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A B S T R A C T  
 

 

This paper examines the generation and propagation of a third order solitary water wave along the 
channel. To study the wave propagation phenomenon, here, firstly the meshless Incompressible 

Smoothed Particle Hydrodynamics (ISPH) numerical method is described. Secondly, the boundary 
condition handling method, discretization, timestep selection and geometry provitions are presented. 

The numerical model is then used to simulate solitary wave propagation along the fixed depth channel. 

Here two still water depths of         and         are assumed and the dimensionless height of 

desired wave ranging from       to       are simulated. The numerical results are compared with 
analytical data in terms of free surface displacements, fluid particle velocity, phase speed, flow field 

counters and some other wave parameters. In general, the numerical model gives satisfactory results 
for the wave kinematics. 

 

doi: 10.5829/idosi.ije.2016.29.03c.17 

 

 
1. INTRODUCTION1 

 

Over the past few decades, offshore structures, such as 

oil platforms  and offshore wind-power plants, have 

been in rapid growth in coastal and deep ocean regions, 

and wave-structure interaction has long been a strong 

interest in coastal and offshore engineering. A thorough 

understanding of the interaction of waves with offshore 

structures is vital in the safety and design of such 

structures. In addition, the flow field near the structures 

is helpful to understand the scour, sediment transport 

process in the coastal regions. In designing these 

structures, it is critical to be able to calculate wave 

forces acting on each individual structure. 

Information on wave forces can be obtained by 

means of laboratory experiments or numerical 

simulations. Since laboratory experiments are usually 

constrained by the physical dimensions of laboratory 

facilities, it is not very often feasible to perform 

extensive parameter studies (e.g., variation of water 

depth, wave parameters, breaker type, etc.) even if the 
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costs are of no concern. The alternative is to use 

numerical simulations as supplements to laboratory 

experiments, where accurate numerical simulations will 

also provide much more detailed insights into the 

physical processes that could not be achieved by 

experimental approach. In other words, limited number 

of experiments can be designed so that the laboratory 

data can be effectively used to validate numerical 

models. The validated numerical models are then used 

to simulate scenarios with much wider range of physical 

parameters of interest. 

So far, wide range of numerical simulation models 

have been developed for wave propagation as the key 

concept in the maritime engineering which are built 

upon the Navier-Stokes equations. One of these 

methods is the Smoothed Particle Hydrodynamics 

(SPH) method that has gradually matured over time into 

a suitable tool for computational fluid dynamics because 

of its flexibility to simulate complex problems such as 

flow through porous medium [1], multi-phase flows [2-

4], heat conduction [5], free surface problems [6-8], 

fluid structure interactions [9, 10], fuel cell [11], etc. 

However, compared with the Finite Difference (FD) or 

Finite Volume (FV) methods, SPH is still a relatively 

 



427                                                   A. Farhadi / IJE TRANSACTIONS C: Aspects  Vol. 29, No. 3, (March 2016)  426-435 
 

novel method in computational fluid dynamics and its 

shortcomings are still being improved. Shao and Lo [12] 

introduced ISPH algorithm based on the projection 

scheme. Numerical results have shown that ISPH 

produces reasonable accurate predictions of velocity 

and forces on solids. 

Solitary wave generation is a traditional benchmark 

for numerical wave model tests. It is a permanent 

progressing wave form consisting of a single elevation 

above the undisturbed surface that propagates without 

the change of form on a constant still water depth over a 

flat bottom. A wide variety of analytical theories have 

been introduced for the solitary wave generation. It was 

first reported by Russell [13], who made remarkable 

experiments and gave an empirical relationship for the 

wave speed, which was later established theoretically, to 

the lowest order by Boussinesq [14] and Rayleigh [15] 

as part of an overall approximate solution. Since then, 

there have been several attempts to improve upon this 

solution, e.g. see the works available in the literature 

[16-18]. Of the approximate solutions, several methods 

for the solitary wave have obtained series expansions in 

terms of wave amplitude; these being taken as far as the 

third order Grimshaw. He considered the one-

dimensional modulations formed on the Boussinesq 

solitary wave and obtained third order equations 

analogous to those used by Boussinesq for the case of 

constant undisturbed depth in the higher order form 

[19]. Furthermore, an asymptotic solution was presented 

which described a slowly varying solitary wave [20]. 

An early work on WCSPH for solitary wave was done 

by Monaghan [21] while Lo and Shao used ISPH to 

generate solitary waves [22]. In this study, an ISPH 

method will be used to simulate the solitary wave 

generation and propagation in constant water depth. 

 

 

2. GOVERNING EQUATIONS 
 

The motion of a continuum in the Lagrangian 

description subjected to the action of body force in the 

isothermal condition, is represented by the continuity 

equation: 

  

  
   

   

   
  (1) 

and the momentum equation: 
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where   is density,   is time,    is the velocity vector,    

is the position vector,    is the body force vector,     is 

the stress tensor and the notation implies summation 

over repeated indices. The stress tensor can be 

decomposed into deviatoric viscous stress tensor     and 

isotropic pressure  , according to the following 

equation: 

               (3) 

where    is the Kronecker delta. Pressure can be 

formally defined by the equation of state in the 

compressible flows, while for incompressible flows, it is 

derived from the divergence free condition of the 

velocity field. Assuming an incompressible Newtonian 

fluid, the continuity Equation (1) reduces to: 

   ⃗     (4) 

and the momentum Equation (2) will be: 

  ⃗⃗ 
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where   is the kinematic viscosity. The conventional 

incompressible approach deals with pressure and 

velocity as primitive variables. The classical projection 

method [23] is used to calculate the pressure field and 

enforce incompressibility, simultaneously. The 

discretized form of the momentum equation is split into 

two parts. The first being the prediction step and is 

based on viscous and body forces. In this step, the 

intermediate velocity field  ⃗   is obtained from velocity 

at ( )   time step: 

 ⃗⃗    ⃗⃗ ( )

  
 [  (   ⃗ )    ]

( )
  (6) 

In each time step, the intermediate velocity field is 

calculated for fluid and boundary particles. In the 

second step, correction step, pressure force is included: 

 ⃗⃗ (   )  ⃗⃗  

  
 [ 

 

 
  ]

(   )

  (7) 

The intermediate velocity field is usually not divergence 

free but this is imposed upon  ⃗ (   ). Hence, the 

intermediate velocity is projected on the divergence free 

space by taking the divergence of Equation (7) as: 

 

  
  ( ⃗  )     (   )  (8) 

where the    is the Laplacian operator. Once the 

pressure is obtained from pressure Poisson Equation (8), 

the velocity vector is updated using the computed new 

pressure gradient: 

 ⃗ (   )   ⃗   (
 

 
  (   ))     (9) 

Finally, particles are moved according to this corrected 

velocity as: 

 (   )   ( )   ⃗ (   )    (10) 

 
 
3. SPH INTERPOLATION 

 

The foundation of mesh free SPH method is based on 

integral interpolants which represents that any field 

variable   can be calculated over a set of SPH particles 
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on domain of interest in terms of its values by taking a 

good interpolation kernel function. The exact integral 

representation of field variable   is: 

 ( )  ∫  (  ) (    )   
 

  (11) 

where   (    ) is Dirac delta function and   

represents the computational domain. Equation (11) can 

be represented by defining a proper kernel function,  , 

with effective smoothing length   as: 

 ( )  ∫  (  ) (    )   
 

  (12) 

In discrete notation, this approximation leads to the 

following approximation of the function at a 

interpolation particle  : 

 (  )  ∑   
  

  
      (13) 

where   is all the particles within the kernel function’s 

support domain.    and   are the mass and density of 

particle  , respectively, and weight function or kernel is 

denoted by      (         ). The parameter   is 

influence domain or smoothing domain, and controls 

the size of the area around particle   where contribution 

from the rest of the particles cannot be neglected. 

Considering the computational accuracy and efficiency 

[24], the following kernel function based on the cubic 

spline function and normalized in two dimensional is 

adopted: 
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where for two dimensional cases          ⁄ . The 

gradient, divergence and Laplacian operators need to be 

formulated in ISPH algorithm. In the current work, the 

following commonly used forms are employed for 

gradient of a scalar   [25]: 

      ∑   (
  

  
  

  

  
 )  ⃗⃗       (15) 

and divergence of a vector    [26]: 

    ⃗⃗⃗⃗    
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where  ⃗      is the gradient of the kernel function with 

respect to particle   and calculated as: 
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Viscous term is discretized according to the relation 

given in [5]: 

(   
  ⃗ )  ∑   (

    

(     )

 ⃗⃗        

|    |    )  ⃗⃗       (18) 

where              and           is a parameter 

to avoid a zero denominator. Also Laplacian equation is 

discretized according to the relation given in the 

literature [27]: 

(   )  ∑   (
     

    

      ⃗⃗     

|    |    )      (19) 

Resolution of the linear systems are widely studied by 

mathematicians as the demand for an efficient and 

smoothly-converging solver increases from numerical 

simulations. There are numerous iterative methods that 

are widely used in academic and commercial codes to 

solve the Pressure Poisson Equation (PPE). Here two 

solvers, Conjugate Gradient (CG) and Bi-Conjugate 

Gradient (Bi-CG) [28, 29], can be applied to solve PPE. 

The computational domain is divided into square 

cells of side   . Thus, for a particle located inside a 

cell, only the interactions with the particles of the same 

cell and its neighbors need to be considered (only 9 

cells in 2-D). The searching algorithm is applied at the 

beginning of each time step updating the particle’s 

neighbors and the corresponding kernel derivatives. The 

time step limit for this method is the minimum of three 

conditions, the CFL, the mass and the viscous force 

conditions [26]: 
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where    is the force per unit mass, equivalent to the 

magnitude of particle acceleration and      is the 

maximum fluid velocity in the domain [26]. 

 

 

4. BOUNDARY CONDITION HANDLING 
 

The Lagrangian nature of SPH method will cause the 

implementation of the boundary conditions less 

straightforward than common mesh based methods. 

Different boundary conditions are used in the SPH 

method. In the present study, moving and stationary 

solid wall boundary conditions are used. There are 

different boundary types in SPH to simulate solid walls, 

namely the repulsive force [30], ghost or mirror 

particles [31] and dummy particles [12, 32]. The 

repulsive force boundary condition, first proposed by 

Monaghan [30], uses forces similar to inter-molecular 

interactions, Figure 1. 

The mirror particle method is used to enforce the no-

slip as well as the Neumann boundary conditions. In 

this method the particles whose support domain is 

truncated by a solid boundary are reflected on the other 

side of the wall. The mirror or ghost particles have the 

same pressure as their corresponding fluid particles but 

have velocities extrapolated from the fluid and wall 

velocities. 

One of the sources of inaccuracy in the SPH method 

is the truncation of the boundary particles. This means 

that, not enough particles might be present in the 

support domain of a fluid particle. The other method to 
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model solid walls is the use of dummy particles. In this 

method several layers of dummy particles are placed 

parallel to the boundary particles. So, the support 

domain of the particles located close to the solid wall 

will not be truncated any longer. These layers of 

dummy particles are linked to their corresponding 

boundary particles and have the same pressure and 

velocity as their linked particles. In the present work, 

dummy particles are used to model solid walls. 

The number of dummy particle layers are decided 

from the radius of the compact support. In the following 

simulations, three layers of dummy particles are used. 

Governing equations are solved only for fluid and 

boundary particles and the pressure and velocity (also 

intermediate velocity) of the dummy particles are 

updated to their corresponding boundary wall particles. 

The velocity and the intermediate velocities are held 

constant on the boundary particles, but their pressure is 

calculated from the PPE equation. Afterwards, the 

pressure of the dummy particles are updated to their 

corresponding boundary particles. In this way the 

Neumann boundary condition on the walls is 

approximated. 

 

 
5. WAVE CHARACTERISTICS 
 
Three key parameters to identify waves are their lengths 

and heights, and the water depth over which they are 

propagating. All other parameters can be calculated 

from these quantities, e.g. wave induced water 

accelerations and velocities. A two dimensional 

schematic of a wave propagating in the   direction is 

shown in the Figure 2. The wave length,  , is the 

horizontal distance between two successive wave 

troughs. This length is related to the water depth,  , and 

wave period,  , which is the time required for two 

successive troughs to pass a particular point. As the 

wave moves a distance   in time  , its speed called 

celerity is defined as     ⁄ . 
 

 

6. SOLITARY WAVES IN CONSTANT WATER 
DEPTH 

 

Two dimensional dam break flow is chosen as the first 

suitable validation test case. Dam break flows over dry 

and wet beds have attracted wide research areas due to 

their theoretical, engineering and scientific 

considerations. If a dam break occurs over a dry bed, 

the generated wave is described by a tongue of water 

extended rapidly along the dry bed and if dam flows 

toward downstream over the wet bed, the attributed 

fluid flow features become remarkably different and 

some vorticity is developed at the front of the dam 

break. As a result, characteristics of the fluid flow are 

represented by the wave generation, wave crest 

development, wave breaking, and its impact with the 

downstream calm water and strew of water that 

generates some splash-up flow. Due to these features, 

dam break over the wet bed is an interesting benchmark 

to validate the numerical methods [33, 34]. 
 

 

 
Figure 1. Sketch of repulsive force boundary condition 

 

 
Figure 2. Schematic wave representation 

 

 

Solitary wave propagation in constant water depth is 

a classical benchmark problem for numerical wave 

model test. It propagates without the change of form in 

constant water depth over a flat bottom. Different 

analytical theories are already developed for the solitary 

wave. Therefore, it is well suited to evaluate the 

accuracy of the numerical model. For example, by 

checking the free surface location, the quality of volume 

tracking algorithm can be evaluated. In the numerical 

simulation, the free surface elevation and velocity 

distribution prescribed on the incident wave boundary 

are calculated by third order Grimshaw solitary wave 

solution [20, 35]: 
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where     ⁄ ;   is the wave height;   is the still 

water depth;       (   ⁄ );       (   ⁄ ); 

       in which   is the wave speed; the 

coefficient  : 

  √
 

 
 (  

 

 
  

  

   
  )  (22) 

and the wave speed   is: 
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and the velocity distribution is: 
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The coordinate system is defined in Figure 3. The 

Grimshaw solution is well suited for solitary wave of 

     . The third order Grimshaw solitary waves is 

simulated to be compared with the analytical theory. 

Here two still water depths of         and         

are assumed (Figure 4) and the dimensionless height of 

desired wave ranging from       to       are 

simulated, where particle resolution of 37000 and 77000 

are used for the water depths of         and   
     , respectively. The computational domain is     

in the streamwise direction   and    in the vertical 

direction  . In the streamwise direction, 1260 and 1860 

particles with uniform grid size of            are 

used, while we use 50 and 75 particles in the vertical 

direction in two cases, respectively. The fluid has a 

density of          ⁄  and kinematic viscosity of 

            ⁄ . Three layers of dummy particles 

are used to handle the wall boundary condition. 

 

 

 
Figure 3. Solitary wave representation 

 

 
Figure 4. Initial particle distribution of solitary wave 

generation test case for         
 

 
Figure 5. Solitary wave profile comparisons with analytic 

ones at various times for       and a water column of 

        

Figure 5 shows the free surface elevation profiles at 

three different times (1, 3 and 5 seconds from beginning 

of the simulation) corresponding to solitary waves 

generated using the third order Grimshaw method for a 

water column with         and      . It is 

noticeable that compared with the analytical solution, 

the wave profile heights are decreased as it follows 

throughout the channel. The discrepancy between the 

predicted and analytical heights are 10% when the wave 

propagates along the channel for first 5 seconds. 

On Figure 6(a), the paddle laws of motion 

corresponding to the third order wave generation is 

plotted for       for a water column with        . 

Greatest accelerations occur somewhere between the 

beginning of motion (zero velocity) and mid-stroke 

(maximum velocity). Qualitatively, the larger the 

maximum velocity and the shorter the duration of 

motion, the greater is the acceleration. For the same 

wave we also plot on Figure 6(b) the dimensionless 

paddle velocity corresponding to this law of motion. 

The maximum nondimensionalized velocity of 0.27 is 

observed. 

Measurements of the free surface elevation at 

different distances from the paddle for a solitary wave 

of desired dimensionless amplitude       in a water 

column of         generated using third order 

numerical integration are plotted on Figure 7. The 

solitary wave amplitude decreases slowly as it travels 

along the channel. 

 

 

 
(a) Paddle law of motion 

 
(b) Paddle velocity 

Figure 6. Paddle motion for       and a water column of 
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(a)       

 
(b)       

 
(c)       

Figure 7. Comparison of record of free surface elevation at 

different distances from the paddle with analytic ones 

 

 

Figure 8 shows the nondimensionalized velocity 

component variations versus nondimensionalized 

vertical coordinate of the wave at         from the 

beginning of the simulation for two locations (      

and       regarding the initial paddle location). The 

velocity profiles are close to the analytic ones. Near the 

water surface, under both wave surfaces, the measured 

particle horizontal velocity is somewhat greater than the 

theoretical values, while the vertical velocity 

components is underestimated compared with the 

analytic ones, the reason of which may be due to the 

particle resolution. 

The flow field contours at three different times are 

illustrated in Figures (9, 10 and 11) for the       case 

for a water column of        . As seen, the pressures 

are captured precisely and the pressure distributions 

under the wave crests are accurately predicted (Figure 

9). The wave speed at this case is          ⁄  that 

proves the wave crest propagation at these selected 

times, where the wave crest transferred to         , 

         and         , respectively (Figure 10). 

Furthermore, the symmetric behavior of the vertical 

velocity at the wave is noticeable at these selected times 

(Figure 11). 

In order to investigate the solitary wave generated 

behavior on the pureness of the generated wave on other 

wave heights, this problem is solved for a wide range of 

desired wave heights,          . As expected, 

greater the desired wave height, the greater amount of 

water volume must be pushed. Figure 12(a) illustrates 

the depth averaged net mass displacement   of a solitary 

wave. This net mass displacement is the total stroke of 

the paddle prescribed in each procedure. The rate of the 

displacement increment is decreased as the desired 

wave height is increased. Furthermore, the maximum 

paddle velocity (which occurs at mid-stroke) is obtained 

for this range of wave heights. Again, the slope of the 

maximum paddle velocity decreases as dimensionless 

amplitude increases. Measurements of the free surface 

elevation at different distances from the paddle for a 

solitary wave of desired dimensionless amplitude 

      in a water column of         generated 

using third order numerical integration are plotted in 

Figure 7. The solitary wave amplitude decreases slowly 

as it travels along the channel. 

 

 

 
(a)       

 
(b)       

Figure 8. Comparisons of velocity components with 

analytical results at         at different distances away from 

the paddle initial location 
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(a)          

 
(b)          

 
(c)          

Figure 9. Solitary wave pressure contour 

 

 

 
(a)          

 
(b)          

 
(c)          

Figure 10. Solitary wave horizontal velocity contour 

 
(a)          

 

 
(b)          

 

 
(c)          

Figure 11. Solitary wave vertical velocity contour 

 

 

 
(a) Displacement 

 
(b) Paddle velocity 

Figure 12. Maximum paddle velocity and displacement for a 

solitary wave with         
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(a) Froude number 

 
(b) Outskirts decay coefficient 

Figure 13. Wave parameters for a solitary wave with   
     . The Byatt-Smith's numerical solution [36] is plotted as 

stars 

 

 

The dimensionless phase speed (or Froude number, 

   √  ⁄ ) is plotted in Figure 13(a) for the selected 

wave height range. It shows that the third order method 

phase speed matches to the Byatt-Smith numerical 

estimation in the studied range of  . The dimensionless 

outskirts decay coefficient (      ) versus the 

dimensionless amplitude is plotted in Figure 13(b). This 

outskirts decay coefficient describes the way free 

surface elevation tends towards the mean level at 

infinity. Stokes showed that   is a solution of the 

following equation, also used by Byatt-Smith [36]: 

   
    

 
  (25) 

As a matter of fact the third order method for       

matches the Byatt-Smith reference but for greater   

some discrepancy is observed. 

 

 

7. CONCLUSION 
 

The ISPH numerical method is used to simulate the 

solitary wave generation and propagation along the 

channel at different wave amplitudes and water depths 

in an ISPH-based numerical wave flume. The numerical 

results are compared with analytical data in terms of 

free surface displacements, fluid particle velocity, phase 

speed, flow field counters and some other wave 

parameters. In the first section, the free surface profile 

variations over time, position and through solitary wave 

amplitude ranges are assumed. The numerical free 

surface profiles are compared with analytical results at 

various times and it is proved that studied Grimshaw 

third order method has acceptable relative variation for 

5 seconds after the wave propagation; about 10%. In the 

second section, solitary wave paddle motions, paddle 

velocities and accelerations, their displacements, phase 

speeds and outskirts decay coefficients are assumed. 

Results were in a good agreement with the analytical 

data. Then, maximum paddle velocity and displacement 

of the wave generation procedures are derived and as 

seen they coincide with the analytical data. 
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چكيده
 

 

در این مقاله بر روی تولید و انتشار موج مرتبه سوم در یک کانال تمرکز شده است. برای مطالعه پدیده انتشار موج، ابتدا روش 

سازی، عددی بدون مش هیدرودینامیک ذرات هموار توصیف شده است. سپس شرایط مرزی بکار رفته در آن، روش گسسته

سازی انتشار موج تنها در یک کانال با شود. سپس این روش عددی برای شبیهبیان میانتخاب گام زمانی و روش ایجاد هندسه 

تا  2.0بعد متر برای آب آرام در نظر گرفته شده و ارتفاع موج بی 2.0و  2.0رود. در این مطالعه، دو عمق عمق ثابت بکار می

ح آزاد، سرعت ذرات سیال، سرعت فاز، کانتور سازی شده است. نتایج عددی استخراج شده و جابجائی سطودر آن شبیه 2.0

شوند. مجموعاً، این مدل عددی، نتایج قابل قبولی برای های تحلیلی مقایسه میهای جریان با دادهجریان و دیگر مشخصه

 دهند.کینماتیک موج ارائه می
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