
IJE TRANSACTIONS B: Applications  Vol. 29, No. 5, (May  2016)   697-705 
 

 

Please cite this article as: M. Jabbarzadeh, M. Sadeghian, Nonlinear Buckling of Circular Nano Plates on Elastic Foundation, International 
Journal of Engineering (IJE), TRANSACTIONS B: Applications  Vol. 29, No. 5, (May 2016)   697-705 

 
International Journal of Engineering 

 

J o u r n a l  H o m e p a g e :  w w w . i j e . i r  
 

 

Nonlinear Buckling of Circular Nano Plates on Elastic Foundation 

 

M. Jabbarzadeh*, M. Sadeghian 

 
Department of Mechanical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran 

 

 

P A P E R  I N F O  

 
 

Paper history: 
Received 03 July 2015 
Received in revised form 24 February 2016 
Accepted 04 March 2016 

 
 

Keywords: 
Nonlinear Buckling 
Circular 
Orthotropic 
Nonlocal Elasticity 
Differential Quadrature Method 

 
 
 
 
 
 
 

 

A B S T R A C T  
 

 

The following article investigates nonlinear symmetric buckling of moderately thick circular Nano 

plates with an orthotropic property under uniform radial compressive in-plane mechanical load. Taking 

into account Eringen nonlocal elasticity theory, principle of virtual work, first order shear deformation 
plate theory (FSDT) and nonlinear Von-Karman strains, the governing equations are obtained based on 

displacements. The differential quadrature method (DQM) as a numerical procedure is applied for 

solving the equations. In this analysis, for solving the stability equations, adjacent equilibrium 
methodis employed. In nonlinear buckling analyses and for obtaining the buckling load, generally the 

available nonlinear terms of the stability equation are neglected. However, in this study, for getting the 

most accurate data, nonlinear terms are considered and the non-dimensional buckling load is compared 
with the condition of considering or neglecting that of terms and the effect of that of terms are also 

studied. The accuracy of the present results is validated by comparing the solutions with available 

studies. The effects of nonlocal parameter, thickness, radiusand elastic foundation are investigated on 
non-dimensional buckling loads. The results of analyses based on local and non-local theories are 

compared. From the results, it can be seen that the effect of nonlocal parameter on simply support 

condition is less than clamped condition. It can be observed that with increasing the radius of the plate, 
the difference between local and non-local analyses,increases. 

doi: 10.5829/idosi.ije.2016.29.05b.14 

 

 
1. INTRODUCTION1 

 

Iijima played a significant role in materials science by 

introducing carbon nanotube [1] which was a starting 

point in the improvement of Nano science. Carbon 

nanostructured materials include graphene sheets and 

carbon nanotubes contain superior mechanical, 

electrical and chemical properties which make them 

uniquely practical in industrial and academic purposes 

such as battery manufacturing [2], chemical and 

biological sensors [3], solar cells [4] and etc. Except 

experimental methods, theoretical models such as 

atomistic methods are used for identifying the behavior 

and properties of Nano structures [5, 6].  

The classical continuum mechanics models are scale 

free so their application becomes controversial in some 

papers. Thus, the traditional continuum mechanics 

                                                           

1*Corresponding Author Email: jabbarzadeh@mshdiau.ac.ir (M. 

Jabbarzadeh) 

needs to be improved so that it could be utilized for 

investigating small scale structures [7]. Eringen 

proposed the nonlocal continuum elasticity taking into 

account the size effects and then accommodating the 

size-dependent phenomena [8]. In this theory, the stress 

at an arbitrary point is assumed to be function of the 

strain field at every point in the body. Meanwhile, the 

governing relations of Eringen nonlocal elasticity are 

relatively simple and small-scale effects in micro and 

nano-scale structures are considered. In this reason 

Continuum mechanics approaches are used for 

modeling structures [9, 10]. 

Numerous researches in the field of nano plates 

based on Eringen nonlocal theory have been done. 

Pradhan et al. [11], studied the buckling of rectangular 

single-layer graphene sheets with usingnonlocal 

continuum mechanics and differential quadrature 

method (DQM). They showed that the rate of non-local 

parameter has significant impact on graphene sheets and 

reduces the buckling load. Samei et al. [12] presented 
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the buckling response under load uniform isotropic 

rectangular graphene sheets with linear strains, 

analytically. Farajpour et al. [13] investigated the 

buckling of graphene plates with variable thickness and 

showed that the buckling behavior of monolayer 

graphene sheet strongly relys on the rate of nonlocal 

parameter. Farajpour and colleagues [14], investigated 

the buckling of rectangular orthotropic plates using 

DQM. Emam [15] presented a model for buckling and 

post-buckling nano beam theories such as first-order 

and higher-order and classic theory. Mohammadi et al. 

[16] investigated the buckling behavior of orthotropic 

rectangular single-layer nano plates on elastic 

foundation in thermal environment using DQM. Sarami 

and Azhari [17] analyzed the vibration and buckling of 

rectangular isotropic graphene plates using finite strips 

for various boundary conditions. From the research of 

Ravari and Shahidi [18], it can be seen that classical 

theory is used and the finite difference method for 

buckling of circular/annular nano plates is utilized. 

Bedroud et al. [19] studied symmetric and asymmetric 

buckling of thin isotropic nano-sheets, based on 

nonlocal elasticity and first order shear deformation 

theory with linear strainsusing exact closed-form 

solutions. Golmakani and Rezatalab [20] examined the 

nonlinear buckling of rectangular plates under non-

uniform loads by using the first-order shear deformation 

theory, nonlinear strains and using DQM. Dastjerdi and 

Jabbarzadeh [21] tried to obtain an approximate single 

layer equivalent for multi-layer graphene sheets based 

on third order non-local elasticity theory. In their paper, 

results were obtained applying DQM, and then a new 

semi-analytical polynomial method (SAPM) was 

presented. Dastjerdi and Jabbarzadeh [22] investigated 

the nonlinear bending behavior of bilayer orthotropic 

rectangular graphene plate embedded in an elastic 

matrix with two parameters Winkler and Pasternak, 

based on the Eringen nonlocal elasticity theory using 

DQM. Dastjerdi et al. [23] studied the nonlinear 

bending analysis of annular/circular graphene sheet 

embedded in two parameter Winkler–Pasternak matrix 

applying the non-local elasticity theory. Farajpour et al. 

[24] studied axisymmetric buckling of the circular 

graphene sheets, using classical theory. They concluded 

that the nonlocal parameter has a significant role in the 

buckling of circular nano plate. 

In this study, the buckling analysis of moderately 

thick circular orthotropic graphene sheets with non-

linear strain under uniform radial load is analyzed. The 

effects of small scale are considered using non-local 

elasticity theory. The equilibrium equations are derived 

from the energy method and they were solved based on 

the adjacent equilibrium method. Also, differential 

quadrature is used as a numerical method. In nonlinear 

buckling analysis and for simplicity, after employing 

nonlinear strains to the buckling equation, for getting  

 

nonlinear buckling load, generally the nonlinear 

termsare neglected [20]. However, in this study for 

obtaining the most accurate nonlinear buckling load, the 

nonlinear terms of buckling equation are not omitted. 

 

 

2. THE GOVERNING EQUATION 
 

Figure 1 shows the circular graphene. Based on the 

first-order shear deformation theory, the displacement 

field is defined as Equation (1) [25]: 

(1) 
0

0

( , , ) ( ) ; ( , , ) 0

( , , ) ( )

   ; ru r z u r z v r z

w r z w r

  



  


 

where, u , v  and w , are displacement components of 

each point at a distance z  from the median plane in the 

directions of r ,   and z , respectively. Displacement 

components at the median plane, are 0u and 0w ,which 

are the functions of variable r . Also, r is the rotation 

about  . 

Nonlinear strain-displacement relations are obtained 

based on von Karman's assumptionsas [25]: 

(2) 
21

( )
2

1
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2
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du d dw
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In local continuum mechanics theory, stress at a point 

relys on strain at the same point, but Eringen revealed 

that in nonlocal continuum mechanics, stress is 

dependent on strain in the entire continuum 

environment. The governing equation of nonlocal 

continuum mechanics theory is presented by Eringen as 

follow [8]: 

(3) 2NL NL L      

  is nonlocal coefficient. Then, nonlocal stresses using 

the Equation (3) can be definedin polar coordinates 

system in general form as follows [26]: 

(4)  2
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Figure 1. Circular graphen plate under loading 
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In Equations (4-8), 2 is the Laplacian operator in polar 

coordinates system. NL is nonlocal stress tensor and L  

is the local stress tensor which is described as Equation 

(9): 

(9) :L C  

In this study, graphene sheet is considered as 

orthotropic and C is stiffness matrix and is determined 

as Equation (10): 

(10) 

1 21 2

12 21 12 21
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1E  and 2E  are elasticity modulus in directions 1 and 2,

12v  and 21v are Poisson's ratio in pre-mentioned 

directions and 12G the shear modulus. The stress 

resultants can be defined as follows [8]: 

(11) 
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h is the thickness of graphene. To determine the 

equilibrium equations, the principle of minimum 

potential energy is used: 

(13) U  

where,   is the total potential energy of the system,  

U is strain energy and   is potential energy of the 

system of external loads. According to this principle, 

when the system is in equilibrium, variations in 

potential energy of the system is zero: 

(14) 0U      

The strain energy variations of the system and the 

potential energy of external loads [19] are determined as 

Equations (15) and (16): 
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where, N is radial in-plane load. The potential energy of 

elastic foundation is as the form of Equation (17) [27]: 

(17) 
21

2
w

A

V kw dA 
 

where, k is the coefficient of elastic foundation. Using 

the above equation, the equilibrium equations in terms 

of the nonlocal stress resultant are obtained as 

Equations (18-20): 

(18) : 0
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r

dN
u N r N N

dr
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(20) : ( ) 0
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Using Equation (3), the equilibrium equations in terms 

of local stress resultants are obtained from Equations 

(21-23): 

(21) 0
L
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r
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(23) 
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r r
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Q r rN kw

dr dr dr
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Relationships with local stress resultant in terms of 

displacement are: 
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 (24) 
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The coefficients of these equations are: 
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Using Equations (24) and (25), the equilibrium 

Equations (21-23) based on the displacement are 

obtained as the Equations (26-28): 
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Here, for buckling analysis, adjacent equilibrium 

method is used. The equilibrium equation can be 

obtained from the very small variations near equilibrium 

state. Therefore, the displacements are considered as 

follows: 

(29) 0 1 0 1 0 1; ;    u u u w w w         

where, in above relations the superscript   is for the pre-

buckling state and superscript 1 induced very small 

changes in steady state. By solving pre-buckling 

equations, it can be concluded: 

(30) 0 0
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Furthermore, stability equations are obtained as 

Equations (31-33): 
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In order to obtain non-dimensional stability equation, 

non-dimensional expressions are defined as: 

(34) 
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Non-dimensional stability equations in terms of 

displacement are obtained as Equations (35-37): 
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3. DIFERENTIAL QUADRATURE METHOD 
 

In the differential quadrature method, a partial 

derivative of a functioncan be written as the linear sum 

of the functional values at all grid points in the whole 

zone and can be expressed as the Equation (38) [21, 28]: 

(38)  ( )

1

n N
n

ij jn
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d F
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So that ( )n
ijC , is the weight coefficient and the first order 

derivative is obtained as follows: 
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For instance, the discretize form of Equation (35) is as 

follows: 
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4. NUMERICAL RESULTS  

 

To determine the numerical results, an orthotropic 

circular single layer with radius 5r nm , thickness

0.34h nm , elasticity modulus 1 1765 /E GPa nm ,

2 1588 /E GPa nm  and Poisson coefficient 12 0.3v   is 

considered [20]. 

Because the result of numerical differential quadrature 

method is dependent on the number of nodes, the 

convergence results of the present study is illustrated in 

Figure 2. As can be seen, the desired convergence is 

achieved after 9 nodes. 

First to check the accuracy of the results and 

compare with other references and because there is not 

any other published paper for the nonlinear symmetric 

orthotropic buckling of circular nanoplates using the 

nonlocal elasticity theory so far, the problem is solved 

for isotropic state with linear strains. In order to 

validate, buckling strain(     ) is defined as follow 

[24]: 

(42) 
2

2 212(1 )
b

N Nh

Eh r



 

 

So, the comparison of present study with reference[24] 

in clamped condition, is examined in Table 1.As can be 

seen, Table1 illustrates good harmony. 

For comparison in the case of non-linear and linear non-

dimensional buckling loads, the variable   is defined as 

follow: 

   
                                        

                                    
 

Figure 3 shows the changes of non-dimensional 

buckling loads in non-linear and linear state to nonlocal 

parameters without elastic foundation for clamped and 

simply support conditions. The idea of obtaining 

nonlinear results, is similar to the approach in [29].It 

can be seen that the effect of nonlinear analysis in 

clamped condition is significantly higher and by 

increasing nonlocal parameters, the differences in 

results of these two analyses are increased. 

Figure 4 illustrates the variations of non-dimensional 

buckling loads with/without nonlinear terms in the 

stability equation and without elastic foundation in 

clamped and simply support conditions. To compare the 

non-dimensional buckling loads in the presence, with 

the absence of nonlinear terms in the buckling equation, 

the variable    is defined as follow: 

   
                                      

                                    
 

 

 

 
Figure 2. Convergence study of non-dimension buckling 

load based on the number of nodes 
 
 

TABLE 1. The comparison of buckling strain for isotropic 

circular linear isotropic nano plate with[24] 

Radius 
Buckling strain (     ) 

Nonlocal parameter  ( =μ       )  

 0 0.25 1 2.25 4 

4 0.916 0.745 0.447 0.222 0.125 

4[24] 0.943 0.767 0.491 0.307 0.202 

6 0.413 0.375 0.293 0.215 0.157 

6[24] 0.419 0.380 0.297 0.218 0.159 

8 0.234 0.221 0.190 0.154 0.122 

8[24] 0.235 0.223 0.191 0.155 0.123 

10 0.150 0.144 0.130 0.112 0.094 

10[24] 0.150 0.145 0.131 0.113 0.095 
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Figure 3. Changes of Rs for different non-local parameters in 

simply and clamped boundary conditions (k¯= 0) 

 

 

 
Figure 4.Rd for different non-local parameters in simply and 

clamped boundary conditions (k¯= 0) 

 

 

It can be noticed from Figure 4, that differences of 

calculating the nonlinear buckling load, with/without 

nonlinear terms in buckling equation are relatively 

noticeable.Moreover,in clamped condition with 

increasing nonlocal parameters, by neglecting nonlinear 

terms in stability equations, cause someerrors in the 

actual results. 

In Figure 5 the variations of the non-dimensional 

buckling loads for various nonlocal coefficients with 

different values of elastic foundations are plotted.It can 

be observed that with increasing stiffness of elastic 

foundation the non-dimensional buckling loads 

increase. In other words, the enhancement of elastic 

foundation rigidity leads to increase structural stiffness 

effects and decrease the nonlocal parameter effect on 

non-dimensional buckling loads. The impact of elastic 

foundation stiffness in clamped condition is higher than 

in simply support condition.It can be noticed that by the 

increase of nonlocal parameters, the non-dimensional 

buckling loads converge to almost a certain value. 

To compare the non-dimensional buckling loads in the 

presence with absence of elastic foundation, the variable 

   is defined as follow: 

   
                                        

                                      
 

 
Figure 5. Non-dimensional buckling loads to nonlocal 

parameters for different elastic coefficients 

 

 

 

Figure 6.Rf for different non-local parameters in simply and 

clamped boundary conditions 

 

As can be seen from Figure 6, by increasing 

nonlocal parameters, Rf reduces and its values are 

higher in simply support condition rather than clamped 

condition. Moreover, by increasing nonlocal parameter, 

the values of clamped and simply support boundary 

conditions are got near to each other. 

Figure 7 indicates the changes of non-dimensional 

buckling loads to non-dimensional radius, for different 

nonlocal parameters in clamped and simply support 

conditions.  
 

 

 
Figure 7. Non-dimensional buckling loads to radius, for 

various nonlocal coefficients in clamped and simply support 

conditions ( 1k  ) 
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Figure 8. Rm to radius in simply support condition 

 

 

 
Figure 9.Non-dimensional buckling loads to non-dimensional 

thickness, for different elastic foundation coefficients in 

clamped and simply support conditions. 

 

 

It is noticeable that by the increase of radius, the 

non-dimensional buckling loadsincrease, too. 

To examine the differences between local and nonlocal 

theory, the variable    is defined as follow: 

   
                                    

                                       
 

In Figure 8, the changes of non-dimensional 

buckling loads in the local to nonlocal state are plotted 

in
21,2nm  for different radii in simply support 

condition. It can be seen that, as radius increases, the 

difference between the theoretical buckling results of 

local and nonlocal gets further. 

The changes of the non-dimensional buckling loads 

to the non-dimensional thickness for different elastic 

foundation coefficients in clamped and simply support 

conditions are illustrated in Figure 9. According to the 

graph, as the non-dimensional thickness increases, the 

non-dimensional buckling load reduces. Also, in a 

certain non-dimensional thickness, as elastic foundation 

rigidity gets higher for the same values of elastic 

foundation, the non-dimensional buckling load 

increases. By increasing the thickness, the surface effect 

disappears. The reason for this phenomenon is that with 

increasing thickness, surface to volume ratio of the 

structure gets lower. Thus, it can neglect the energy 

level to the total amount of energy which the classic 

theory fails to predict such behavior [19]. 

 

 

5. DISCUSSION AND CONCLUSIONS 
 

In this paper, nonlinear buckling analysis of circular 

graphene plates with nonlocal elasticity theory is 

analyzed. In this study, for getting the most accurate 

data, nonlinear terms of the stability equation, are 

considered. The most important results are as follows: 

- The effect of nonlocal parameter on simply support 

condition is less than clamped condition. 

- The increase of nonlocal parameter, reduces the non-

dimensional buckling load. 

- In the case of using nonlinear terms or only linear 

terms of the stability equation, by the increase of 

nonlocal parameter, the difference in results increases. 

In other words, by the increase of nonlocal parameter, 

the importance of nonlinear terms in calculating non-

dimensional buckling load increases. 

-By increasing non-dimensional radius, the difference of 

results between local and nonlocal analyses, increase. 

- For getting the most accurate buckling load, in 

nonlinear buckling analyses, it is highly recommended 

to not omit nonlinear terms in buckling equation, 

because the results are relatively different. 
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هچكيد

 
 

متقارن صفحات وسبتا ضخیم دایريی گرافه با خًاظ ارتًتريپیک تحت بار  در ایه مقالٍ، تحلیل غیرخطی کماوص

، اصل کار مجازی، تئًری مرتبٍ ايل برضی ي لاستیسیتٍ غیرمًضؼیری اتئًگیرد. بٍ کمک مکاویکی مًرد بررسی قرار می

( DQَا بذست آمذٌ ي از ريش مربؼات دیفراوسیلی )کارمه، ريابط حاکم برحسب جابجایی-فًنَای غیرخطی کروص

حل ضذٌ است. در ایه تحلیل برای حل مؼادلات کماوص، از ضرایط تؼادل َمسایگی استفادٌ ضذٌ است. مؼمًلا، در 

جًد آمذٌ در مؼادلٍ پایذاری َای غیرخطی بٍ يَای غیرخطی کماوص، جُت بذست آيردن ویريی کماوص، از ػبارتتحلیل

بؼذ در وظر گرفتٍ ضذٌ ي بار بی َاضًد، اما در ایه مطالؼٍ برای داضته بیطتریه دقت در وتایج، ایه ػبارتوظر میصرف

َای غیرخطی بر وتایج تاثیر ػبارت َا محاسبٍ گردیذٌ يکماوص در دي حالت با دروظرگرفته یا بذين تًجٍ بٍ ایه ػبارت

دیگر مقایسٍ ضذٌ ي اثرات ضریب  است. جُت اػتبار سىجی، وتایج بذست آمذٌ با وتایج کماوص در مراجغبررسی ضذٌ 

غیرمًضؼی، ضخامت، ضؼاع ي پایٍ الاستیک، بر بارَای بی بؼذ کماوص مًرد بررسی قرار گرفتٍ است ي وتایج تحلیل بٍ 

ضًد  تاثیر ضریب غیر مًضؼی بر مطاَذٌ می ريش تئًری غیرمًضؼی ي مًضؼی با یکذیگر مقایسٍ ضذٌ است. از وتایج

با زیاد ضذن ضؼاع صفحٍ، اختلاف وتایج تحلیل  ريی ضرط مرزی مفصلی کمتر از ضرط مرزی گیردار است. َمچىیه

 یابذ.غیرمًضؼی ي مًضؼی افسایص می

doi: 10.5829/idosi.ije.2016.29.05b.14 

 

 

 


