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A B S T R A C T  
 

 

Sampling rate conversion (SRC) is one of important issues in modern sampling theory. It can be 
realized by up-sampling, filtering, and down-sampling operations, which need large complexity. 

Although some efficient algorithms have been presented to do the sampling rate conversion, they all 

need to compute the N-point original signal to obtain the up-sampling or the down-sampling signal in 
the time domain. Most of the published papers about the sampling rate conversion require the signal to 

be band limited in the Fourier transform domain, and there are few paper published related to the SRC 

in the linear canonical transform (LCT) domain. This paper investigates how to perform the SRC in the 
discrete linear canonical transform (DLCT) domain for integer and fractional rate conversion. The 

simulations are  performed to verify the correctness of the proposed results. 

doi: 10.5829/idosi.ije.2016.29.05b.04 
 

 
1. INTRODUCTION1 
 

Sampling rate conversion (SRC) is one of important 

concepts in modern signal processing community. It can 

be realized by up-sampling,filteringanddown-sampling 

operations inthetime domain [1, 2], which need large 

computational complexity. Some efficient algorithms 

have been presented to do the sampling rate conversion. 

However, they all need to do it in the time domain. To 

reduce the computational load as well as saving the 

storage space, a novel kind of SRC in the FT domain has 

been studied in in detail recently. This method converts 

a discrete sequence into another discrete sequence with 

a different sampling rate in the spectrum, which is quite 

different from the process in [1, 2]. Usually, the SRC is 

performed by manipulating the FFT of a signal. We 

only need to formulate the sampling points after up-

sampling or down-sampling, which largely reduced the 

computational costs. The method of [3] requires that the 

processed signal must be bandlimited in the FT domain. 

However, in real applications, for example in image 

zooming techniques, there are lots of signals which are 

non-bandlimited in the FT domain [3, 4], but 

bandlimited in the other transform domains. For these 

                                                           

1*Corresponding Author’s Email: zhuozhihai@bistu.edu.cn (Z. Zhuo) 

signals, the above methods cannot be used, or it may 

leads to suboptimal conclusions. Therefore, it is 

interesting in theory and worthwhile in practice to 

perform the SRC in transform domains. 

As a generalization of the classical Fourier 

transform and the fractional Fourier transform, the 

linear canonical transform is an integral transform with 

four parameters. Many transforms in signal processing 

community and applied mathematics fields, such as the 

Fourier transform, the fractional Fourier transform 

(FrFT), the Fresnel transform and scaling operations, are 

special cases of the LCT [5-8]. It has found many 

advantages and applications in radar signal processing, 

optical signal processing, image processing and many 

other areas [1-10]. Recently, the theories associated with 

sampling rate conversion in the LCT domain have also 

been presented by Zhao [11] as shown in Figure 1. 

 

 

 
Figure 1. Sampling rate conversion in LCT domain 
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The method proposed in [11] discusses the SRC 

relation in the discrete time linear canonical transform 

domain (DTLCT). Unlike the method in [11], in this 

paper, we derive a new SRC operation related to the 

discrete linear canonical transform domain (DLCT) in 

this paper. This paper is organized as follows, in Section 

2, we study the interpolation and decimation associating 

with LCT and the discrete LCT [12-15]. In Section 3, 

we propose the sampling rate conversion in the LCT 

domain. In Section 4, simulations are given to verify the 

achieved results. Finally, we make a conclusion in 

Section 5. 

 

 

2. PRELIMINARY 
 
2. 1. The Linear Canonical Transform        The LCT 

[1-7] of a signal (t)x with parameter
a b

A
c d
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defined as: 
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where, parameters , , ,a b c d are real numbers and satisfy 

the relation of 1ad bc  . In this paper, we consider the 

case of 0b  in the following sections.    

The inverse transform of the LCT is proved to be a 

LCT with parameter 1 d b
A

c a

  
  

 
. Hence, we can 

obtain the original signal  x t from  AL x u   by the 

following equation. 
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Most of the concepts and theories in the classical 

Fourier domain are generalized to the LCT domain by 

different researchers. For example, the sampling 

theories [16-23], the Wigner-Ville distribution [10, 24], 

the ambiguity function [25], the convolution and 

product theories [26, 27], and the uncertainty principle 

[28], the spectral analysis [29] are well studied in the 

LCT domain. The eigen functions, speech recovery and 

Instantaneous frequency estimation are also studied in 

the LCT domain [30-36]. 

 

2. 2. Discrete LCT      In order to investigate the SRC 

problems in the LCT domain, we need to define the 

discrete LCT (DLCT). Along with applications of the 

LCT in the signal processing community, the discrete 

LCT and its efficient algorithms are becoming hot 

research topics [12-15]. The exact relation between 

continuous and discrete LCTs is presented in [15]. We 

use the following discrete time LCT of x(n) of Equation 

(1). 
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where, ( )x n  is the sampled signal from the continuous 

signal   ( )x t with the sampling period xt . The DLCT can 

be defined as following: 
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3. MAIN REASULTS 
 

We assume that the original signal   ( )x t  is band-limited 

in the LCT domain, i.e.,
 , , ,   ( )  0a b c dX u   for     cu u , 

where / | |x ct b u  . In the following part, we will 

discuss the SRC by performing the discrete sequence in 

the LCT domain. 

 

3. 1. Integer Sampling Rate Increase         Let us define 

( )X m  to be the N point DLCT of the sequence ( )x n and 

( )Y m  to be the N1-point DLCT of the sequence ( )y n , 

where 1N IN . ( )x n  is obtained by sampling ( )x t  at 

sampling frequencies xF . 
Theorem 1. To increase the sampling rate by an 

integer factor I, it can be achieved by passing the 

original ( )x n  through an I-fold expander. The sequence 

( )y n  is: 

(n/ I),   n Ik,k Z,

(n)

0,            .

x

y

otherwise
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The sampling period of   ( )y n  is   /y xt t I   . Then, the 

DLCT of ( )y n  is: 

2
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Proof. According to Equation (4), the  DLCT   ( ) Y m of

 ( )y n is: 
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Theorem 2. Based on °(k), (k)X Y the DLCT of output 

signal can be derived as: 

°
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Proof. Let us define °( )Y k to be the 1N -pointDLCT of 

there constructed sequence (n)y% where 1 .N IN

Theorem1 shows that up-sampling creates an imaging 

effect. To remove the imaging effect, low-pass filtering 

is needed. The spectrum after filter is equal to insert

  ( )1I N  -point zero sin ( )X k .To get the same result of 

the filtering, the spectrum   ( )X k can be used to form 
°(k)Y by inserting several zeros into

°( )Y k ’s frequency 

region between / I and 2 / I  as show in Equation 

(9). Meanwhile Equation (9) is not the only method to 

form °( )Y k .We can choose other methods by inserting 

( )N1I   zeros into °  ( )Y k ’s frequency region. 

 

3. 2. Integer Sample Rate Decrease       Theorem 3. 

To reduce the sampling rate by an integer factor ,D  it 

can be achieved by passing the original signal ( )x n  

through an D  fold decimator and the sequence ( )y n is

  ( ) ( )   y n x Dn . The sampling period of y(n)is xty D t   , 

then the DLCT of ( )y n is: 
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Proof. According to Equation (4), the DLCT ( )Y m  of

( )y n  is: 
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The right side of Equation (10) can be rewritten as: 
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Theorem 4. For our SRC, °  ( )Y k ,is the N1-point DLCT 

of the reconstructed sequence (m)y% where 1 
N

N
D

 can be 

formulated by manipulating ( )X k . It can be presented as 

following. 
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Equation (13) is also not the only method to form °  ( )Y k

.We can choose other points of ( )X k to form °  ( )Y k . 

 

3. 3. Overlap Approach for Long Sequences         
The method described aboveis only suitable for short 

inputs equences due to the limitation of the maximum 

DLCT length for practical applications. For long input 

sequences, a widely used approach is to divide the long 

input sequence into many shorter segments, which are 

processed individually [3]. 
If each  x n  input time-domain segment has N 

points, the adjacent input segments are overlapped by 
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2L points, and from each segment an N-point  X k

DLCT is computed. The previously described methods 

are then used to obtain an 1N point °  ( )Y k  DLCT segment 

for each ( )X k  segment, where 1N I

N D
  . 

After performing an N1-pointinverse DLCT on each

°  ( )Y k segment, the corresponding N1-point time-domain 

segments are obtained. As shown in Figure 2, the 

cascading operation with L1-point overlapping, where

1  / /L L I D for each pair of adjacent time segments, is 

performed to recover the final ( )y n  time-domain 

sequence with the desired Fy  sampling frequency, 

where the shaded time samples are discarded. 

 

 

4. SIMULATION RESULTS 
 

A real function is used in the experiment; it can be seen 

as a bandlimited signal in the LCT domain. However, it 

is not a bandlimited signal in the FT domain. Under 

such circumstances, we can use the method proposed in 

this article to solve the problem. 

It is shown in Figures (3-4) when the sampling rate 

increased by two times. According to Equation (4), 

Figure 3 shows the computed LCT ( )X m  of ( )x n  and 

the generation of °( )Y m from ( )X m . From the inverse 

LCT of °  ( )Y m  and ( )y n  is the ideal up-sampling or 

down-sampling sequence. We can see in Figure 4 that in 

the time domain, ( )y n , has small differences from the 

desired signal   ( )y n . According to Equation (9), the 

values of   ( )X m ,where 
2 2

N N
k NI   , are ignored. 

The other values are rearranged as shown in Figure 3 to 

obtained the °( )Y k .The decreasing case is shown in 

Figures 5 and 6. 

 

 

 
Figure 2. Processing long sequences 

 

Figure 3. The spectrum 
°,( ) ( )X m Y m when D=1, I=2 and N 

=40. 

 

 
Figure 4. SRC errors: ( ), ( )and ( ) ( )y n y n y n y n% % , when D=1, 

I=2 and N=40 

 

 

 
Figure 5. The spectrum ( )X m  , °  ( )Y m  when D=2, I=1 and N 

=40. 
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Figure 6. SRC errors: ( )y n% , ( )y n  and ( ) ( )y n y n% , when D=1, 

I=2 and N=40 

 

 

5. CONCLUSIONS 
 

Unlike the traditional methods in [11] associate with the 

discrete time LCT (DTLCT) domain, this paper propose 

a new method for sampling rate conversion in the 

discrete LCT (DLCT) domain. We show that the 

proposed SRC can be realized by combining an efficient 

DLCT. The simulations are also performed to verify the 

correctness of the derived results. What’s more, with the 

overlapping technique, the long sequences can also be 

discussed. The derived results in this paper can be used 

in signal and image processing in future works [5, 33, 

34]. 
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 هچكيد
 

یکی از هسبئل هْن در تئَری ًوًَِ برداری هدرى است. ایي هسئلِ هی تَاًد تَسط ًوًَِ برداری ببلا،   (SRC)تبدیل ًرخ ًوًَِ برداری

یتن ّبی کبرآهد برای اًجبم فیلتر کردى ٍ عولیبت ًوًَِ برداری پبییي، کِ ًیبز بِ پیچیدگی بسرگ دارد، درک شَد. اگر چِ برخی از الگَر

برای بِ دست آٍردى ًوًَِ برداری ببلا ٍ یب  Nتبدیل ًرخ ًوًَِ برداری ارائِ شدُ است، ّوِ آًْب ًیبز بِ هحبسبِ سیگٌبل اصلی ًقطِ 

بِ سیگٌبل بِ ببًد سیگٌبل ًوًَِ برداری پبییي در حَزُ زهبى دارد. بسیبری از هقبلات هٌتشر شدُ در هَرد تبدیل ًرخ ًوًَِ برداری ًیبز 

ٍجَد دارد.   (LCT)در داهٌِ هتعبرف تبدیل خطی   SRCهحدٍد در داهٌِ تبدیل فَریِ دارد ٍ تعداد کوی هقبلِ هٌتشر شدُ هربَط بِ 

برای عدد صحیح ٍ تبدیل ًرخ کسری هی پردازد. ایي  (DLCT) در داهٌِ هتعبرف خطی گسستِ  SRCایي هقبلِ بِ بررسی ًحَُ اًجبم 

 .بزی ّب بِ هٌظَر بررسی صحت ًتبیج ارائِ شدُ اًجبم هی شَدشبیِ س
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