illustrated in Figure 5. As discussed in Figures 3 and 4, 

for small values of Z  (less than one), an increase in n  

results in an increase in V  near the wall as well as a 

decrease in V  near the centerline. As the value of Z  

rises above one, the foregoing trend is reversed. In the 

case of 1Z   (Figure 5c), the maximum values of 

velocity profiles of non-Newtonian fluids  1n   

coincide roughly. In fact, there is one special Z  in 

which the velocity profiles of shear-thinning and shear-

thickening fluids coincide exactly. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. Effect of non-dimensional zeta potential on 

dimensionless velocity profiles 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. Steady-state time-periodic dimensionless velocity 

profiles for one period  ,2, 3 2, 2       of the 

sinusoidal waveform for 0.5Z   and 500   

 

 
The steady-state time-periodic non-dimensional velocity 

profiles for 0.5Z  , 500   and different values of n  

and   are shown in Figure 6. A comparison of Figures 

3a and 6a proves that the effect of   is to reduce the 

velocity for 1n  . Actually higher values of the 

electrokinetic radius correspond to smaller regions 

influenced by the electric double layer; hence, for very 

slow oscillating motion, shear-thinning fluids are not 

mainly affected by the electroviscous effects. For 

intermediate to high values of the dimensionless 

frequency, compared with Figure 3, it is clear that an 

increase in   or a decrease in the Debye length leads to 

an increase in the maximum velocity near the channel 

wall; the velocity magnitude at the centerline is 

somewhat reduced (for a fixed mass flow rate). 

Figure 7 illustrates dimensionless velocity profiles at 

the beginning of motion for the channel mid-point and 

the near-wall representative point. These two points, i.e. 

0R   and 0.99R  , can be viewed as characteristics 

of the bulk liquid motion and the EDL liquid motion, 

respectively. 

By comparison, the fluid within the EDL has almost 

instant response to the applied electric field, whereas, 

the bulk fluid does not (and lags behind the applied 

electric field by a phase shift). Additionally, the EDL 

fluid reaches its steady-state oscillatory situation almost 

immediately, while, the bulk fluid needs a finite time 

before the transient effects are dissipated. In general, the 

velocity field is proportionally scaled by  ; and when 

this quantity is increased, the phase shift for both the 

EDL and the bulk fluid velocities is increased. 
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(a) (b) 

Figure 7. Transient stage non-dimensional velocity of (a) 

the channel midpoint and (b) the EDL representative point 

 0.99R   for impulsively started flows 

 

 

When 1 , on the other hand, the bulk fluid has 

sufficient time to respond to instantaneous changes in 

the applied electric field. Where shear rate is high (in 

the EDL region and/or when 1Z  ), shear-thinning 

fluids represent higher velocities than shear-thickening 

fluids. 
 

 

5. Concluding Remarks 
 

A parametric study has been implemented for the 

electroosmotic driven microchannel flows of non-

Newtonian power-law fluids. To develop a physical 

intuition, the flow field response to excitation by the 

sinusoidal waveform has been investigated. The 

following is a summary of our conclusions: 

a. Increasing the bulk ion concentration in the liquid 

results in an increase in the electrokinetic radius or a 

decrease in the EDL thickness; correspondingly, the 

EDL potential field falls off to zero more rapidly 

with distance. 

b. The dimensionless frequency is directly proportional 

to the excitation frequency, density, and the channel 

size, and is inversely proportional to the effective 

viscosity. 

c. When momentum diffusion is faster than the 

oscillation period (very low dimensionless 

frequency), the plug-like velocity profile of steady-

state EOF is observed at all times. On the other 

hand, when the diffusion time scale is much greater 

than the oscillation period (very high dimensionless 

frequency), fluid momentum does not have 

sufficient time to diffuse far into the bulk fluid; 

consequently, the fluid within the EDL oscillates 

rapidly, while the bulk fluid is not almost moving. 

At intermediate dimensionless frequencies, there is 

more time for momentum diffusion from the electric 

double layer; however, there is a finite time lag 

between when the EDL fluid moves and the bulk 

fluid follows it. 

d. As the electrokinetic radius is increased (EDL 

becomes thinner), the electroviscous resistance 

modifies the velocity distribution; it increases the 

maximum velocity near the wall, and simultaneously 

reduces the average velocity of the bulk fluid (for a 

fixed mass flow rate). 

e. The dimensionless zeta potential, which is a measure 

of the electric energy to the thermal energy at the 

surface, serves to scale the velocity magnitude. This 

quantity particularly affects the flow structure of 

non-Newtonian fluids. 

f. For low values of the dimensionless frequency, 

increasing the dimensionless zeta potential leads to 

narrow (broaden) velocity distribution of dilatants 

(pseudoplastics). Both dilatant and pseudoplastic 

fluids, however, represent enhanced velocity 

magnitudes with the dimensionless zeta potential 

when the dimensionless frequency is high enough; in 

this case, pseudoplastics have much higher velocities 

than dilatants. 

g. There is some degree of phase shift between the 

applied electric field and the flow response in the 

channel; this phase shift is significantly different in 

the EDL region than in the bulk flow. When the 

dimensionless frequency is increased, the phase shift 

for both the EDL and the bulk fluid velocities is 

increased. 

h. Impulsively started flows from rest are shown to 

exhibit transient behavior resulting in a net positive 

flow during the initial cycles for cases of high 

dimensionless frequency. As the dimensionless 

frequency is less than one, viscous diffusion is 

sufficiently fast to allow the bulk fluid to respond to 

instantaneous changes in the applied electric field. 

i. Where high shear rates exist and/or flows start 

suddenly, shear-thinning fluids tend to produce 

higher velocities than shear-thickening fluids. 

j. Shear-thinning and shear-thickening fluids may 

produce the same velocity profiles depending on the 

dimensionless zeta potential as well as the relative 

values of their flow behavior indexes. 
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 هچكيد
 

 
جریاى الکترٍاسوَتیک هتٌاٍب سیال غیرًیَتٌی پاٍرلا در هیکرٍکاًال گرد هَرد هطالؼِ قرار گرفتِ است. برای حل 

بَلتسهي ٍ هَهٌتَم، یک رٍش ػددی بِ خدهت گرفتِ ضدُ است. پاراهترّای اصلی هَثر بر -هؼادلات غیرخطی پَاسَى

ّای بدٍى بؼد اًد از: ضاخص رفتار جریاى، پتاًسیل زتای بدٍى بؼد ٍ فرکاًس بدٍى بؼد. در فرکاًستهیداى جریاى ػبار

ّای ّا، پرٍفیلخیلی کَچک )حرکت ًَساًی کٌد، اًدازُ کاًال کَچک یا ٍیسکَزیتِ هَثر بسرگ( ٍ تقریبا در توام لحظِ

ّای بدٍى بؼد خیلی بسرگ، ضًَد. در فرکاًسّدُ هیسرػت تَپی ضکل ضبیِ بِ جریاى الکترٍاسوَتیک حالت پایدار هطا

هاًد. در کِ سیال بالک ساکي باقی هیضَد، درحالیتَاى دید کِ جریاى بِ ًاحیِ باریکی ًسدیک دیَار کاًال هحدٍد هیهی

دُ صَرت گسترهقادیر کن فرکاًس بدٍى بؼد، تَزیغ سرػت هربَط بِ سیالات ضبِ پلاستیک ٍ دیلاتاًت هوکي است بِ

ّای بدٍى بؼد زیاد، ّر دٍ ًَع ایي سیالات، هقدار سرػت باضد کِ بِ پتاًسیل زتای بدٍى بؼد بستگی دارد؛ اها در فرکاًس

دٌّد. در حالت ًرخ برش زیاد ٍ یا آغاز ًاگْاًی جریاى، ضبِ افسایطی را ًسبت بِ پتاًسیل زتای بدٍى بؼد ًوایص هی

ّای سرػت تَاًٌد پرٍفیلکٌٌد. ایي دٍ ًَع سیال هیّا تَلید هیِ دیلاتاًتّای بیطتری را ًسبت بّا سرػتپلاستیک

 یکساًی ایجاد کٌٌد کِ بِ هقدار پتاًسیل زتای بدٍى بؼد ٍ ًیس ًسبت ضاخص رفتاری آًْا ٍابستِ است.
doi: 10.5829/idosi.ije.2016.29.05b.15 

 

 

 

 

 


