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A B S T R A C T  
 

 

Fluid-structure interaction (FSI) occurs when the dynamic water hammer forces cause vibrations in the 

pipe wall. FSI in pipe systems due to Poisson and junction coupling has been the center of attention in 

recent years. It causes fluctuations in pressure heads and vibrations in the pipe wall. The governing 
equations of this phenomenon include a system of first order hyperbolic partial differential equations 

(PDEs) in terms of hydraulic and structural quantities. In the present paper, a two-step variant of the 

Lax-Friedrichs (LxF) method, and a method based on the Nessyahu-Tadmor (NT) are used to simulate 
FSI in a reservoir-pipe-valve system. The computational results are compared with those of the Method 

of Characteristics (MOC), Godunov's scheme and also the exact solution of linear hyperbolic four-

equation system to verify the proposed numerical solution. The results reveal that the proposed LxF 
and NT schemes can predict discontinuity in fluid pressure with an acceptable order of accuracy. The 

independency of time and space steps allows for setting different spatial grid sizes with a unique time 

step, thus increasing the accuracy with respect to the conventional MOC. In these schemes, no 
Riemann problems were solved and hence field-by-field decompositions were avoided which led to 

reduced run times compared with Godunov scheme. 

doi: 10.5829/idosi.ije.2016.29.05b.01 
 

 
1. INTRODUCTION1 

 

Fluid-structure interaction (FSI) in pipe systems takes 

into account the transfer of momentum and forces 

between fluid and surrounding pipes. The interaction 

initiates by an excitation of the fluid or the structure and 

results in the propagation of pressure and stress waves 

(Figure 1). 

Liquid and pipe systems do not behave separately 

and their interaction mechanisms have to be taken into 

account. FSI along with some practical sources of 

excitation are shown schematically in Figure 2. 

The interaction between the sail of a boat or a plane 

and the surrounding aerodynamic flow, between a 

bridge and the wind (e.g. the tragic destruction of the 

Tacoma Narrows Bridge in 1940), and between vessels 

and blood flows are all actual manifestation of FSI [1] 

(for details on the mathematical model for blood flow 
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through narrow vessels, interested readers are referred 

to Ref [3]). 

 

 

Figure 1. Principle of FS [1] 

 

 

 
Figure 2. Sources of fluid transients and pipe motion [2] 
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The phenomenon has recently received increased 

attention because of safety and reliability concerns in 

power generation stations, environmental issues in 

pipeline delivery systems, and questions related to 

stringent industrial piping design performance 

guidelines [4]. For most FSI problems, analytical 

solutions to the model equations are impossible to 

obtain, whereas laboratory experiments are limited in 

scope; thus to investigate the fundamental physics 

involved in the complex interaction between fluids and 

solids, numerical simulations may be employed.  

The research on FSI in fluid-filled pipes started 

many years ago. In the numerical researches, solutions 

based on the Method of Characteristics (MOC), the 

Finite Element Method (FEM), the Finite Volume 

Method (FVM) or a combination of these, is 

predominant. Gale and Tiselj found Godunov’s method 

as a very promising numerical method for simulations 

of the FSI problems [5]. Lavooij and Tijsseling 

presented two different procedures for computing FSI 

effects: full MOC uses MOC for both hydraulic and 

structural equations and in MOC–FEM the hydraulic 

equations are solved by the MOC and the structural 

equations by the FEM [6]. Using the MOC–FEM 

approach, Ahmadi and Keramat studied various types of 

junction coupling but MOC suffers from restrictions on 

linearity of equations and space-time mesh sizing [7].  

Finite difference methods (FDMs) are independent 

of time and space steps. This feature allows for setting 

different grid sizes with a unique time step, thus 

increasing the accuracy with respect to the conventional 

MOC. Lax-Friedrichs (LxF) and Nessyahu-Tadmor 

(NT) are FDMs. Lax investigated the LxF numerical 

scheme for obtaining approximate solutions to such 

systems, in particular for the Euler equations of inviscid 

compressible fluid dynamics. This scheme was applied 

by him to actual test problems in both Eulerian and 

Lagrangian coordinates in one dimension [8]. Tang et 

al. showed the positivity analysis of the explicit and 

implicit LxF schemes for the compressible Euler 

equations and concluded that for both explicit and 

implicit 1st-order LxF schemes, from any initial 

realizable state, the density and the internal energy 

could keep non-negative values under the CFL 

condition with Courant number 1 [9]. Kao et al. 

proposed LxF numerical Hamiltonian. Extensive 2-D 

and 3-D numerical examples illustrated the efficiency 

and accuracy of the new approach [10]. Liska et al. 

developed two-dimensional LxF scheme for the 

Lagrangian form of the Euler equations on triangular 

grids [8]. The simplicity of the LxF algorithm and the 

relative ease of its extension to systems of equations and 

multidimensional problems have motivated the 

development of high-resolution central schemes by 

applying high-order reconstructions and more accurate 

time integration methods. A second-order accurate 

central scheme was developed by Nessyahu and 

Tadmor; it is widely known as the NT scheme [11]. 

Arminjon and St-Cyr [12] modified version of the NT 

1-dimensional. The modification avoids the 

intermediate predictor time step. Although this does not 

really bring about substantial accuracy or computer time 

improvements in the 1D case, in the 2- and 3-

dimensional cases, the modified scheme does lead to 

important reductions in computer times. Naidoo and 

Baboolal [13] obtained a version of the NT scheme for 

numerical integration of one-dimensional hyperbolic 

systems with source terms on non-staggered grids and 

employed it to integrate the plasma fluid equations. 

Results are of comparable accuracy to results obtained 

from previously reported schemes. It is therefore 

expected that LxF and NT schemes simulate FSI 

equations accurately. 

This paper aims at the simulation of fluid-structure 

interaction in a reservoir-pipe-valve considering the 

Poisson and junction coupling. The governing equations 

of this phenomenon include a system of first order 

hyperbolic partial differential equations (PDEs). To this 

end a code written in MATLAB based on explicit 

central finite difference methods is provided. Two 

different numerical schemes are implemented: a two-

step variant of the LxF method, and a method based on 

the NT. The computational results are compared with 

MOC, Godunov's scheme and also with the exact 

solution of linear hyperbolic four-equation system to 

verify the proposed numerical solution. 

 

 

2. MATHEMATICAL MODEL 
 

2. 1. Governing Equations      The equations for 

simulating FSI according to the four equations model 

described by Tijsseling [14] without considering friction 

are as follows:     

  

  
 

 

  
 

  

  
   

  ̇ 

  
    (1) 

  

  
  

  

  
    (2) 

in which: 

       
 

 
 

 

  
              (3) 

where V = fluid velocity, H = fluid pressure head, g = 

gravitational acceleration, Cf = pressure wave speed, υ= 

Poisson's ratio, E = Young's modulus for pipe wall 

material,  ̇ = axial pipe velocity, D = inner pipe 

diameter, k = fluid bulk modulus, ρf = fluid density and 

e = pipe wall thickness. 

The governing equation for axial motion of the pipe 

is a two-order equation. This equation can be 

transformed into two first-order equations: 
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  ̇ 

  
 

 

  

   

  
    (5) 

in which: 

  
  

 

  
  (6) 

where   = axial pipe stress, ρt = density of pipe wall 

material and Ct = axial stress wave speed. 

 

2. 2. Solution Procedures       Computational grids 

consist of individual cells with spatial grid size ∆x and 

time steps ∆t (see Figure 3). In this study multi-step 

methods are used to enhance convergence and accuracy. 

The governing equations can be written in the following 

form: 
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where: 
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  (8) 

 

2. 2. 1. LxF Method     The LxF method is the finite 

difference based numerical method appropriate for the 

solution of PDEs and prototype of most central 

schemes. The LxF method is conservative and 

monotone, therefore, this is a TVD (total variation 

diminishing) method. As for the original Godunov 

method, the LxF scheme is based on a piecewise 

constant approximation of the solution, but it does not 

require solving a Riemann problem for time advancing 

and only uses flux estimates.  

LxF method is available for all forms of PDEs. The 

stability condition is 
   

  
  , where a is the 

corresponding wave speed.  

In this scheme a half step is taken with LxF on a 

staggered mesh. If the second half step is taken with 

LxF, the solution is obtained on the original mesh. 
 

 

 
Figure 3. Stencil for two time steps method 

 

Figure 4. Stencil of conventional LxF method 

 

Equation (7) is discretized in space with conventional 

LxF method [15]: 

  
    

 

 
     

      
  

  
 

      
         

  

   
   (9) 

In Figure 4, stencil of conventional LxF is plotted. 

Considering Equation (9), we can discretize 

Equation (7) with the two-step variant of LxF method 

on the staggered grid. Accordingly, in the first step it 

arrives at: 
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Note that this step has to be applied to spatial nodes in 

time level   
 

 
. 

In the second step, the unknown in the next time step is 

reached:  
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In Figure 5, stencil of two-step LxF is plotted. 

 

 

 
Figure 5. Stencil of two-step LxF 

http://en.wikipedia.org/wiki/Finite_difference
http://en.wikipedia.org/wiki/Finite_difference
http://en.wikipedia.org/wiki/Numerical_analysis
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2. 2. 2. NT Method       Actually the prototype of NT 

method is LxF scheme. The stability condition again is 
   

  
  . It is based on a staggered grid and uses the 

reconstruction of MUSCL-type piecewise linear 

interpolants in space, oscillation-suppressing nonlinear 

limiters, and the midpoint quadrature rule for evaluating 

integrals with respect to time. So we discretized 

Equation (7) with NT method on the staggered grid: 

First step: 

 
  

 

 

  
 

  
 

 
   

      
   

 

 
             

      * (    

  
 

 )   (  

  
 

 )+  

(14) 

which       
     

  
.     
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as follows: 
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Use values        
   to approximate the partial 

derivative scaled by ∆x with: 

                         (17) 

                             (18) 

Here MM is the MinMod limiter which can be defined 

for two scalar arguments as: 
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Thus      and      are: 
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This provides a piecewise constant approximation at 

time    
 

 . The second step which is similar to the first 

step is calculated: 
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which       
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If  
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Previously function MM was defined in Equation (19). 

Thus   
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2. 3. Initial and Boundary Condition       Initial and 

boundary conditions complete the mathematical 

description of the problem. The initial conditions are 

taken according to the steady state situation of the 

system. The boundary conditions describe the situation 

at the pipe ends, where for instance a reservoir or valve 

is located [6].  

Because the mesh is staggered, we do not need to 

construct approximate solutions on the boundaries at the 

first half step. 

The system consists of a large reservoir at the 

upstream end of the pipeline and a valve at the 

downstream end discharging to the atmosphere (Figure 

6). 

Boundary conditions at the first point of the region are 

(reservoir) as follows: 

The boundary conditions that describe a constant head 

reservior with a pipe rigidly connected to it, are [6]: 

  
   = H 0 (29) 

 ̇  
      (30) 

Subscript 0 shows the value of variables in steady 

state situation of the system. Other boundary conditions 

can be obtained by discretizing Equation (2) and 

Equation (4) at the point (  
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Figure 6. Reservoir and pipe system 
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This is known as the Mur boundary condition. In 

junction coupling, Poisson ratio is zero. 

Boundary conditions at the end point of the region 

(valve) are as follows: 

Junction coupling is a result of local forces on (from) 

pipe (fluid). Local forces act at specific points of a 

system, such as elbows, tees or valves, and cause a 

structural motion that can be regarded as a pumping 

action due to generating positive or negative pressure. It 

generates pressure waves in the fluid. The instantaneous 

closure of a valve which can move in the axial direction 

is modeled by: 

  
     ̇  
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where Af = cross-sectional discharge area and At= cross-

sectional pipe wall area. Subscript M refers to the value 

of variables in valve. The boundary condition at the end 

point of the region can be derived similarly by 

discretizing Equation (1) and Equation (5) at the point 
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Poisson coupling relates the pressures in the fluid to 

the axial stresses in the pipe via the contraction or 

expansion of the pipe wall. The boundary conditions 

describing the instantaneous closure of a valve rigidly 

connected to the ground are:  
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For calculation of    
   , we can use Equation (1) and 

   
    can be derived by discretizing Equation (4) at the 

point ( 
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Boundary conditions in Poisson and junction coupling 

are the same of junction coupling but with non-zero 

Poisson ratio. 
 

 

3. VERFICATION OF NUMERICAL MODEL 
 

The numerical solution presented in section 2 was 

implemented in MATLAB. To validate the developed 

computer codes, a test problem (Delft Hydraulic 

Benchmark Problem A) is calculated and discussed. The 

test problem was an instantaneous valve closure in the 
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reservoir-pipe-valve system (shown in Figure 6) 

considering the Poisson and junction coupling 

separately and their results are compared with MOC and 

Godunov solutions. Furthermore, test problem is solved 

with considering Poisson and junction coupling and its 

result is compared with results available in the literature 

[14]. The specifications of test problem are shown in 

Table 1. 

Figure 7 displays the corresponding pressures 

considering Poisson and junction coupling at valve 

obtained with LxF and NT, respectively. In the first 

period, there is good agreement between results of LxF 

and NT with reference [14]. After the first period, 

curves of proposed methods are far from the results of 

reference [14]. It is noted that the benchmark problem is 

numerical test case only; experimental data do not exist 

[14]. 

In Figure 8, the time history of head with junction 

coupling is compared with results of MOC and 

Godunov schemes at valve. The head predictions of LxF 

and NT are in good agreement with results of MOC & 

Godunov schemes. 

Time history of head with Poisson coupling is 

plotted in Figure 9, calculated using LxF and NT 

methods. It is seen that the results of proposed methods 

are in better agreement with results of Godunov scheme 

than results of MOC. At first, the LxF and NT methods 

are in good agreement with MOC but after first period, 

curves of proposed methods are far from results of 

MOC and with time, distances of the two curves 

increases.  

Figure 10 shows comparison of relative errors of 

LxF and NT methods with MOC and Godunov schemes 

for the case of junction coupling for two different 

courant numbers. The most accurate results of MOC 

occur in courant number 1. It is seen that the results of 

proposed methods, similar to Godunov scheme, are 

more accurate in courant number 0.9 in contrast with 

MOC scheme. 
 

 

TABLE 1. Features of FSI problem (Delft Hydraulic 

Benchmark problem A) [14] 

Parameter Value 

Length 20 (m) 

Diameter 797 (mm) 

Thickness 8 (mm) 

Pipe’s density 7900 (kg/m3) 

Young’s modulus 210 (GPa) 

Poisson’s ratio 0.3 

Pressure wave speed 1024.7 (m/s) 

Stress wave speed 5280.5 (m/s) 

Steady state velocity 1 (m/s) 

Reservoir head 0 (m) 

Proposed methods are unable to simulate Poisson 

coupling in courant 1. 
 

 

 

 
Figure 7. Comparison of simulations results of Delft 

Hydraulics Benchmark problem A [14] for the end point 

(valve) pressure with results obtained by (a) LxF and (b) NT 
 

 

 
 

 
Figure 8. Comparison of simulations results obtained by 

MOC and Godunov schemes for the end point (valve) pressure 

H for the junction coupling with (a) LxF and (b) NT 
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Figure 9. Comparison of simulations results obtained by 

MOC and Godunov schemes for the end point (valve) pressure 

H for the Poisson coupling with (a) LxF and (b) NT 

 

 

 
 

 
Figure 10. Comparison of relative error of LxF and NT with 

MOC and Godunov for the case of junction coupling for 

courant number (a) C=1 and (b) C=0.9 

Table 2 shows comparison of the maximum relative 

errors of LxF and NT with MOC and Godunov. LxF 

method can simulate junction coupling with less error 

than NT method compared to results of MOC. In 

contrast, when compared with the results of Godunov 

method, NT method simulated with less error than LxF 

method. For the case of Poisson coupling, LxF method 

can simulate more accurately than NT method 

compared with results of MOC and Godunov. 

Table 3 shows run times for all methods considering 

the junction and Poisson coupling. It shows that 

proposed methods are really fast and lead to a 

considerable reduction in run times, as they do not 

require solving a Riemann problem for time advancing. 

In addition to the above mentioned methods, we 

simulated FSI with MacCormac (MC) and two-step 

variant of the Lax-Wendroff (LxW) method (LxW) and 

the LxW method with a nonlinear filter (SLxW). 

Nonlinear filter reduced the total variation of the 

numerical solution. In junction coupling, MC and LxW 

and SLxW simulated FSI with a lot of fluctuations in 

heads in discontinuities. In Poisson coupling, these 

methods failed to predict heads in the example 

presented in this article [16]. 
 

 

TABLE 2. Comparison of the maximum relative error of LxF 

and NT with MOC and Godunov 
 Max relative error 

Method  
Junction 

coupling 

Poisson 

coupling 

LXF 
Compared to MOC 0.2812 0.8391 

Compared to Godunov 0.3313 0.3475 

NT 
Compared to MOC 0.3273 0.8973 

Compared to Godunov 0.0434 0.5836 

 

 
TABLE 3. Comparison of the maximum relative error of LxF 

and NT with MOC and Godunov 

Godunov MOC NT LXF Method  

15 0.7 7.5 2.5 Junction couple Run 

times  
46 1.5 18 10.5 Poisson couple 

 

 

4. SUMMARY AND CONCLUSIONS 

 

To model FSI in liquid-filled piping systems, the 

extended water hammer equations were used to model 

the fluid, and beam theory was used to model structure. 

Two mechanisms of fluid-structure interaction, that is 

Poisson and junction coupling, were included [5]. 

In order to solve the basic set of equations, the LxF and 

NT procedures were formulated. The results of 
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proposed methods were compared with the results of 

solving MOC, Godunov schemes and exact solution of 

linear hyperbolic four-equation system in three 

mechanisms (Poisson coupling, junction coupling and 

Poisson and junction coupling). The obtained results 

showed that these schemes can predict head fluctuations 

and discontinuities with an acceptable order of accuracy 

in the FSI. In these schemes, no Riemann problems 

were solved and hence field-by-field decompositions 

were avoided which led to reduced run times. It is 

therefore suggested that, the LxF and NT are good 

alternatives for MOC and Godunov schemes when these 

methods face restrictions in FSI problems. 
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 هچكيد
 

 

ٍ ضَد، چٌبًچِ ایي ًیزٍّب ثبعث حزکت  در حیي پذیذُ ضزثِ قَچ، ًیزٍّبی دیٌبهیکی قبثل تَجْی ثِ سبسُ لَلِ ٍارد هی

سبسُ، هبًٌذ  -. هجبحث تذاخلی سیبلدادخَاّذ رخ( FSI) سبسُ-ای ثِ ًبم تذاخل سیبل ضًَذ، پذیذُ  ضجکِ لَلِتغییز ضکل 

ّوَارُ هَرد تَجِ ثَدُ است سیزا  ایي اثزات ثِ صَرت  ّب ثز ًتبیج پذیذُ ضزثِ قَچ صبل ٍ اثزات آىکَپلِ پَاسي ٍ ات

ایي پذیذُ اس  هعبدلات حبکن ثز ضَد.دیَارُ لَلِ هطبّذُ هی جبییدر ّذّبی فطبر ٍ ّوچٌیي جبثٍِ افشایص  ًَسبىایجبد 

 ذ.ًضَ ای تقسین هی ٍ ثِ دٍ دستِ هعبدلات ّیذرٍلیکی ٍ سبسُ ثبضٌذ هیهزتجِ اٍل ّذلَلَی هعبدلات دیفزاًسیل جشیی ًَع 

ّبی دٍگبم سهبًی  ضیز، رٍش-لَلِ-سبسُ در یک سیستن هخشى-در تحقیق حبضز ثِ هٌظَر هذلسبسی پذیذُ اًذرکٌص سیبل

جی، هَرد استفبدُ قزار گزفتِ است. ثِ هٌظَر صحت سٌ(NT) تبدهَر -ٍ رٍضی هجتٌی ثز ًسیبَّ  (LxF)فزدریص-لاکس

، گَدًٍَ ٍ حل دقیق MOC)ّبی خطَط هطخصِ ) ًتبیج عذدی حبصل اس ایي دٍ رٍش ثب ًتبیج ثذست آهذُ اس رٍش

ثب دقت قبثل  LxF  ٍNTّبی  سیستن چْبر هعبدلِ ّذلَلَی خطی هَرد هقبیسِ قزار گزفت. ًتبیج ثبثت ًوَد کِ رٍش

ّبی  ّبی سهبًی ٍ هکبًی در رٍش عذم ٍاثستگی اًذاسُ گبمکٌٌذ.  قجَلی، ًبپیَستگی هَجَد در فطبر سیبل را هذلسبسی هی

دّذ کِ سجت افشایص دقت  ّبی هکبًی هختلف ثِ اسای یک گبم سهبًی هطخص را هی ثِ کبرگزفتِ ضذُ، اهکبى اًتخبة گبم

 ّب ثِ علت عذم حل هسئلِ ریوبى اس ضَد. اس سَیی دیگز در ایي رٍش هذلسبسی ًسجت ثِ رٍش هعوَل خطَط هطخصِ هی

 ضَد. ضَد کِ هٌجز ثِ کبّص هذت سهبى حل در هقبیسِ ثب رٍش گَدًٍَ هی ًبحیِ خَدداری هی-تجشیِ ًبحیِ
doi: 10.5829/idosi.ije.2016.29.05b.01 

 

 


