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A B S T R A C T  
 

 

The Dynamic Job Shop (DJS) scheduling problem is one of the most complex forms of machine 
scheduling. This problem is one of NP-Hard problems for solving which numerous heuristic and 

metaheuristic methods have so far been presented. Genetic Algorithms (GA) are one of these methods 

successfully applied to these problems. In these approaches, of course, avoiding premature 
convergence, better quality and robustness of solutions is still among the challenging arguments. The 

adapting of GA operators in amount and range of coverage can operate as an efficient approach in 

improving its effectiveness. In the proposed GA (GAIA), (1) the adapting in the amount of operators’ 
algorithm based on the solutions’ tangent rate for premature convergence is done. Then, (2) the 

adapting in the range of coverage of operators’ algorithm, in first step, happens by operators 

convergence on Bottleneck Recourses (BR) (which was detected initially) and, in the next step, occurs 

by operators convergence on the elite solutions so that the search process focuses on more probable 

areas than the whole space of solution. Comparing the problem results in the static state with the 

results of other available methods in the literature indicated high efficiency of the proposed method. 
 

doi: 10.5829/idosi.ije.2016.29.03c.09 
 

 
NOMENCLATURE  

  Number of machines,             Parameters 
   Opaeration,               great and positive number 
   Each job (e.g. the job  ) enters the shop for process a nonzero    time.   Number of jobs,             

     If the job   is performed on the machine   prior to the job  , the variable 

value      equals on; otherwise, the value equals zero. 
Variables 

Index     the job’s completion time   on the machine   

  Job 
     the operation process time   from the job   is on the 

machine   
  Operation     the scheduling scheme for machine   
  machine     objective value 

 
1. INTRODUCTION1 

 

Combinational optimization covers a series of problems, 

which have special importance in different fields of 

engineering, management, and computer science. The 

studies carried out in this field, in order to develop 

effective techniques for finding minimum or maximum 

                                                           

11*Corresponding Author’s Email: n_nahavandi@modares.ac.ir (N. 

Nahavandi) 

amounts of functions are targeted with a large number 

of independent variables. Since exact solution methods 

for combinational optimization problems and problems 

with hard complexity are not applicable (for reasons 

such as considerable zero and one variables, many 

constraints, etc.) therefore, various metaheuristic 

algorithms are developed for gaining qualitative 

solution in the acceptable time. Nowadays, 

improvement in performance of such algorithms for 

gaining qualitative and rumbustious solutions is among 

the areas of interest of researchers in these fields. 
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2. THE DEFINITION OF RESEARCH PROBLEM 
 

2.1. Dynamic Job Shop Scheduling Problem There 

are   jobs, and   processes, which performing each job 

requires a number of distinct operations. Each job enters 

the shop for processing a nonzero    time. The    job 

includes a chain of operations                   . 

The research aim is to minimize the      in the 

supposed DJS problem, with other suppositions as: (1) 

Each machine only process one operation at each time 

and (2) Each job only be processed by one machine at 

each time [1]. 

 
2. 2. Bottleneck Detection Sub Problem Scheduling 

problems in genuine manufacturing systems generally 

have Bottleneck Resources (BR) [2]. In a classification 

by Hinckeldeyn et al. (2014), various types of BRs are 

capacity, parts, flexibility, layout, budget, information, 

and Know-How [3]. According to concepts of the 

theory of constraints (TOC), the throughput of the 

manufacturing systems is limited by the capacity of the 

BR. Hence, in order to improve system performance, we 

should identify and assess the importance of BR and 

improve the capacity of such resources to the greatest 

extent possible. Different major BR(s) may be classified 

in three distinct categories. These categories are: Simple 

BR, Multiple BRs, and Shifting BR(s) [4]. 

 

 

3. LITERATURE REVIEW 
 
3.1. GA in Job Shop (JS) Scheduling Problems    
Studies about scheduling in dynamic environment are 

divided into two main groups. The first group is queue-

based and the second group is rolling time horizon 

technique [5, 6]. Regarding to the complexity of the 

problem, the above analytical methods are often 

employed to solve single machine problems. However, 

for problems with more machines, metaheuristic 

methods are used. GA has better performance than other 

methods. Brandimat solved the problem of flexible 

process program and proposed two methods for solving 

namely, Dual-based and GA based [7]. Lee et al. 

presented a GA for solving similar problem with 

flexible JS in supply chain [8]. Tee and Ho utilized 

Genetic programming for solving their flexible JS 

problem [9]. Gao et al. used combination of GA with 

innovative method of transfer of neck bottle for solving 

flexible JS scheduling problem [10].  

 

3.2. Devleop in GA Koliner  employed Genetic Agents 

that using agents of two or more section points having 

priority to other agents [11]. Dagli and Sittisathanchai 

introduced premature convergence and fell them in to 

local optimal points trap as a one of the mast defects in 

classic GA [12]. Ghedjati presented a synthetic 

approach from metaheuristic methods, GA-based for 

solving flexible JS problem [13]. Kurz and Askin 

presented RKGA metaheuristic algorithm for solving 

FS problem [14, 15]. Tay and Wibawo utilized a certain 

representation for their GA and solved scheduling 

problem of flexible JS [16]. Nahavandi and Abbasian 

presented simple GA with two-dimensional 

chromosomes for solving scheduling problem and they 

showed the priority of their method towards a similar 

method in literature [17, 18]. Cheng and Gen presented 

a GA for solving studied problem by Kacem et al. [19]. 

Ho et al. developed a methodology for solving flexible 

JS scheduling problem supposed to secondary rotation 

of jobs introduced inordinate counting on evolutionary 

algorithms [20]. Amiri et al. used a compound plan for 

simulation of chromosome behavior [21]. Merino et al. 

proposed binary representation of GEP chromosomes 

for search solutions [11]. Nahavandi and Abbasian 

presented GA with two dynamic dimensional 

chromosomes for solving their problem [22]. Versa et 

al. proposed a method so called calculation data- 

intensive technique and showed that this technique has 

basic role in scaling and estimating GA distribution 

[23]. Yusof et al. solved the JS scheduling problem by 

using a hybrid parallel micro GA [1]. Qing-dao-er-ji and 

Wang proposed a new hybrid GA for JS scheduling 

problem [1]. Asadzadeh proposed an agent-based local 

search GA for solving JS scheduling problem [1]. The 

literature indicate that for more complicated problems a 

GA needs to couple with problem-specific methods in 

order to make the approach really effective.  

 
 
4. MATHEMATIC MODEL 
 
4. 1. Bottleneck Definition Bottleneck is the machine 

whose scheduling scheme alteration has the greatest 

effect on the objective of the manufacturing system [24, 

25].  

 

Definition 1: The sensitivity of the objective value to 

the scheduling scheme alteration of machine   is 

alternation of the objective value over alternation of 

scheduling scheme for the machine  , that is:  

(1)    
   
   

           

 
Definition 2: The machine with the largest    is the 

corresponding bottleneck (BR). Namely,  

(2)            
         

    

 
4.2. The Problem’s Mathematical Model The DJS 

problem is formulated as follows [17, 22]: 
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(3)                ∑     
   

 
      

(4) 

        

             

                   , 

                

(5) 
         

           

                    

      

(6) 
         

           
                      

(7) 
       

     , 
               

(8) 
                            , 

              ,                  . 

Equation (3) is main objective function. Constraint (4) 

guarantees that sequence of jobs operation set does not 

have time interference. Set of constraints (5) and (6) 

guarantee simultaneously that set of operation that 

employed on single machine, do not have time 

interference. The constraint (7) are mentioned so that 

the completion time of the first jobs operations be equal 

or greater than the process time of that operation, in 

addition to the waiting time of the mentioned job in the 

shop. The job’s entrance times to the shop for the jobs 

less than 30, the         uniform dispatching are used 

and for the jobs equal or greater than 30, the         
uniform dispatching are used [9]. In order to measure 

validity of the proposed mathematical model for DJS 

problem, a solution approach for small size problems is 

implemented and tested by Lingo software. In the 

following, the proposed solution to the problems of 

BRD for DJS will be presented. This solution is the 

developed case of Zhai et al., method was proposed for 

BRD problem for static JS [24, 25]. 

 
 
5. PROPOSED SOLUTION METHOD 
 
5.1. Hurestic Solution Method for BRD 
Subproblem in DJS (TA-DJS)     In order to use the 

definitions (1) and (2), we need schedules at first. In this 

paper, these schedules are determined by using 

dispatching rules. Therefore, if the number of 

dispatching rules is  , then the number of the 

combinations of dispatching rules is   . If the number 

of dispatching rules increases, the computational times 

required for gaining schedules derived from them was 

greatly increase. In addition, in order to use the 

mentioned definitions, we need to calculate    variations 

in denominator. However, it should be taken into 

account that    is not a quantitative parameter. 

Therefore, we cannot directly use the mentioned 

relation in the definitions (1) and (2) for BD. For this 

reason, in this study, an indirect method for BD using 

orthogonally and based on Taguchi Method (TA-DJS) 

has been applied. In this method, there is no need to 

calculate     and    . This method treats    as a whole; 

therefore, we can obtain    for each machine by using 

orthogonal experiment [24, 25]. The corresponding 

relations between the elements of Taguchi method 

based on orthogonal experiment (TA-DJS) and the 

element of BD in a DJS environment are shown in 

Table 1. 

According to the principles of orthogonal 

experiment, the variation for each factors (  ) is 

computed by: 

    ∑                         

(9) 

   
   (   )     (   )

   
                  

   equals    in Definition (1).               

corresponds    in Definition (2). This method is an 

extended case of the proposed method which is 

extended for the studied problem in a dynamic 

environment and the results are brought in the following 

sections [24]. 

 

5.2. Genetic Algorithm Based on Bottleneck using 
Intelligent Agent (GAIA)     In this section, a GA 

based on BR(s) is introduced by using intelligent agents 

for JSP which its structure and details will be discussed. 

 

5.2.1. GAIA Structure      According to Figure 1, each 

agent of the proposed model is developed for certain 

propose. The agents are: 

 Adaptive Value Local Search Agent (AVLSA). 

 Bottleneck Local Search Agent (BLSA). 

 Local Search Agent (LSA). 

 Elite Local Search Agent (ELSA). 

 

5. 2. 2. GAIA Design 
 
5. 2. 2. 1. Chromosomes Representation        The 

first step in using GA is to represent the problem’s 

solutions in the form of a chromosome [26].  

 

 
 

TABLE 1. Corresponding relations between TA-DJS and BD 

 

Elements of BD in DJS Elements of TA-DJS 

Machines of the manufacturing system Factors 

Dispatching rules for machines Levels 

Objective of the manufacturing system Estimated index 

Bottleneck Key factor 
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Considering criteria such as minimum space and 

time requirement is highly important due to complex 

computation of the problem and avoidance of creation 

of infeasible chromosomes in the design of the 

chromosomes [17, 27]. 

In the proposed GA, a two-dimensional 

chromosome is utilized. This method is similar to Lee et 

al.[8]. For instance, the array (3 2 1 2 3 1 1 2) as shown 

in Figure 2 indicates a sample solution for the problem 

of Figure 3 in this representation, 1 represents job of   , 

Figure 1. The framework of the genetic algorithm with intelligent agents 

Start 

Load DJS, TM-DJS and GA parameters 

Construct population P  

(Greate N initial chromosomes and calculate 
their fitness values) 

Generation 

span satisfied 

End 

Show 

results 

Select two different chromosomes from P; Send 

selected chromosomes to DVLSA for 
performing DynamicallyValue Local Search 

procedure 

Receive chromosomes from DVLSA; Send it to 
LSA for performing Local Search procedure; 

Calculate new chromosomes fitness values and 

insert it into P as approved 
 

P has ‘Best’ elite 

chromosomes 

Perform Operator Dynamic Rate procedure 

Select two different chromosomes from P; Send 
selected chromosomes to BLSA for performing 

BottleneckLocalSearch procedure 

Receive chromosomes from BLSA; Send it to 

LSA for performing LocalSearch procedure; 

Calculate new chromosomes fitness values and 
insert it into P as approved 

 

Calculate the number of elite chromosomes in P 

Select elit 

chromosome from 

population P and 
send it to ELSA 

for performing 

Elite Local Search 
procedure 

 

Receive elite 
chromosome from 

ELSA and insert it 

into P as approved 

Insert initial crosover and mutation rate 

Yes 

No 

Yes 

No 
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and so on.    includes three operations, thus the number 

of repeating 1 in the chromosome is 3 times. 

 

 
Layer Name                                 

Sequence 

Layer 

2 1 1 3 2 1 2 3 

Assignment 

Layer 

3 3 2 2 2 1 1 1 

Figure 2. Chromosome Representation sample in proposed 

GA 

 

The above figure is a sample solution for the following 

problem: 

 
Operation Job 

                  

                  

            

Figure 3. DJS with 3 job 

 

 

5. 2. 2. 2. Initial Population    In the proposed GA in 

order to avoid premature convergence, no heuristic 

method is used for generating initial population. 

 

5. 2. 2. 3. Fitness Function     In the GA, for 

evaluating the chromosomes, a certain index called 

fitness function is used. 

 

 

 
Offspring 1 1 2 1 3 3 2 1 2 4 4 

 

Parent 1 1 3 1 2 2 2 1 3 4 4 

First subset{ و }Second subset{ و } 

Parent 2 4 2 3 4 1 3 2 1 2 1 
 

Offspring 2 1 2 3 1 1 3 2 4 2 4 

Figure 4.POX Crossover1 

 
Parent 1 1 2 2 1 2 3 3 1 
 

Parent 2 3 2 1 1 1 2 2 3 

 

Offspring 1 3 3 1 1 1 2 2 2 
 

Offspring 2 2 1 2 1 2 3 3 1 

Figure 5.Two Point Crossover1 

 
 
5. 2. 2. 4. Genetic Operators 
 
5. 2. 2. 4. 1. Crossover Operators 
A) Crossover in Sequence Layer           In the GAIA, 

two operators of POX and two-point operator in a 

combination form and with the rate of    has been used. 

Crossover Type 1         In this crossover, two subsets 

of jobs are randomly selected. Then each gene from first 

parent belonging to the first subset is exactly transferred 

to the first offspring and the other genes of the first 

offspring are selected from second parent belonging to 

the second subset (Figure 4). 

 

Crossover Type 2       In this method, two numbers are 

randomly gained as cut points. Afterwards, the section 

between the two cut points for the two parents is 

swapped and then the sides for each of the offsprings 

are given values from parents in a way that no repetition 

occurs. After that, the machine’s assigned layer is also 

automatically adapted with the applied changes in the 

operation generation layer (Figure 5).  

 

Crossover Type 3: (Two point crossover2)    This 

crossover operator acts the same as the crossover 

operator in the sequence layer (TwoPoint Crossover1) 

differing in that by taking advantage of the 

chromosome’s assigned layer (in case of positive test 

result for the performed crossover), both selected genes 

for acting as two point crossover operator are the genes 

assigned to the bottleneck machine. 

 

B) Crossover in Assignment Layer (Machin 
Crossover)       After applying each of the crossover 

operators in the sequence layer, the crossover operator 

in the assignment layer is carried out in order to 

maintain the chromosome’s feasibility. It is in a way 

that in case of positive result for the test of applying 

crossover operator, first the crossover operator is 

applied on the sequence layer of the chromosome, and 

then the machine’s assignment layer is also 

automatically adapted with the applied changes in the 

operation generation layer. 

 

5. 2. 2. 4. 2. Mutation Operators 
Mutation Type 1 (Mutation1_1)       This method is 

called Swap Mutation. Prior to run this method; first, 

mutation probability test is performed on the candidate 

chromosome. Then, in case of success in this test, the 

mentioned chromosome will undergo mutation and the 

values for its two selected genes (in the sequence layer) 

will be swapped. In this case, the machine’s assignment 

layer is also adapted automatically with the applied 

changes in the sequence layer. 

 

Mutation Type 2 (Mutation1_2)       This method is 

called Insert Mutation. Prior to run this method; first, 

mutation probability test is carried out on the candidate 

chromosome. If this test is successful, the mentioned 

chromosome will be mutated and the value for the 

selected gene (in the sequence layer) will be put in its 

place. In this case, the machine’s assigned layer is also 

adapted automatically with the applied changes in the 

sequence layer. 

 

Mutation Type 3 (Mutation1_3)      This method is 

called Inverse Mutation. Prior to run this method, 
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mutation probability test is first done for the candidate 

chromosome. If this test is successful, the mentioned 

chromosome will be mutated and the values for the two 

selected genes (in the sequence layer) will be inversed. 

In this case, the machine’s assignment layer is 

automatically adapted with the applied changes in the 

sequence layer, as well. 

 

Mutation Type 4 through 9        Both two sets of 

these mutation operators act the same as the mutation 

operator set in the sequence layer (Mutation 1). The 

only difference is that by using chromosome assignment 

layer (in case of positive result for mutation application 

test) in Mutation 2 both selected genes for performing 

the mutation operation are genes assigned to the 

bottleneck machine. However, in Mutation 3 only one 

of the selected genes for performing mutation operation 

is the gene assigned to the bottleneck machine. 

 

5. 2. 2. 5. Stop Criteria          The algorithm stops after 

reaching to        . 

 

5. 3. Adaptability of Operators GAIA        
Adaptability of GA’s operators in the amount and their 

scope of coverage, can act as an efficient method for 

improving performance and effectiveness of these 

approaches. Whereas, adaptability in the amount of 

GA’s operators prevents premature convergence of the 

algorithm and adaptability in the scope of coverage of 

the algorithm results in maximum efficiency of 

important resources in the studied problem (such as 

bottleneck resources) and also improvement in the 

algorithm performance in each step of its run. In the 

proposed GA, in the first stage, adaptability for 

operators’ value based on premature convergence 

tangent rate of the algorithm’s solutions occurs. In the 

second stage, adaptability in the scope of coverage for 

the algorithm’s operators in the first step occurs with the 

convergence applied on the bottleneck resources 

(detected in pervious run) and in the next step occurs 

with the convergence applied on the algorithm elites.  

 

5. 3. 1. Adaptability of Operators in the Amount- 
Adaptable Value Local Search Agent (DVLSA) In 

the GA, two operators of classic genetic with crossover 

and mutation rate, compete on the way of problem 

convergence. Whereas, incorporating mutation operator 

creates variety in the population, the crossover operator 

forces the population to converge. Considering this fact, 

in arranging the GA’s parameters, it is always tried to 

find on optimum arrangement for probabilities of 

applying crossover and mutation operators (using 

methods such as DOE, simulation, and so on). On the 

other hand, we know that determining and applying 

constant values for probability of occurring crossover 

the algorithm and cause premature convergence in the 

algorithm. For improving the GA and avoiding 

premature convergence, the technique of “changing 

crossover and mutation rates while running the GA” has 

been proposed in this study (Figure 6). In GAIA, in 

order to avoid premature convergence (due to greater 

crossover rate) and also excessive variety (owing to 

greater mutation rate), the crossover and mutation rate 

adaptively changing. In this case, in GA design, the 

effort has been made that the amounts of mutation 

increase with IR and the amount of crossover decrease 

with DR. If this condition does not meet, the amounts of 

mutation and crossover will change again to the 

problem’s initial amounts. 

 
5. 3. 2. Adaptability of Operators in the Scope of 
Coverage 
 
A) Bottleneck Local Search Agent (BLSA) 

This procedure performs bottleneck local search on the 

selective chromosomes of the population (Figure 7). 

B) Local Search Agent (LSA) 

This procedure performs local search on the selected 

chromosomes of the population (Figure 8). 

 
 

 

Figure 6. DynamicValue Local Search procedure 

Procedure DynamicValueLocalSearch 
Begin 

n = number of jobs; 

m = number of machines; 

γ   Crossover Proboblity; 

γ   Mutation Proboblity; 

IR = Increase Rate 

DR = Decrease Rate 

for i = 1 to      𝑔𝑒𝑛 do 

Do 

Get initial solutions  &  ; 

α = random_integer_number [1,nm]; 

β = random_integer_number [1,nm] , β ≠  α; 

Pc&PM = random_ number [0,1]; 

if (Pc  γ ) then   
′    

′   = POXCrossover (     ) and  

      MachineCrossover (     ) 

d = random_integer_number [1,2]; 

if (d >  ) then   
′    

′   = TwoPointCrossover1 (     ) and  

                 MachineCrossover (     ) 

End if 

End if 

if (PM  γ ) then   
′    

′   = Swap Mutation (      α β) 

δ  δ  = random_integer_number [1,2]; 

if (δ >  ) then   
′    

′   = Insert Mutation (      α β) 

else if (δ >  ) then   
′    

′   = Inverse Mutation (      α β) 

End if 

if (fitness(  
′ )  fitness(  )) then      

′  

elseif (fitness(  
′ )  fitness(  )) then      

′  

End if 

if (“convergency test is ok”, count(elite solutions) = min(i,nm)  

    then  γ  γ  D &γ  γ      

End if 

while γ  𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 𝑃𝑟𝑜𝑏𝑜𝑏𝑙𝑖𝑡𝑦 

End while 

End for 

disp (min(fitness( )) 

End. 
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Figure 7. Bottleneck Local Search procedure 

 
 
 

 
Figure 9. Elite Local Search procedure 

 

 

 

C) Elite Local Search Agent (ELSA) 

This procedure performs elite local search on the elite 

chromosomes of the population (Figure 9). 

 
 
6. DESIGN AND ADMINISTER OF NUMERICAL 
TESTS 

 

6. 1. Method of Selection/ Production of Sample 
Problems      In this section, the performance of the 

heuristic solving method for sub problem of bottleneck 

detection (TA-DJS) and GA with intelligent agents 

(GAIA) using different sample problems has been 

evaluated. These sample problems incorporate different 

classes of standard JSP problems such as FT test 

problems created by Fisher and Thompson (1963), LA 

test problems created by Lawrence (1984), and ORB 

test problems created by Applegate and Cook (1991).  

Simulation details for each sample (such as number of 

machines, jobs, operations, and process time for each 

operation as well as, process route) are placed in the 

following route: 

 
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/jobshop1.txt 
 

In the first step in order to analyse TA-DJS 

performance, JS scheduling benchmark problems 

including different sizes of operation from 50, 75, 100, 

150, 200, and 300. The estimation index includes     . 

Dispatching rules for this index include FCFS, LPT, 

LOR, MWR, SPT, LWR, MOR, WINQ, and NINQ 

[28]. Furthermore, the selected orthogonal array based 

on 9 selected estimated indexes include      
   (or 

        ). In  the second step, in order to analyse GAIA 

operation, all three sets of job shop scheduling 

benchmark problems is used. In addition, the values for 

GAIA parameters are as the Table 2. 

 

Figure 8. Local Search procedure 

Procedure BottleneckLocalSearch 

Begin 

γ   Crossover Proboblity; 

γ   Mutation Proboblity; 

Get initial solutions s & s ; 

     s ; 

     s ;  

n = number of jobs; 

m = number of machines; 

𝜗 = number of bottleneck machine; 

α = random_integer_number [1,nm]; 

β = random_integer_number [1,nm] , β ≠  α; 

Pc PM = random_ number [0,1]; 

if (Pc  γ ) then   
′    

′   = POXCrossover (     ) and  

MachineCrossover (     ) 

d = random_integer_number [1,2]; 

if (d >  ) then   
′    

′   = TwoPointCrossover2 (      𝜗) and  

MachineCrossover (     ) 

elseifthen   
′    

′   = TwoPointCrossover1 (     ) and  

MachineCrossover (     ) 

End if 

End if 

if (PM  γ ) then 

δ  δ ,δ ,δ4,δ5,δ6  = random_integer_number [1,2]; 

if (δ >  ) then   
′    

′   = Swap Mutation2 (      α β 𝜗) 

else if (δ >  ) then   
′    

′   = Insert Mutation2 (      α β 𝜗) 

else if (δ >  ) then   
′    

′   = Inverse Mutation2 (      α β 𝜗) 

else if (δ4 >  ) then   
′    

′   = Swap Mutation3 (      α β 𝜗) 

else if (δ5 >  ) then   
′    

′   = Insert Mutation3 (      α β 𝜗) 

else if (δ6 >  ) then   
′    

′   = Inverse Mutation3 (      α β 𝜗) 

End if 

if (fitness(  
′

)  fitness(  )) then      
′

 

elseif (fitness(  
′

)  fitness(  )) then      
′

 

End if 

if (fitness(  )  fitness( s )) then s      

elseif (fitness(  )  fitness( s )) then s      

End if 

End. 

Procedure LocalSearch 

Begin 

Get solution  S; 

    S; 
n = number of jobs; 
m = number of machines; 

for i = 1 to nm do 

for j = 1 to nm do 

if (  ≠  ) then 

Begin 

 ′ = Swap (     ) 
if (fitness( ′)  fitness( )) then     ′ 

End if 

End if 

End for 

End for 

if (fitness( )  fitness( S)) then  S     

End if 

End. 

Procedure EliteLocalSearch 

Begin 

Get elite solution  E; 

    E; 

n = number of jobs; 

m = number of machines; 

for i = 1 to nm do 

for j = 1 to nm do 

if (  ≠  ) then 

Begin 

 ′ = Swap (     ) 
if (fitness( ′

)  fitness( )) then     ′
 

End if 

End if 

End for 

End for 

if (fitness( )  fitness( E)) then  E     

End if 

End. 

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/jobshop1.txt
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6. 2. The TA-DJS Results     For performance analysis 

of BD methods, the SBD method has more reliability 

than the other common methods of BDP [5]. Apart from 

that, this method can present excellent result for DJSP 

[20]. Therefore, in this study, we compare the 

performance of the proposed TA-DJS method with the 

performance of MWL, BDOE, and SBD methods in the 

BDP. In the SBD method, we should calculate the 

optimal schedules before computing the machine active 

period. To compare the results, we suppose that the 

entrance time of the jobs to the shop is zero. All other 

parameters are similar to (1) and (11) references [7, 15]. 

In this section, the results from simulation are 

presented. For this reason, TA-DJS performance (in 

two-status dynamic and static) is compared to a prior-

to- run BD called BD-OE and a posterior-to-run 

BDcalled SBD and MWL methods. The results are 

shown in Tables 3, 4 and 5. According to the studies of 

Hinckeldeyn et al. (2014), there are various bottleneck 

counter measures such as scheduling solution, targeted 

source increase, increase of resource flexibility, process 

important, reduce workload of BR, and bottleneck 

oriented counter pricing [3]. Among these, 75% of the 

investigated researches by Hinckeldeyn et al. (2014) are 

carried counter out using scheduling solution approach 

as the bottleneck counter measures are [3]. Accordingly, 

in this study, in order to analyse the results of 

differences for the 3 mentioned methods, the MODJS 

with the objective of makespan and based on the 

detected bottleneck, has been solved and the results are 

brought about in Table 6. 

 

 
TABLE 2. The GAIA Parameters 

                    γ_2 IR DR 

100 100 0.95 0.10 0.001 0.001 

 

 

 
TABLE 3. BD results for small scale problems 

Problem’sNumber Problem’sSize(nm) 

Bottleneck Resource(s) Computational Time(s) 

DynamicTA-

DJS 

StaticTA-

DJS 

BD-

OE 

SBD MWL DynamicTA-

DJS 

StaticTA-

DJS 

SBD 

LA 01 105 5 5 5 5 5 0.30 0.30 7.50 

LA 02* 105 5 1 1 4 4 0.30 0.30 43.70 
LA 03 105 1 2 2 2 2 0.31 0.31 47.90 

LA 04* 105 1 5 1,3,5 1,3 5 0.30 0.30 46.60 
LA 06 155 1 1 1 1 1 0.55 0.55 56.20 

LA 07 155 1 1 1 1 1 0.55 0.55 55.60 

LA 08* 155 3 4 3 5 5 0.55 0.55 65.30 
LA 09 155 2 2 2 2 2 0.54 0.55 47.40 

Instances with * express that the bottlenecks detected by the three methods are different. 

 

 
TABLE 4. BD results for median scale problems 

Problem’sNumber Problem’sSize(nm) 

Bottleneck Resource(s) Computational Time(s) 

DynamicTA-

DJS 

StaticTA-

DJS 

BD-

OE 

SBD MWL DynamicTA-

DJS 

StaticTA-

DJS 

SBD 

LA 16* 1010 3 3 1,3 1,3 1 5.62 5.64 112.60 

LA 17 1010 4 4 4 4 4 5.54 5.51 134.90 

LA 18 1010 2 1 1 1 1 5.55 5.56 171.50 
LA 19* 1010 3 10 2 7 7 10.14 9.88 263.60 

 LA 21 1510 10 10 10 10 1 9.81 9.96 240.60 

LA 22 1510 5 5 5 5 8 9.85 9.98 208.10 
LA 23 1510 7 7 7 7 7 9.86 9.96 251.60 

LA 24* 1510 10 2 10 10 10 5.62 5.64 112.60 

 

 
TABLE 5. BD results for large scale problems 

Problem’sNumber Problem’sSize(nm) 

Bottleneck Resource(s) Computational Time(s) 

DynamicTA-

DJS 

StaticTA-

DJS 

BD-OE SBD MWL DynamicTA-

DJS 

StaticTA-

DJS 

SBD 

LA 26* 2010 2 2 5 5 1 15.49 15.52 380.30 

LA 27 2010 4 4 4 4 7 15.19 15.36 376.80 
LA 28 2010 2 2 2 2 2 15.40 15.46 356.40 

LA 29 2010 4 4 4 4 4 15.37 15.45 340.80 

LA 31 3010 1 1 1 1 1 29.38 29.43 623.40 
LA 32* 3010 9 2 9 7 7 29.49 29.49 585.50 

LA 33 3010 4 4 4 4 4 29.87 29.94 632.20 

LA 34* 3010 2 2 7 7 7 29.86 29.78 633.20 

Instances with * express that the bottlenecks detected by the three methods are different. 
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TABLE 6.The scheduling results using the BD by the 3 methods 

Problem’s Number Problem’s Size(nm) 

Bottleneck Resource(s) Computational Time (second) 

Static 

TA-DJS 

BD-OE SBD Static 

TA-DJS 

BD-OE SBD 

LA 02 105 1 1 4 821.8 821.8 870.0 

LA 04 105 5 5 3 702.6 702.6 760.4 

LA 08 105 4 3 5 902.0 1007.4 1137.9 
LA 16 105 3 1 3 1088.0 1102.3 1088.0 

LA 19* 155 10 2 7 962.0 951.0 1060.0 

LA 24 155 2 10 10 1126.6 1354.0 1354.0 
LA 26 155 2 5 5 1488.0 1716.3 1116.3 

LA 32 155 2 9 7 1996.0 2593.8 2540.9 

Instances with * express that the bottlenecks detected by the three methods are different. 

 

 
TABLE 7. Experimental results on FT, ORB and LA instances. 

Problem Size CGA BD GAIA BAS RPI GRASP RPI2 GLS1 RPI3 GLS2 RPI4 PaGA RPI5 Adaptive RPI6 
Parameterized 

Active 
RPI7 LSGA RPI8 aLSGA RPI9 

FT06 66 55 6 55 55 0.00 55 0.00 – – – – 55 0.00 57 3.64 55 0.00 55 0.00 55 0.00 

ORB05 1010 985 6 889 891 -0.22 891 0.00 – – – – 936 5.05 976 9.54 – – 903 1.35 901 1.12 

ORB09 1010 1029 9 939 943 -0.42 945 0.21 – – – – 994 5.41 996 5.62 – – 980 3.92 943 0.00 

LA01 105 666 5 666 666 0.00 666 0.00 666 0.00 666 0.00 666 0.00 666 0.00 666 0.00 666 0.00 666 0.00 

LA03 105 674 2 597 597 0.00 604 1.17 613 2.68 609 2.01 617 3.35 648 8.54 597 0.00 597 0.00 606 1.51 

LA05 105 593 1 593 593 0.00 593 0.00 593 0.00 593 0.00 593 0.00 593 0.00 593 0.00 593 0.00 593 0.00 

LA06 155 926 1 926 926 0.00 926 0.00 926 0.00 926 0.00 926 0.00 926 0.00 926 0.00 926 0.00 926 0.00 

LA07 155 939 1 890 890 0.00 890 0.00 890 0.00 890 0.00 890 0.00 890 0.00 890 0.00 890 0.00 890 0.00 

LA08 155 909 4 863 863 0.00 863 0.00 863 0.00 863 0.00 863 0.00 863 0.00 863 0.00 863 0.00 863 0.00 

LA09 155 951 2 951 951 0.00 951 0.00 951 0.00 951 0.00 951 0.00 951 0.00 951 0.00 951 0.00 951 0.00 

LA10 155 958 2 958 958 0.00 958 0.00 958 0.00 958 0.00 958 0.00 958 0.00 958 0.00 958 0.00 958 0.00 

LA11 205 1225 1 1222 1222 0.00 1222 0.00 1222 0.00 1222 0.00 1223 0.08 1222 0.00 1222 0.00 1222 0.00 1222 0.00 

LA12 205 1052 1 1039 1039 0.00 1039 0.00 1039 0.00 1039 0.00 1039 0.00 1039 0.00 1039 0.00 1039 0.00 1039 0.00 

LA13 205 1168 4 1150 1150 0.00 1150 0.00 1150 0.00 1150 0.00 1150 0.00 1150 0.00 1150 0.00 1150 0.00 1150 0.00 

LA14 205 1292 2 1292 1292 0.00 1292 0.00 1292 0.00 1292 0.00 1292 0.00 1292 0.00 1292 0.00 1292 0.00 1292 0.00 

LA15 205 1314 1 1207 1207 0.00 1207 0.00 1207 0.00 1207 0.00 1273 5.47 1207 0.00 1207 0.00 1207 0.00 1207 0.00 

LA17 1010 827 4 784 784 0.00 784 0.00 791 0.89 791 0.89 793 1.15 793 1.15 784 0.00 792 1.02 784 0.00 

LA31 3010 1917 1 1784 1784 0.00 1784 0.00 1784 0.00 1784 0.00 1844 3.36 – – 1784 0.00 1784 0.00 1784 0.00 

LA32 3010 1904 2 1850 1850 0.00 1850 0.00 1850 0.00 1850 0.00 1907 3.08 – – 1850 0.00 1850 0.00 1850 0.00 

LA33 3010 1838 4 1719 1719 0.00 1719 0.00 1719 0.00 1719 0.00 – – – – 1719 0.00 1745 1.51 1719 0.00 

LA35 3010 1983 7 1888 1888 0.00 1888 0.00 1894 0.32 1890 0.11 – – – – 1888 0.00 1958 3.71 1888 0.00 

 

 
TABLE 8. Average RPI 

Algorithm NIS 

Mean RPI 

OA GAIA  
Improvement 

GAIA 

GRASP 21 0.07 0.06 -0.01 

GLS1 18 0.22 0.22 0.00 

GLS2 18 0.17 0.17 0.00 

PaGA 19 1.42 1.45 0.04 

Parameterized 

 Active 
19 1.68 1.72 0.04 

Adaptive 17 0.00 0.00 0.00 

LSGA 21 0.55 0.58 0.03 

aLSGA 21 0.13 0.16 0.03 

 

 
Figure 10. Makespan versus generation for CGA and GAIA 

for LA29 instance  
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Figure 11. Makespan versus generation for CGA and GAIA 

for FT10 instance 

 

 

6. 3. The GAIA Results     In order to determine the 

performance of the GAIA, results are compared with 

other algorithms. A summary of experimental results is 

given in Tables 7–8. Tables list problem name, problem 

size, and GAIA in two stages of dynamic and static. In 

the section for comparing GAIA results in static state, 

the mentioned tables, as well as, incorporating GAIA 

results in static state and the Best Available Solution 

(BAS) from running the algorithms utilized for solving 

the research problem include as index called Relative 

Percentage of Improvement (RPI) by using the 

following equation:  

 P       
          

   
 (10) 

A comparison between average RPI obtained by 

proposed approach and the other algorithms are given in 

Table 8. This table shows the number of instances 

solved (NIS), and the average relative percent 

improvement (RPI) for the GIAI, and for the other 

algorithms (OA) listed in the table. The column named 

improvement shows the reduction of RPI obtained by 

the GAIA with respect to each of the other algorithms. 

For showing the behavior of the convergence point, the 

GAIA is compared with simple GA. The algorithms 

applied on some problem instances during various 

generations and the average makespan of the best 

schedules obtained are shown in Figures 10 and 11.  

 

 

7. SENSITIVITY ANALYSIS 
 
7. 1. Analyzing the Performance of TA-DJS 
According to the results revealed in Tables 3, 4, 5 and 6, 

The bottleneck’s conforming rate: 

 in the two methods of TA-DJS and SBD for 

different scale problems of DJS is up to 63%. 

 in the two methods of TA-DJS and BD-OE for 

small, medium, and large scale problems of DJS is 

up to 88%, 63%, and 63% respectively. In addition, 

the bottleneck’s conforming rate for      in the two 

methods of TA-DJS and BD-OE for problems to 

different scales of DJS is generally up to 71%. 

 The results from solving scheduling problem based 

on the detected bottleneck for variations indicate 

significant in 89% of problems. 

 

7. 2. Analysis of GAIA Performance According to 

the inserted results in the Tables 2, 3 and 4, it is 

observed that: 

 Improvement rate of the BAS for sample problems 

with different scales for DJS in the ORB class, with 

objective function      is up to %78 (7 better 

samples among 9 samples). 

 Improvement rate of the BAS for sample problems 

with different scales for DJS in the LA class, with 

objective function      is up to %20. 

According to Table 5, it is observed that the proposed 

algorithm has created a significant improvement in the 

quality of solutions, in comparison with almost all other 

algorithms (except Parameterized Active Algorithm). 

Diagrams (13) and (14) illustrate the effect of 

implementing GAIA and classic GA methods on the 

sample problems of LA29 and FT10. As illustrated in 

these diagrams, the convergence rate in GAIA is more 

than that of classic GA and solution resulted from 

GAIA in the number of different generation possess 

shorter lengths compared to those of classic GA. Hence, 

taking advantage of intelligent agents during running 

the GA increases convergence rate and improve in 

quality of these algorithms. 

 
 

8. CONCLUSION REMARKS 
 

In this study, a genetic algorithm based on intelligent 

agents (GAIA) was proposed for solving DJS problem 

by using BR. The proposed GA is adaptable in the 

amount and range of coverage for its crossover and 

mutation operators. The results of numerical tests 

indicate that the proposed GA has acted efficiently in 

finding optimum and near optimum solutions for sample 

DJS problems. In addition, the results of the robustness 

of the solutions from the proposed method compared to 

the solutions from the classic GA conforms the results 

of the Figures 10 and 11. According to these graphs, the 

intelligence and adaptability of operators has 

accelerated the amount and range of coverage of the 

convergence speed and has improved GA operation. 

Therefore, we can conclude that the proposed algorithm 

has acted efficiently in both aspects of solution quality 

and algorithm robustness. Developing the proposed 

method for the multipurpose DJS problems, flexible 

DJS problems, and scheduling of the material flow, as 

well as, combining it with scheduling in DJS 
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environments are such available fields for further 

research. 
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چكيده
 

 

رود. این مسئله از دسته  شمار می بندی ماشین به ترین حالات زمان ( یکی از پیچیدهDJSبندی کار کارگاهی پویا ) مسئله زمان

های ابتکاری و فراابتکاری متعددی برای حل آن ارائه شده است.  رود که تاکنون روش شمار می به NP-Hardمسائل 

آمیزی برای حل این دسته از مسائل مورد استفاده واقع  طور موفقیت هاست که به ( از جمله این روشGAهای ژنتیک ) ریتمالگو

ها و نیز استواری آنها  ها هنوز هم اجتناب از همگرایی زودرس الگوریتم، بهبود کیفیت جواب اند. البته در این دسته از روش شده

تواند به عنوان رویکردی  در مقدار و حوزۀ تحت پوشش می GAپویایی عملگرهای  ند.برانگیز هست از جمله مباحث چالش

( در گام اول: پویایی در مقدار عملگرهای الگوریتم بر اساس نرخ شیب همگرایی GAIAپیشنهادی ) GAکارآ عمل نماید. در 

، نخست بر روی منابع GAی دهد. سپس در گام دوم: پویایی در حوزۀ تحت پوشش عملگرها زودرس الگوریتم روی می

دهد. این امر  های نخبه روی می شوند( اعمال شده و سپس در مرحلۀ بعدی بر روی جواب گلوگاهی )که در ابتدا شناسایی می

شود. مقایسۀ نتایج الگوریتم در حالت استاتیک از  تری از فضای جواب مسئله می های محتمل منجر به تمرکز الگوریتم بر حوزه

 های موجود در ادبیات تحقیق، حاکی از کارآیی بالای رویکرد پیشنهادی است. نتایج حاصل از روشمسئله با 
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