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A B S T R A C T  
 

 

In the present study, small scale effect on critical buckling loads of triangular nano-composite plates 

under uniform in-plane compression is studied. Since at nano-scale the structure of the plate is discrete 
and the long-range cohesive forces become important, the size dependent nonlocal elasticity theory is 

employed to develop an equivalent continuum plate model for this nanostructure incorporating the 

change in its mechanical behavior. Two parameter Winkler-Pasternak elastic medium is used to 
precisely model the elastic behavior of the matrix surrounding the nano-plate. The governing stability 

equations are then derived using the classical plate theory and the principle of virtual work for a perfect 

uniform triangular nano-plate composite system. The well-known numerical Galerkin method is then 
used as the basis for the solution in conjunction with the areal coordinates system. The solution 

procedure views the entire nano-composite plate as a single super element which can be of general 

shape. Effects of nonlocal parameter, length, aspect ratio, mode number, anisotropy, edge supports and 
elastic medium on buckling loads are investigated. All of these parameters are seen to have significant 

effect on the stability characteristics of nano-composite plate. It is shown that the results depend 

obviously on the non-locality of buckled nano-composite plate, especially at very small dimensions, 
small aspect ratios, higher mode numbers, higher anisotropy and stiffer edge supports. Also it is seen 

that the medium parameters, especially the Winkler parameter, have significant influence on the small 

scale effect and can decrease or increase it. Also, it is seen that the classical continuum mechanics 
overestimates the results which can lead to deficient design and analysis of these widely used 

nanostructures. The results from current study can be used in design, analysis and optimization of 

different nano-devices such as nano-electro-mechanical systems (NEMS) utilizing nano-composite 
plates as load-bearing components. Although it is seen that nano-fillers, here the nano-plates, increase 

the stiffness of the whole nano-composite, by increasing the bending rigidities, on the other hand it is 

shown in this study that the small scale effect or the nonlocal effect decreases the critical loads of the 
nano-composite system. Thus, the nonlocal effect plays a key role in the design of these nanostructures 

and must be attended and comprehensively studied to avoid the failure of the nanostructure. Further, 

the solution employed here is general and can be applied to nano-composite plates with arbitrary 
shapes which is an asset in structural optimization.  
 

doi: 10.5829/idosi.ije.2016.29.03.16 
 

 

NOMENCLATURE1   

1 2 3, ,L L L  the areal coordinates  M
 

mass matrix  

1 2 3, ,A A A  the area of the sub-triangles , ,xx yy xyN N N
 

stress resultants 

,a b  base side length and height of the triangular nano-plate i
 

trial functions 

0m  mass per unit area of the nano-plate 
( )l

ij
 

components of local stress tensor 

[B] buckling matrix  
( )nl

ij
 

components of nonlocal stress tensor  

iC  unknown coefficients of trial functions 0q
 

transverse distributed pressure 

ijD  
bending rigidities u, v, w displacement fields 
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,x yE E
 

Young’s modulus of nano-plate in x and y directions 
 

weight function 

xyG
 

shear modulus of the nano-plate ij  components of strain tensor  

h
 

thickness of the nano-plate b  buckling parameter 

 K
 

stiffness matrix  
 nonlocal parameter 

, ,xx yy xyM M M
 

moment resultants ,x y 
 

Poisson's ratios in x and y directions 

2  
Laplacian operator in two dimensional Cartesian coordinate 
system 


 

density of the nano-plate 

  
 

circular frequency of the nano-plate 

1. INTRODUCTION 

 

Outstanding physical and chemical properties of 

nanostructures cause their wide usage in different nano-

engineering systems such as nano-sensors [1], nano-

actuators [2] and nano-composites [3, 4]. Among the 

nano-structures, the carbon nano-tubes (CNTs) and the 

Graphene sheets (GSs) are being vastly used in different 

nano-electro-mechanical systems (NEMS) and nano-

composites due to their superior mechanical and 

electrical properties such as strength and conductivity 

[3-5]. Based on this, a wide range of experimental, 

computational and theoretical studies have been 

conducted on such nano-structures to comprehensively 

reveal their physical properties for better design and 

application. Among these methods, the experimental 

measurements, at nano scale, are hard to reproduce and 

depend on the development of devices for manipulation 

of nano-sized objects. Also, computational techniques 

based on semi-empirical approaches such as ab-initio 

[6], molecular dynamics (MD) simulation [7], density 

functional theory (DFT) [8], etc., which produce results 

in line with the experiment, are restricted by the amount 

of computational capacities needed for the calculations 

especially when the number of atoms and bonds 

included in the nanostructure increases. In this way, 

developing an appropriate theoretical model for 

analyzing nanostructures eliminates the difficulties 

associated with the previous mentioned methods while 

it can also produce results in agreement with them. On 

this basis, continuum modeling of nanostructures is 

being the focus of interest [9-13]. An accurate 

continuum model of nanostructures must take the 

account of change in the material and physical 

properties of these structures arising at the nano scale. 

In fact, as the dimensions of a system reduce to the nano 

scale, they become comparable to the inter-atomic or 

inter-molecular spacing of that system and the material 

system can no longer be modeled as a continuum. 

Moreover, at nano scale, the influence of long-range 

inter-atomic and inter-molecular cohesive forces on the 

static and dynamic responses tends to be significant. 

These effects are referred to as the “Size” or “Small 

scale” effects [14-16]. Since the size independent 

classical continuum models are unable to capture the 

small scale effects, the modified continuum theories 

have been developed to take the account of these effects 

on the physical behavior of the nanostructures. 

Modified continuum models have the computational 

efficiency of the classical continuum models and at the 

same time produce comparable results to the 

experimental and semi-empirical ones. These models 

can be effectively used to simulate very small to very 

large systems. Some of the size dependent continuum 

theories are surface elasticity theory [17], strain gradient 

theory [18], couple stress theory [19] and the nonlocal 

elasticity theory introduced by Eringen [20, 21]. Among 

these theories, the nonlocal elasticity theory is seen to 

produce well-matched results with those from lattice, 

atomistic and molecular dynamics simulations [20-24]. 

In classical (local) continuum theory, it is assumed that 

stress state at a point in the continuum body depends 

uniquely on the strains at that point but in the nonlocal 

elasticity theory, it is assumed that stress state at a point 

depends not only on strains in that point but also on the 

strains at all other points of the continuum body 

especially on those which are in the effective 

neighboring domains [20, 21].  

In fact, as one of the dimensions of the structure 

reduces to nanometer and becomes comparable to its 

molecular or atomic bond lengths, the small scale 

effects, which cause change in the physical properties, 

including the mechanical properties of the material, 

become prominent. These changes are due to the 

discreteness of the structures at this scale and the effect 

of the long-range intermolecular and interatomic 

cohesive forces which act on the atoms in the point 

under stress study from adjacent atoms or a few internal 

characteristic lengths further. These long-range 

cohesive forces induce a nonlocal effect which is 

captured through a cut-off function in the nonlocal 

continuum theory. The nonlocal elasticity theory first 

was used for stress analysis in crack tips and screw 

dislocations [20, 21]. It includes a small length scale 

parameter or nonlocal parameter which is obtained from 

matching the dispersion curves with those from lattice 

dynamic or atomistic/molecular simulations [20-24]. 

According to the Eringen [21] and other researchers 

using nonlocal elasticity theory[22-42], the nonlocal 

parameter depends on the material structure and physics 

of the problem under investigation e.g. loading, 

boundary conditions, etc. 
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Buckling analysis of nano scaled structures is an 

important issue for proper design and use of them in 

different nano-systems as load bearing components. 

There are numerous studies on the use of modified 

nonlocal continuum models for buckling and vibration 

analysis of nano-structures such as carbon nano-tubes 

[25], nano-beams [26], nano-rings/arches [27] and 

nano-plates [28-36, 43]. Among these nano-structures, 

nano-tubes such as CNTs and plate-like nano-structures 

such as GSs are widely used as reinforcement in nano-

composites because of their strength and conductivity 

[3-5]. Different studies considering the nonlocal 

continuum modeling of nano-composites with such 

reinforcements have been conducted to examine and 

calibrate their buckling and vibration characteristics 

[28-36, 44]. In all of these studies the Eringen nonlocal 

elasticity theory is suggested for accurate prediction of 

dynamic response of equivalent continuum models of 

nano-plate reinforced composites and the classical 

theory is seen to overestimates the buckling loads.  

In almost all of the studies conducted on the analysis 

of nano-composite plates, the shape of nano-plate has 

received the less attention. In this case, Duan and Wang 

[38] reported exact solution for axisymmetric bending 

of circular Graphene sheets based on the nonlocal 

elasticity theory. Farajpour et al. [39] reported 

axisymmetric buckling of circular Graphene sheets 

using nonlocal continuum plate model. Babaie and 

Shahidi [40] studied small scale effects on the buckling 

of quadrilateral nano plates using the Galerkin method. 

Malekzadeh et al. [41] investigated thermal buckling of 

orthotropic arbitrary straight-sided quadrilateral nano-

plates using the nonlocal classical plate theory (NCPT). 

Anjomshoa [42] studied the buckling of elliptical nano-

plates using the Ritz functions and nonlocal continuum 

mechanics. Ravari and Shahidi [43] also reported the 

buckling of annular nano-plates via finite difference 

method. Since the synthesis of nano-plates with 

controlled size and morphology is a challenging issue, a 

comprehensive and detailed study on the analysis of 

nano-plates with different shapes should be conducted 

to examine the load bearing capacity of these widely 

used nano-structures. One of these nano-plates is the 

triangular nano-plate which has special application in 

nano-engineering systems [44, 45] and can also be used 

as reinforcement in nano-composites. It is obvious that 

the exact buckling solutions are only possible for few 

plates with simple shapes like rectangular or circular 

plates under certain boundary and loading conditions. 

For buckling analysis of plates with arbitrary shapes, 

numerical methods such as finite difference method 

[43], finite strip method [46], differential quadrature 

method (DQM) [47] and Galerkin method [48-52] are 

usually used in the solution procedure. The Galerkin 

method is a well-known mesh-free numerical 

approximate method which is very simple to be used 

and manipulated for solving different kinds of plate 

problem from static to dynamic [48] and linear to 

nonlinear [49]. These include bending [50] buckling 

[51] and vibration [52] of plates with arbitrary shapes. 

In the present work, an orthotropic nonlocal continuum 

model based on the classical plate theory (CPT) is 

developed for stability analysis of triangular nano-

composite plates under uniform in-plane compression. 

The matrix of the composite is modeled using two-

parameter Winkler-Pasternak elastic medium [53]. The 

principle of virtual work is used to derive the governing 

equations. The simultaneous eigenvalue equations are 

then solved using the Galerkin method on the basis of 

the polynomial trial functions. Effects of nonlocal 

parameter, length, aspect ratio, mode number, material 

property, different boundary conditions and medium 

parameters on buckling loads are thoroughly 

investigated. The novelty of the current work can be 

seen from multiple aspects including the study of 

decreasing effect of small scale effect in conjunction 

with the increasing effect of elastic medium on critical 

loads of nano-composite plate at higher buckling modes 

and the use of an efficient and easy handling numerical 

Galerkin’s method which can be simply used for the 

analysis of nano-plate with arbitrary shapes and 

boundary conditions. Thus, current study can also be 

employed for buckling analysis of nano-composite 

plates with general shapes which makes it referable for 

imperfect nanostructures analysis and the structural 

topology optimization problem. To the best of authors’ 

knowledge, the buckling of triangular nano-composite 

plates based on the nonlocal elasticity theory has not 

been reported in available literature.  

 

 Figure 1. Mapping from Cartesian coordinate system to areal 

coordinate system.  

 

 

2. FORMULATION 
 

2. 1. Geometric Definitions       An arbitrary triangle 

in the Cartesian coordinates (x,y) can be mapped to a 

right-angled triangle in the areal coordinates (L1, L2) 

with the boundary equations being as L1=0, L2=0 and 

L1+L2 =1 as shown in Figure 1. The areal coordinates 

(L1, L2, L3) of the point P are defined as: 

1
1

A
L

A


     

2
2

A
L

A


    

3
3

A
L

A


 
(1) 

where A1, A2 and A3 denote the areas of the sub-triangles 

shown in Figure 1 and A is the area of the base triangle. 
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The three areal coordinates are related to each other by 

the following expression: 

1 2 3 1L L L    (2) 

also, Cartesian and areal coordinates are related by the 

following relations: 

 
3

1 2

1

, i i

i

x L L x L



   

(3.1) 

 
3

1 2

1

, i i

i

y L L y L


  
(3.2) 

where, xi and yi are the coordinates of vertices. Using 

Equations (3.1) and (3.2), the first-order and second-

order derivatives, based on the areal coordinates, can be 

respectively expressed as: 

 
1 1

11

2

Lx
J

y L



  
      

   
    

         

(4.1) 

 

  

2

2

2
1

222

2

2

2
1

2
1 1

21 112
2

2
2

1 2

x

J
y

x y

L

L
J J

L

L

L L





 
 
 

  
 

 
 
 
   

  
  

    
           
    
       
       

(4.2) 

where, [J11], [J21] and [J22] are the mapping matrices 

defined as: 

  1 1

11

2 2

x y

L L
J

x y

L L

  
  
 
  
 
    

(5.1) 

 

2 2

2 2
1 1

2 2

21 2 2
2 2

2 2

1 2 1 2

x y

L L

x y
J

L L

x y

L L L L

  
 
  

  
 
  

 
  

       

(5.2) 

 

(5.3)

 

 
2. 2. Nonlocal Classical Plate Theory     Discrete and 

nonlocal continuum models of a typical triangular nano-

composite plate, here the Graphene based nano-

composite, under uniform in-plane compression are 

shown in Figure 2. Cartesian coordinate system is 

chosen for deriving the governing equations with its 

origin being fixed at the center of the mid-plane. The 

displacement fields at the time t according to classical 

plate theory (CPT) are written as: 

 

(6) 

 

 

 
(a) 

 
(b) 

 
(c) 

Figure 2. Triangular nano-composite plate under in-plane 

uniform compression: (a) discrete model; (b) continuum 

model; (c) two-parameter model of elastic medium.

 

 

Here, u0, v0 and w denote displacement of the point 

(x,y,0) along x, y and z directions, respectively. The 

strain components are then obtained as:  

2 2

1 1 1 1

2 2

22

2 2 2 2

1 2 1 2 1 2 1 2

2

2

x y x y

L L L L

x y x y
J
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x x y y x y y x
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
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            
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 

0, , 0, ,

0, 0, ,

, ,

1
2

2

xx x xx yy y yy

xy y x xy

u zw v zw

u v zw

 



   

  
  

0zz xz yz    
 

(7) 

According to Eringen [20, 21], the nonlocal behavior of 

a Hookean solid can be introduced by the following 

differential constitutive equations: 
( ) 2 2 ( ) ( )

2

0

,nl nl l
e

i

e

l

e l

l





   

 
  
 

σ σ σ Sε

 

(8) 

Here, 
2

, ,( ) ( ) ( )xx yy       is the Laplacian operator 

in two dimensional Cartesian coordinate system. Also, 

σ
(l)

, σ
(nl)

, S and ε are, respectively, the local stress 

tensor, the nonlocal stress tensor, the elasticity tensor 

and the strain tensor, defined as:  

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

, ,

0
1 1

,
0

1 1
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l nl
xx xx

l l nl nl
yy yy

l nl
xy xy
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y x y

x y x y

xy
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E E
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 
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

   

   
      
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   
      

 
 
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 
 
  

 
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σ σ

S

2

xx

yy

xy







 
  

  
 
  

ε

 

(9) 

In Equation (8), α represents the small scale parameter 

which depends on a characteristic length ratio li/le in 

which li is an internal characteristic length which can be 

lattice parameter, size of grain, granular distance or 

distance between C-C bonds in carbon nano-structures 

such as CNTs and GSs and le is an external 

characteristic length which can be wavelength, crack 

length or one of the dimensions of the nanostructure. 

The parameter e0 is a material constant related to the 

structure of the nano-plate and should be determined for 

each material independently from matching nonlocal 

continuum results with atomistic ones. It is obvious that 

Equation (8) for α=0 yields the well-known classical 

constitutive equations of the elastic solids. Based on 

Equation (9), the following stress and moment 

resultants can be defined: 

2 2
( ) ( )

2 2

, ,

,

h h

nl nl

h h

xx xx

yy yy

xy xy

dz z dz

N M

N M

N M

 

 

   
      

    
   
      

 N σ M σ

N M

 

(10) 

where, h denotes the nano-plate’s thickness. According 

to Equation (8), the nonlocal effect enters through the 

constitutive relations. Since, the principle of virtual 

work is independent of the constitutive relations it can 

be employed to derive the equilibrium equations for the 

current nonlocal plate model. After applying this 

principle the equations of motion are obtained as [31]: 

, , 0xx x xy yN N m u 
 

(11.1) 

, , 0xy x yy yN N m v 
 

(11.2) 

 

     

 

, , , , ,

, , ,
, , ,

0 0 2 , ,

2

0

xx xx xy xy yy yy xx x x

yy y xy y yx x
y x y

xx yy

M M M N w

N w N w N w

q m w m w w

  

  

    
 

(11.3) 

here, m0 and m2 are, respectively, mass per unit of area 

and mass moment of inertia of the nano-plate defined 

as:  

2 2
2

0 2

2 2

,

h h

h h

m dz m z dz 

 

  
 

(12) 

where, ρ denotes the density of nano-plate. In Equation 

(11.3) q0 is the external applied transverse load which 

here is exerted by the elastic medium and then is 

defined as: 

 0 , ,w p xx yyq k w k w w   
 

(13) 

where, kw is the Winkler parameter which represents the 

springy effect of the elastic medium by modelling it as a 

series of condensed linear springs. Also, in the above 

equation, kp is the Pasternak parameter of the elastic 

medium and represents the shear interaction between 

the nano-plate and the elastic medium attached to it. As 

it is seen in the above equation, in the current model of 

elastic medium, the exerted pressure on the nano-plate 

is proportional to the transverse deflection and 

curvatures of the nano-plate (linear elastic medium). 

Using Equations (7)-(10) and assuming the two 

dimensional Laplacian operation, the moment resultants 

can be expressed in terms of the displacement field as: 

2   M M Dκ  (14) 

here μ=(e0li)
2
 is the nonlocal parameter, D is the 

bending rigidity tensor and κ is the curvature vector of 

the nano-plate defined as:  

3

, , ,, 2
12

T

xx yy xy

h
w w w D S κ

 
(15) 

Using Equations (11.3), (13) and (14) and assuming the 

solution w(x, y, t)=W(x, y)exp(iωt), the following 

governing equation will be obtained for the nonlocal 

plate model of nano-composite in terms of transverse 

displacement [28, 31, 41]: 
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(16) 

where, W denotes the deflection of the nano-plate 

middle surface and ω is the natural circular frequency. 

 

 

3. SOLUTION PROCEDURE 
 

Applying the weighted residual method to the governing 

equation in Equation (17) gives:  

 

(17)

 

where, χ denotes the weight function. Using the 

divergence theorem the following form will be reached: 

( , ) ( ) 0
R R

x y dxdy s ds


    
 

(18) 

where,  and  are given in Appendix (A.1 and A.2). 

Also, R is the area of the nano-plate, R  represents the 

boundary of the nano-plate and <nx  ny > are the 

components of the unit normal vector on the boundary 

of the nano-plate shown in Figure 1a. For simply 

supported and clamped edges, the boundary conditions 

are simply supported edge: 

2 2

0, and

2 0nn x xx x y xy y yy

W

M n M n n M n M



   
 

(19) 

Clamped edge: 

, , ,0, 0n x x y yW and W n W n W   
 

(20) 

An approximate solution of the problem can be obtained 

by assuming an expression for the transverse deflection 

of the mid-surface which satisfies the essential 

boundary condition at the edges as: 

1 2 1 2

0 0

( , ) ( , )
p q

i i

q r

W L L C L L
 

 
 

(21) 

In which, Ci are the unknown coefficients to be varied 

and Φi are defined as: 

 1 2 3 1 2( , )
k

i iL L L L L 
 

(22) 

In the above equation, k is the power of the geometrical 

shape equation which takes 1 and 2 for simply 

supported and clamped edges, respectively. On this 

way, Equation (21) satisfies the kinematical boundary 

conditions at the edges. Also, φi are polynomial trial 

functions of the form: 

1 2 1 2( , ) q r r
i L L L L   (23) 

where: 

( 1)( 2)

2

q q
i r

 
 

 
(24) 

In Equation (21), p is the degree of polynomial set 

which may be increased until the desired accuracy is 

achieved. Substituting Equation (21) into Equation (18) 

and using the Galerkin method assumption i.e. χ=Φi , 

the following simultaneous linear equations for both 

vibration and buckling problems will be yielded: 

         2
1 2 0xxK M N B C    

 
(25) 

In which, [K], [M] and [B], defined in Appendix A, are 

respectively the stiffness, mass and buckling matrices 

associated with the nano plate. The scalar indicators βj 

take on β1=1, β2=0 for free vibration problem and β1=0, 

β2=1 for the buckling problem. For simplicity the results 

are presented in non-dimensional buckling load 

parameter as λb=|Nxx|a
2
/D11. In the case of uniform in-

plane compression in Figure 2a we have: 

, 0xx yy xyN N N N   
 (26) 

Equation (25) is a standard eigenvalue problem which 

can be solved for critical frequencies or buckling loads 

of triangular nano-composite plates with the 

corresponding eigenvector {C} which represents the 

associated vibration or buckling mode shape. 

 

 

4. RESULTS AND DISCUSSIONS 
 
4. 1. Validation and Convergence        In order to 

establish the validation of the current work, buckling 

loads for simply supported and clamped isotropic 

isosceles triangular plates with Young’s modulus 

1.06Tpa, Poisson’s ratio 0.3, mass density 2.3 g/cm
3
 and 

thickness h=0.34 nm are calculated from Equation (25) 

and are compared in Table 1. A comparison in Table 1 

shows desired agreement between the results obtained 

here and those reported by Wang and Liew [54]. 

Another convergence study is also performed in Table 2 

for the nonlocal case. From Tables 1 and 2 it is found 

that a polynomial set of degree p=10 is sufficient for the 

convergence of the results and the set is used to 

generate all the other results presented herein. 

 

4. 2. Effect of Nonlocal Parameter, Size and Mode 
Number  In this section the small scale effect on 

critical loads of isosceles triangular nano-plate is 

investigated for different values of base side length, 

aspect ratio and mode number. The base side length of 

the nano-plate is varied between 5nm and 35nm and the 

range of aspect ratio is considered to increase from 1 to 

3.  
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TABLE 1. Convergence study of buckling parameter λb for local (μ=0) continuum model of isosceles triangular nano-plate 

Degree of polynomial set (p) 
Aspect ratio (b/a) 

1 1.5 2 2.5 3 

Simply supported (SSS)      

4 45.8309 32.8100 27.0040 23.6718 21.6069 

6 45.8274 32.7266 26.9092 23.6190 21.5031 

8 45.8273 32.7250 26.9068 23.6137 21.4855 

10 45.8273 32.7248 26.9064 23.6131 21.4846 

Ref [54] 45.827 32.725 26.906 23.613 21.484 

Clamped (CCC)      

4 127.6994 92.7763 77.5437 69.8652 65.5726 

6 127.6104 92.3908 77.2715 69.0510 63.7749 

8 127.6095 92.3770 77.2517 68.8900 63.5719 

10 127.6094 92.3767 77.2506 68.8812 63.5646 

Ref [54] 127.610 92.377 77.251 68.881 63.564 

 

 

TABLE 2. Convergence study of buckling parameter λb for nonlocal continuum model of isosceles triangular nano-plate (b/a=2,a=10 

nm) 

Degree of polynomial set (p) 
Nonlocal parameter () 

0 1 2 3 4 

Simply supported (SSS)      

4 27.0040 21.2623 17.5342 14.9184 12.9817 

6 26.9092 21.2035 17.4941 14.8894 12.9597 

8 26.9068 21.2020 17.4931 14.8886 12.9592 

10 26.9064 21.2017 17.4929 14.8885 12.9591 

Clamped (CCC)      

4 77.5437 43.6758 30.3989 23.3122 18.9050 

6 77.2715 43.5894 30.3570 23.2876 18.8888 

8 77.2517 43.5831 30.3539 23.2858 18.8876 

10 77.2506 43.5827 30.3537 23.2857 18.8876 

 

 

The nonlocal parameter is also assumed to vary 

between μ=0 nm
2 

and 4 nm
2
. Firstly, the influence of 

base side length and nonlocal parameter on buckling 

loads are illustrated by Figure 3 for b/a=1. From this 

figure it is found that nonlocal critical buckling loads 

are smaller than the local ones (μ=0). In addition, for 

each value of the base side length, by increasing the 

nonlocal parameter the buckling loads decrease. The 

reason is that when the nonlocal parameter increases, 

the small scale effects increases and this leads to a 

reduction in the nano-plate stiffness [31]. In fact, the 

nonlocal effect decreases the nano-plate buckling 

resistance of nano-plate by increasing the intensity of 

buckling matrix through the nonlocal terms in Equation 

(25). It is also seen in Figure 3 that by increasing the 

base side length, the nonlocal effect decreases and the 

buckling loads converge to the local ones. This implies 

that by increasing the external characteristic length of 

the nano-plate (here the base side length of nano-plate 

a) the small scale effect decreases while the internal 

characteristic length is assumed to be unchanged. This 

is due to the size dependency in the essence of the 

nonlocal elasticity theory which states that as the system 

becomes larger, become closer to the classical 

continuum size order, the nonlocal or small scale effect 

disappears [31, 38-42]. For better understanding the 

influence of the base side length and nonlocal 

parameter, the relative errors, in percentage form, due to 

neglecting the nonlocal effect for base side lengths 

a=10nm and a=30nm with the nonlocal parameter μ=4 

nm
2
, are found to be  51.83% and 10.68%, respectively. 

It is found from these values that for large enough nano-

structures the classical continuum modelling can be 

desirably employed instead of the more complicated 

nonlocal theory. Here and afterwards, the relative error 

is defined as (|Local result – Nonlocal result|)/(|Local 

result|). 

To see the effect of aspect ratio, the buckling 

parameters are plotted in Figure 4 against the aspect 

ratio (b/a) for different nonlocal parameters. Here the 

base side length a=10 nm is taken. It is found from this 

figure that for small aspect ratios, the difference 
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between nonlocal and local results is more prominent. 

An interpretation for such result is that for a specific 

value of the base side length and nonlocal parameter, as 

the aspect ratio increases the nano-plate become larger 

and this leads to a decrease in the small scale effect due 

to the previously discussed size dependent nature of the 

nonlocal elasticity theory. The relative error for ratios 

b/a=1 and b/a=3 with μ=4 nm
2
 are obtained as  64.70 

and 46.22%, respectively. Thus, it is concluded that the 

nonlocal theory should be considered for the buckling 

analysis of triangular nano-plate with small aspect 

ratios. 

 

 

 Figure 3. Variation of the buckling parameter with base side 

length of fully simply supported (SSS) isosceles triangular 

nano-plate for different nonlocal parameters 

 

 Figure 4. Variation of the buckling parameter with aspect 

ratio for different nonlocal parameters (SSS) 

 

 Figure 5. Variations of the buckling loads parameter with 

small scale effect for the first four buckling modes (SSS) 

To study the small scale effect in different buckling 

modes, non-dimensional buckling loads associated with 

the first four mode numbers are depicted in Figure 5 for 

different nonlocal parameters. Here, the base side length 

and aspect ratio are taken as a=10 nm, b/a=1.5, 

respectively.  

It can be seen in the figure that in all of the mode 

numbers as the nonlocal parameter increases the 

buckling parameter decreases. Further, it is revealed that 

the nonlocal effect is more prominent in higher mode 

numbers. This is also true for a circular nano-plate 

under uniform compression [39]. For the nonlocal 

parameter μ=4 nm
2
 the relative error due neglecting the 

small scale effect for the first and fourth mode numbers 

are obtained as 56.67% and 80.94%, respectively. The 

buckling loads associated with the first four modes for a 

right-angled triangular nano-plate are, as well, presented 

in Table 3. It is seen in this table that similar to isosceles 

triangular nano-plate (Figure 5) the buckling loads of 

right-angled triangular nano-plate also decrease by 

nonlocal parameter in all modes. The associated 

buckling mode shapes for the isosceles and the right-

angled triangular nano-plates are presented in Figure 6 

and Figure 7, respectively. 

 

4. 3. Effect of Material Properties       An 

investigation is performed to account for the effect of 

anisotropy in the orthotropic case. For this purpose, 

variations of the non-dimensional critical loads for a 

fully simply supported isosceles triangular nano-plate 

with aspect ratio b/a=1 are plotted in Figure 8 against 

the anisotropy ratio Ey/Ex for different nonlocal 

parameters. The figure shows that anisotropy has an 

increasing effect on the critical buckling loads and as 

the nonlocal parameter increases this occurs in a more 

nonlinear manner. Also, it can be seen that as the 

anisotropy ratio increases the difference between local 

and nonlocal results increases.  

 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 6. Buckling mode shapes of isosceles triangular nano-

plate: (a) 1st mode; (b) 2nd mode; (c) 3rd mode; (d) 4th mode 

 



 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7. Buckling mode shapes of right-angled triangular 

nano-plate: (a) 1st mode; (b) 2nd mode; (c) 3rd mode; (d) 4th 

mode 



 Figure 8. Variations of buckling parameter with anisotropy 

ratio for different nonlocal parameters

 

 

 

TABLE 3. Buckling parameter λb in the first four buckling modes for nonlocal plate model of right-angled triangular nano-plate 

(b/a=1,a=10 nm) 

Buckling mode 
Nonlocal parameter  

0 1 2 3 4 

Simply supported (SSS)      

1st 49.3480 (49.348) 33.0423  24.8359 19.8949 16.5936 

2nd 98.6994 49.6727 33.1876 24.9179 19.9474 

3rd 128.3193 56.2017 35.9802 26.4599 20.9235 

4th 167.8318 62.6631 38.5233 27.8100 21.7588 

Clamped (CCC)      

1st 139.5749 (139.57) 58.2594 36.8126 26.9073 21.2023 

2nd 205.5739 67.2747 40.2181 28.6825 22.2894 

3rd 247.8953 71.2557 41.6078 29.3824 22.7097 

4th 304.7242 75.2918 42.9523 30.0466 23.1045 

* Values in parentheses are taken from [54]. 
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4. 4. Effect of Edge Supports          The effect of small 

scale on the buckling loads of an isosceles triangular 

nano-plate is shown in Figure 9 for different support 

conditions at edges. It is seen in the figure that in both 

fully simply supported (SSS) and fully clamped 

boundary conditions (CCC), as the nonlocal parameter 

increases the buckling load parameter decreases. 

Further, it is found that the nonlocal effect is more 

prominent for clamped boundary condition. The relative 

error percent due to neglecting nonlocal effect for fully 

simply supported and fully clamped edges with μ=4nm
2
 

are found to be  51.83% and  75.55%, respectively.  

 
4. 5. Effect of Elastic Medium    As the nano-plates 

are used as reinforcements in advanced nano-

composites [3-5], an investigation on the effect of 

elastic medium on critical loads of a triangular nano-

composite plate, in the presence of non-locality, is 

carried out in this section. Since the elastic matrix of 

nano-composite here is modeled using the two-

parameter Winkler-Pasternak elastic medium, Equation 

(13), the effect of these parameters namely the Winkler 

parameter kw and the Pasternak parameter kp on critical 

buckling loads are studied and the results are presented 

in Figure 10a and Figure 10b, respectively. It is seen in 

Figure 10a that as the Winkler parameter increases the 

buckling loads increase for all values of nonlocal 

parameter. Also it is found in this figure that as the 

nonlocal parameter increases the current increase takes 

place in a nonlinear manner. The Pasternak parameter of 

the medium has the same influence on the buckling 

parameter as it can be seen in Figure 10b.  However, 

here in the current domain of the Pasternak parameter, 

the increase in buckling parameter is linear. It is seen 

that the medium parameters affect the influence of 

nonlocal parameter on the results as was reported before 

[31].  

To show this, error percent form of the results are 

presented in Figure 11a and 11b for Winkler and 

Pasternak parameters, respectively. It is found from 

Figure 11a that for nonlocal parameter μ=1 nm
2
 as the 

Winkler parameter increases the error percent decreases. 

This means that the increase in Winkler parameter of 

elastic medium, a harder matrix for nano- composite 

plate, decreases the nonlocal effect for the current value 

of nonlocal parameter. But for other nonlocal 

parameters the trend is somehow different. For example 

for nonlocal parameter μ=2 nm
2
 the error percent 

decreases by Winkler parameter until a special amount, 

here about KW=800, then it increases with Winkler 

parameter. This can be interpreted so that as the 

medium become stiffer the nano-composite plate 

buckles in a different mode shape, a higher mode, and 

as the nonlocal effect is more prominent in the higher 

buckling modes, as discussed in section 4.2, the error 

percent increases. 

 
Figure 9. Effect of edges support and nonlocal parameter on 

buckling parameter 

 

 

 
(a) 

 

 
(b) 

Figure 10. Effect of elastic medium and nonlocal parameter 

on critical buckling loads of isosceles triangular nano-

composite plate: (a) Winkler parameter; (b) Pasternak 

parameter.
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(a) 

 

 
(b) 

Figure 11. Effect of elastic medium on the influence of 

nonlocal parameter on critical buckling loads of isosceles 

triangular nano-composite plate: (a) Winkler parameter; (b) 

Pasternak parameter.

 

 

 

In fact, the magnitude of Winkler parameter of 

elastic medium affects the buckling mode shape. 

Further, from Figure 11a it is revealed that as the 

nonlocal parameter increases this change in the error 

percent or change in buckling mode occurs for smaller 

Winkler parameters. For better understanding, the 

change in buckling mode shape with Winkler parameter 

is presented in Figure 12. From Figure 11b, also, it is 

found that as the Pasternak parameter increases the error 

percent and the nonlocal effect decrease. In fact, in the 

current domain for the Pasternak parameter the buckling 

mode shape is the same and the variation of error 

percent are smooth and linear. Thus, based on this 

interpretation the nonlinear manner in Figure 10a is also 

well understood. It should be noted that in Figures 10a, 

10b, 11a and 11b the results are presented for non-

dimensional medium parameters which are defined as: 

24

11 11

, .
pw

W P

k ak a
K K

D D
 

 
(27) 

 
(a) 

 
(b) 

Figure 12. Buckled isosceles triangular nano-composite plate 

with nonlocal parameter μ=2nm2: (a) KW=800; (b) KW=900.

 

 

5. CONCLUSION  
  

In this work, buckling analysis of orthotropic triangular 

nano-composite plates under uniform in-plane 

compression at the nano scale has been studied using 

the nonlocal CPT. Based on the nonlocal theory, the 

governing equations for both vibration and buckling 

problems have been derived and the Galerkin method 

has been applied to solve the eigenvalue equations. 

Areal coordinates system has been employed to express 

the geometry of triangular nano-composite plate with 

arbitrary shape in a simple form, and then the 

interpolation functions have been used to form an 

assumed expression for the transverse displacement 

which also satisfies the kinematic boundary conditions 

at the edges. In the current solution method, there is no 

need for mesh generation and thus large degrees of 

freedoms. Effect of small scale for different base side 

lengths, mode numbers, aspect ratios, material 

parameters, boundary conditions and medium 

parameters has been investigated. From the study the 

following conclusions can be drawn: 

 The small scale has a decreasing effect on the 

critical loads of isosceles and right-angled triangular 

nano-composite plates. 

 Nonlocal effect becomes more prominent when the 

base side length of triangular nano-composite plate 

decreases. 

 The small scale effect decreases when the aspect 

ratio increases. 

 Non-locality has greater influence on critical loads 

in higher mode numbers. 

 Buckling parameter increases by increasing degree 

of anisotropy and the difference between nonlocal 

and local results increases for greater values of 

anisotropy ratio. 
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 The nonlocal effect is more prominent for clamped 

edges. 

 The Winkler parameter of elastic matrix increases 

the critical loads of triangular nano-composite plates 

but has different influences on the nonlocal effect 

i.e. it can decrease or increase the nonlocal effect 

depending on its value and the buckled shape of the 

nano-composite plate.  

 The Pasternak parameter of the medium increases 

the buckling loads of the triangular nano-composite 

plate and decreases the nonlocal effect both in linear 

manners.  

Finally, it has to be mentioned that the solution 

procedure taken here can also be applied for the 

buckling analysis of nano-composite plates with 

arbitrary shape which is an efficiency for imperfect 

structures’ analysis and topology optimization 

problems in which other methods of studying such 

as experiment or molecular simulations may be 

impossible or lead to huge time lapses. 
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چكيده
 

 

حاضر اثرات مقیاس کوچک بر بارهای بحرانی کمانشی نانوصفحات کامپوزیتی مثلثی تحت بارگذاری فشاری در مطالعه 

است. از آنجا که در مقیاس کوچک ساختار صفحات گسسته است و اثر نیروهای ای بررسی شدهیکنواخت درون صفحه

حلی برای بسط دادن یک مدل پیوسته معادل برای پذیر غیرمشود، تئوری الاستیسته مقیاسبرد قابل ملاحظه می چسبنده طویل

سازی دقیق رفتار الاستیک ماتریس است. برای مدلها بکار گرفته شدهنانوصفحات با درنظر گرفتن تغییر در رفتار مکانیکی آن

ایداری با استفاده است. در ادامه معادلات حاکم بر پپاسترناک استفاده شده-حول نانوصفحه از مدل الاستیک دو پارامتری وینکلر

است. از تئوری کلاسیک صفحات و اصل کار مجازی برای نانوصفحه کامپوزیتی مثلثی بدون نقص هندسی استخراج گردیده

است. سپس از روش عددی معروف گالرکین به همراهی دستگاه مختصات مساحتی به عنوان مبنای روش حل استفاده شده

گیرد. اثر پارامتر نظر می ای پیوسته با شکل دلخواه درا به عنوان یک ابرالمان صفحهروش حل حاضر کل نانوصفحه کامپوزیتی ر

ها در لبه و ماتریس الاستیک بر بارهای بحرانی مورد غیر محلی، ابعاد، نسبت منظر، مودهای کمانشی، ناهمسانگردی، تکیه گاه

های پایداری نانوصفحات تاثیر چشمگیری بر مشخصه که تمامی این پارامترها دهدنتایج نشان میاست. بررسی قرار گرفته

طور مشهود به مقدار پارامتر غیرمحلی نانوصفحه کمانش یافته خصوصا در ابعاد هکامپوزیتی دارند. نتایج بارهای بحرانی ب

همچنین دیده  تر بستگی دارد.های محکمگاهتر، نسبت منظر کمتر، مودهای کمانشی بالاتر، ناهمسانگردی بیشتر و تکیهکوچک

توانند منجر به کاهش شده پارامترهای ماتریس الاستیک، خصوصا پارامتر وینکلر، تاثیر بسزایی بر اثر مقیاس کوچک دارند و می

تواند به واسطه تخمین مقادیر زیاد برای بارهای بحرانی، میهیا افزایش آن شوند. استفاده از تئوری الاستیسیته کلاسیک، ب

تواند در طراحی، تحلیل و ناقص این نانوساختارهای پر کاربرد منجر شود. نتایج حاصل از تحقیق حاضر میتحلیل  طراحی و

مکانیکی که از نانوصفحات کامپوزیتی به عنوان اجزاء باربر  -های الکتریکیها نظیر نانو سیستمسازی بسیاری از نانو سیستمبهینه

ها با افزایش سختی خمشی های نانو در نانوکامپوزیتر چه دیده شده که پرکنندهگیرند مورد استفاده قرار گیرند. اگبهره می

دهند اما در مطالعه حاضر از سوی دیگر نشان داده شده که اثر مقیاس استحکام کلی نانوصفحات کامپوزیتی را افزایش می

نتیجه بارهای بحرانی کمانشی آن  در ، استحکام نانوصفحات کامپوزیتی وپژوهش کوچک در نانوساختارها، نانوصفحات در این

منظور هکند که باید بدهد. در نتیجه اثر مقیاس کوچک نقش مهمی در طراحی و تحلیل این نانوساختارها بازی میرا کاهش می

جلوگیری از فروپاشی این ساختارها به طور دقیق و کامل مورد بررسی و توجه قرار گیرد. علاوه بر این روش حل مورد 

تواند برای تحلیل نانوصفحات کامپوزیتی با شکل دلخواه مورد یافته است که میاستفاده در مطالعه حاضر یک روش تعمیم

   د. روشمار میهسازی ساختاری باستفاده قرار گیرد که یک مزیت در مطالعه بهینه
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