
IJE TRANSACTIONS C: Aspects Vol. 29, No. 3, (March 2016) 347-358

Please cite this article as: N. Nahavandi, S.H. Zegordi, M. Abbasian, Solving the Dynamic Job Shop Scheduling Problem using Bottleneck and
Intelligent Agents based on Genetic Algorithm, International Journal of Engineering (IJE), TRANSACTIONS C: Aspects Vol. 29, No. 3, (March
2016) 347-358

International Journal of Engineering

J o u r n a l H o m e p a g e : w w w . i j e . i r

Solving the Dynamic Job Shop Scheduling Problem using Bottleneck and Intelligent

Agents based on Genetic Algorithm

N. Nahavandi*, S.H. Zegordi, M. Abbasian

Faculty of Industrial and Systems Engineering, Tarbiat Modares University, Tehran, Iran

P A P E R I N F O

Paper history:
Received 27December 2015
Received in revised form 19February2016
Accepted 03March2016

Keywords:
Dynamic Job Shop
Genetic Algorithm
Unmaturity Convergency
Inteligent Agent
Theory of Constraint
Bottleneck Resource(s) Detection

A B S T R A C T

The Dynamic Job Shop (DJS) scheduling problem is one of the most complex forms of machine
scheduling. This problem is one of NP-Hard problems for solving which numerous heuristic and

metaheuristic methods have so far been presented. Genetic Algorithms (GA) are one of these methods

successfully applied to these problems. In these approaches, of course, avoiding premature
convergence, better quality and robustness of solutions is still among the challenging arguments. The

adapting of GA operators in amount and range of coverage can operate as an efficient approach in

improving its effectiveness. In the proposed GA (GAIA), (1) the adapting in the amount of operators’
algorithm based on the solutions’ tangent rate for premature convergence is done. Then, (2) the

adapting in the range of coverage of operators’ algorithm, in first step, happens by operators

convergence on Bottleneck Recourses (BR) (which was detected initially) and, in the next step, occurs

by operators convergence on the elite solutions so that the search process focuses on more probable

areas than the whole space of solution. Comparing the problem results in the static state with the

results of other available methods in the literature indicated high efficiency of the proposed method.

doi: 10.5829/idosi.ije.2016.29.03c.09

NOMENCLATURE

 Number of machines, Parameters
 Opaeration, great and positive number
 Each job (e.g. the job) enters the shop for process a nonzero time. Number of jobs,

 If the job is performed on the machine prior to the job , the variable

value equals on; otherwise, the value equals zero.
Variables

Index the job’s completion time on the machine

 Job
 the operation process time from the job is on the

machine
 Operation the scheduling scheme for machine
 machine objective value

1. INTRODUCTION1

Combinational optimization covers a series of problems,

which have special importance in different fields of

engineering, management, and computer science. The

studies carried out in this field, in order to develop

effective techniques for finding minimum or maximum

11*Corresponding Author’s Email: n_nahavandi@modares.ac.ir (N.

Nahavandi)

amounts of functions are targeted with a large number

of independent variables. Since exact solution methods

for combinational optimization problems and problems

with hard complexity are not applicable (for reasons

such as considerable zero and one variables, many

constraints, etc.) therefore, various metaheuristic

algorithms are developed for gaining qualitative

solution in the acceptable time. Nowadays,

improvement in performance of such algorithms for

gaining qualitative and rumbustious solutions is among

the areas of interest of researchers in these fields.

N. Nahavandi et al. / IJE TRANSACTIONSC: Aspects Vol. 29, No. 3, (March 2016) 347-358 348

2. THE DEFINITION OF RESEARCH PROBLEM

2.1. Dynamic Job Shop Scheduling Problem There

are jobs, and processes, which performing each job

requires a number of distinct operations. Each job enters

the shop for processing a nonzero time. The job

includes a chain of operations .

The research aim is to minimize the in the

supposed DJS problem, with other suppositions as: (1)

Each machine only process one operation at each time

and (2) Each job only be processed by one machine at

each time [1].

2. 2. Bottleneck Detection Sub Problem Scheduling

problems in genuine manufacturing systems generally

have Bottleneck Resources (BR) [2]. In a classification

by Hinckeldeyn et al. (2014), various types of BRs are

capacity, parts, flexibility, layout, budget, information,

and Know-How [3]. According to concepts of the

theory of constraints (TOC), the throughput of the

manufacturing systems is limited by the capacity of the

BR. Hence, in order to improve system performance, we

should identify and assess the importance of BR and

improve the capacity of such resources to the greatest

extent possible. Different major BR(s) may be classified

in three distinct categories. These categories are: Simple

BR, Multiple BRs, and Shifting BR(s) [4].

3. LITERATURE REVIEW

3.1. GA in Job Shop (JS) Scheduling Problems
Studies about scheduling in dynamic environment are

divided into two main groups. The first group is queue-

based and the second group is rolling time horizon

technique [5, 6]. Regarding to the complexity of the

problem, the above analytical methods are often

employed to solve single machine problems. However,

for problems with more machines, metaheuristic

methods are used. GA has better performance than other

methods. Brandimat solved the problem of flexible

process program and proposed two methods for solving

namely, Dual-based and GA based [7]. Lee et al.

presented a GA for solving similar problem with

flexible JS in supply chain [8]. Tee and Ho utilized

Genetic programming for solving their flexible JS

problem [9]. Gao et al. used combination of GA with

innovative method of transfer of neck bottle for solving

flexible JS scheduling problem [10].

3.2. Devleop in GA Koliner employed Genetic Agents

that using agents of two or more section points having

priority to other agents [11]. Dagli and Sittisathanchai

introduced premature convergence and fell them in to

local optimal points trap as a one of the mast defects in

classic GA [12]. Ghedjati presented a synthetic

approach from metaheuristic methods, GA-based for

solving flexible JS problem [13]. Kurz and Askin

presented RKGA metaheuristic algorithm for solving

FS problem [14, 15]. Tay and Wibawo utilized a certain

representation for their GA and solved scheduling

problem of flexible JS [16]. Nahavandi and Abbasian

presented simple GA with two-dimensional

chromosomes for solving scheduling problem and they

showed the priority of their method towards a similar

method in literature [17, 18]. Cheng and Gen presented

a GA for solving studied problem by Kacem et al. [19].

Ho et al. developed a methodology for solving flexible

JS scheduling problem supposed to secondary rotation

of jobs introduced inordinate counting on evolutionary

algorithms [20]. Amiri et al. used a compound plan for

simulation of chromosome behavior [21]. Merino et al.

proposed binary representation of GEP chromosomes

for search solutions [11]. Nahavandi and Abbasian

presented GA with two dynamic dimensional

chromosomes for solving their problem [22]. Versa et

al. proposed a method so called calculation data-

intensive technique and showed that this technique has

basic role in scaling and estimating GA distribution

[23]. Yusof et al. solved the JS scheduling problem by

using a hybrid parallel micro GA [1]. Qing-dao-er-ji and

Wang proposed a new hybrid GA for JS scheduling

problem [1]. Asadzadeh proposed an agent-based local

search GA for solving JS scheduling problem [1]. The

literature indicate that for more complicated problems a

GA needs to couple with problem-specific methods in

order to make the approach really effective.

4. MATHEMATIC MODEL

4. 1. Bottleneck Definition Bottleneck is the machine

whose scheduling scheme alteration has the greatest

effect on the objective of the manufacturing system [24,

25].

Definition 1: The sensitivity of the objective value to

the scheduling scheme alteration of machine is

alternation of the objective value over alternation of

scheduling scheme for the machine , that is:

(1)

Definition 2: The machine with the largest is the

corresponding bottleneck (BR). Namely,

(2)

4.2. The Problem’s Mathematical Model The DJS

problem is formulated as follows [17, 22]:

349 N. Nahavandi et al./ IJE TRANSACTIONS C: Aspects Vol. 29, No. 3, (March 2016) 347-358

(3) ∑

(4)

 ,

(5)

(6)

(7)

 ,

(8)
 ,

 , .

Equation (3) is main objective function. Constraint (4)

guarantees that sequence of jobs operation set does not

have time interference. Set of constraints (5) and (6)

guarantee simultaneously that set of operation that

employed on single machine, do not have time

interference. The constraint (7) are mentioned so that

the completion time of the first jobs operations be equal

or greater than the process time of that operation, in

addition to the waiting time of the mentioned job in the

shop. The job’s entrance times to the shop for the jobs

less than 30, the uniform dispatching are used

and for the jobs equal or greater than 30, the
uniform dispatching are used [9]. In order to measure

validity of the proposed mathematical model for DJS

problem, a solution approach for small size problems is

implemented and tested by Lingo software. In the

following, the proposed solution to the problems of

BRD for DJS will be presented. This solution is the

developed case of Zhai et al., method was proposed for

BRD problem for static JS [24, 25].

5. PROPOSED SOLUTION METHOD

5.1. Hurestic Solution Method for BRD
Subproblem in DJS (TA-DJS) In order to use the

definitions (1) and (2), we need schedules at first. In this

paper, these schedules are determined by using

dispatching rules. Therefore, if the number of

dispatching rules is , then the number of the

combinations of dispatching rules is . If the number

of dispatching rules increases, the computational times

required for gaining schedules derived from them was

greatly increase. In addition, in order to use the

mentioned definitions, we need to calculate variations

in denominator. However, it should be taken into

account that is not a quantitative parameter.

Therefore, we cannot directly use the mentioned

relation in the definitions (1) and (2) for BD. For this

reason, in this study, an indirect method for BD using

orthogonally and based on Taguchi Method (TA-DJS)

has been applied. In this method, there is no need to

calculate and . This method treats as a whole;

therefore, we can obtain for each machine by using

orthogonal experiment [24, 25]. The corresponding

relations between the elements of Taguchi method

based on orthogonal experiment (TA-DJS) and the

element of BD in a DJS environment are shown in

Table 1.

According to the principles of orthogonal

experiment, the variation for each factors () is

computed by:

 ∑

(9)

 () ()

 equals in Definition (1).

corresponds in Definition (2). This method is an

extended case of the proposed method which is

extended for the studied problem in a dynamic

environment and the results are brought in the following

sections [24].

5.2. Genetic Algorithm Based on Bottleneck using
Intelligent Agent (GAIA) In this section, a GA

based on BR(s) is introduced by using intelligent agents

for JSP which its structure and details will be discussed.

5.2.1. GAIA Structure According to Figure 1, each

agent of the proposed model is developed for certain

propose. The agents are:

 Adaptive Value Local Search Agent (AVLSA).

 Bottleneck Local Search Agent (BLSA).

 Local Search Agent (LSA).

 Elite Local Search Agent (ELSA).

5. 2. 2. GAIA Design

5. 2. 2. 1. Chromosomes Representation The

first step in using GA is to represent the problem’s

solutions in the form of a chromosome [26].

TABLE 1. Corresponding relations between TA-DJS and BD

Elements of BD in DJS Elements of TA-DJS

Machines of the manufacturing system Factors

Dispatching rules for machines Levels

Objective of the manufacturing system Estimated index

Bottleneck Key factor

N. Nahavandi et al. / IJE TRANSACTIONSC: Aspects Vol. 29, No. 3, (March 2016) 347-358 350

Considering criteria such as minimum space and

time requirement is highly important due to complex

computation of the problem and avoidance of creation

of infeasible chromosomes in the design of the

chromosomes [17, 27].

In the proposed GA, a two-dimensional

chromosome is utilized. This method is similar to Lee et

al.[8]. For instance, the array (3 2 1 2 3 1 1 2) as shown

in Figure 2 indicates a sample solution for the problem

of Figure 3 in this representation, 1 represents job of ,

Figure 1. The framework of the genetic algorithm with intelligent agents

Start

Load DJS, TM-DJS and GA parameters

Construct population P

(Greate N initial chromosomes and calculate
their fitness values)

Generation

span satisfied

End

Show

results

Select two different chromosomes from P; Send

selected chromosomes to DVLSA for
performing DynamicallyValue Local Search

procedure

Receive chromosomes from DVLSA; Send it to
LSA for performing Local Search procedure;

Calculate new chromosomes fitness values and

insert it into P as approved

P has ‘Best’ elite

chromosomes

Perform Operator Dynamic Rate procedure

Select two different chromosomes from P; Send
selected chromosomes to BLSA for performing

BottleneckLocalSearch procedure

Receive chromosomes from BLSA; Send it to

LSA for performing LocalSearch procedure;

Calculate new chromosomes fitness values and
insert it into P as approved

Calculate the number of elite chromosomes in P

Select elit

chromosome from

population P and
send it to ELSA

for performing

Elite Local Search
procedure

Receive elite
chromosome from

ELSA and insert it

into P as approved

Insert initial crosover and mutation rate

Yes

No

Yes

No

351 N. Nahavandi et al./ IJE TRANSACTIONS C: Aspects Vol. 29, No. 3, (March 2016) 347-358

and so on. includes three operations, thus the number

of repeating 1 in the chromosome is 3 times.

Layer Name

Sequence

Layer

2 1 1 3 2 1 2 3

Assignment

Layer

3 3 2 2 2 1 1 1

Figure 2. Chromosome Representation sample in proposed

GA

The above figure is a sample solution for the following

problem:

Operation Job

Figure 3. DJS with 3 job

5. 2. 2. 2. Initial Population In the proposed GA in

order to avoid premature convergence, no heuristic

method is used for generating initial population.

5. 2. 2. 3. Fitness Function In the GA, for

evaluating the chromosomes, a certain index called

fitness function is used.

Offspring 1 1 2 1 3 3 2 1 2 4 4

Parent 1 1 3 1 2 2 2 1 3 4 4

First subset{ و }Second subset{ و }

Parent 2 4 2 3 4 1 3 2 1 2 1

Offspring 2 1 2 3 1 1 3 2 4 2 4

Figure 4.POX Crossover1

Parent 1 1 2 2 1 2 3 3 1

Parent 2 3 2 1 1 1 2 2 3

Offspring 1 3 3 1 1 1 2 2 2

Offspring 2 2 1 2 1 2 3 3 1

Figure 5.Two Point Crossover1

5. 2. 2. 4. Genetic Operators

5. 2. 2. 4. 1. Crossover Operators
A) Crossover in Sequence Layer In the GAIA,

two operators of POX and two-point operator in a

combination form and with the rate of has been used.

Crossover Type 1 In this crossover, two subsets

of jobs are randomly selected. Then each gene from first

parent belonging to the first subset is exactly transferred

to the first offspring and the other genes of the first

offspring are selected from second parent belonging to

the second subset (Figure 4).

Crossover Type 2 In this method, two numbers are

randomly gained as cut points. Afterwards, the section

between the two cut points for the two parents is

swapped and then the sides for each of the offsprings

are given values from parents in a way that no repetition

occurs. After that, the machine’s assigned layer is also

automatically adapted with the applied changes in the

operation generation layer (Figure 5).

Crossover Type 3: (Two point crossover2) This

crossover operator acts the same as the crossover

operator in the sequence layer (TwoPoint Crossover1)

differing in that by taking advantage of the

chromosome’s assigned layer (in case of positive test

result for the performed crossover), both selected genes

for acting as two point crossover operator are the genes

assigned to the bottleneck machine.

B) Crossover in Assignment Layer (Machin
Crossover) After applying each of the crossover

operators in the sequence layer, the crossover operator

in the assignment layer is carried out in order to

maintain the chromosome’s feasibility. It is in a way

that in case of positive result for the test of applying

crossover operator, first the crossover operator is

applied on the sequence layer of the chromosome, and

then the machine’s assignment layer is also

automatically adapted with the applied changes in the

operation generation layer.

5. 2. 2. 4. 2. Mutation Operators
Mutation Type 1 (Mutation1_1) This method is

called Swap Mutation. Prior to run this method; first,

mutation probability test is performed on the candidate

chromosome. Then, in case of success in this test, the

mentioned chromosome will undergo mutation and the

values for its two selected genes (in the sequence layer)

will be swapped. In this case, the machine’s assignment

layer is also adapted automatically with the applied

changes in the sequence layer.

Mutation Type 2 (Mutation1_2) This method is

called Insert Mutation. Prior to run this method; first,

mutation probability test is carried out on the candidate

chromosome. If this test is successful, the mentioned

chromosome will be mutated and the value for the

selected gene (in the sequence layer) will be put in its

place. In this case, the machine’s assigned layer is also

adapted automatically with the applied changes in the

sequence layer.

Mutation Type 3 (Mutation1_3) This method is

called Inverse Mutation. Prior to run this method,

N. Nahavandi et al. / IJE TRANSACTIONSC: Aspects Vol. 29, No. 3, (March 2016) 347-358 352

mutation probability test is first done for the candidate

chromosome. If this test is successful, the mentioned

chromosome will be mutated and the values for the two

selected genes (in the sequence layer) will be inversed.

In this case, the machine’s assignment layer is

automatically adapted with the applied changes in the

sequence layer, as well.

Mutation Type 4 through 9 Both two sets of

these mutation operators act the same as the mutation

operator set in the sequence layer (Mutation 1). The

only difference is that by using chromosome assignment

layer (in case of positive result for mutation application

test) in Mutation 2 both selected genes for performing

the mutation operation are genes assigned to the

bottleneck machine. However, in Mutation 3 only one

of the selected genes for performing mutation operation

is the gene assigned to the bottleneck machine.

5. 2. 2. 5. Stop Criteria The algorithm stops after

reaching to .

5. 3. Adaptability of Operators GAIA
Adaptability of GA’s operators in the amount and their

scope of coverage, can act as an efficient method for

improving performance and effectiveness of these

approaches. Whereas, adaptability in the amount of

GA’s operators prevents premature convergence of the

algorithm and adaptability in the scope of coverage of

the algorithm results in maximum efficiency of

important resources in the studied problem (such as

bottleneck resources) and also improvement in the

algorithm performance in each step of its run. In the

proposed GA, in the first stage, adaptability for

operators’ value based on premature convergence

tangent rate of the algorithm’s solutions occurs. In the

second stage, adaptability in the scope of coverage for

the algorithm’s operators in the first step occurs with the

convergence applied on the bottleneck resources

(detected in pervious run) and in the next step occurs

with the convergence applied on the algorithm elites.

5. 3. 1. Adaptability of Operators in the Amount-
Adaptable Value Local Search Agent (DVLSA) In

the GA, two operators of classic genetic with crossover

and mutation rate, compete on the way of problem

convergence. Whereas, incorporating mutation operator

creates variety in the population, the crossover operator

forces the population to converge. Considering this fact,

in arranging the GA’s parameters, it is always tried to

find on optimum arrangement for probabilities of

applying crossover and mutation operators (using

methods such as DOE, simulation, and so on). On the

other hand, we know that determining and applying

constant values for probability of occurring crossover

the algorithm and cause premature convergence in the

algorithm. For improving the GA and avoiding

premature convergence, the technique of “changing

crossover and mutation rates while running the GA” has

been proposed in this study (Figure 6). In GAIA, in

order to avoid premature convergence (due to greater

crossover rate) and also excessive variety (owing to

greater mutation rate), the crossover and mutation rate

adaptively changing. In this case, in GA design, the

effort has been made that the amounts of mutation

increase with IR and the amount of crossover decrease

with DR. If this condition does not meet, the amounts of

mutation and crossover will change again to the

problem’s initial amounts.

5. 3. 2. Adaptability of Operators in the Scope of
Coverage

A) Bottleneck Local Search Agent (BLSA)

This procedure performs bottleneck local search on the

selective chromosomes of the population (Figure 7).

B) Local Search Agent (LSA)

This procedure performs local search on the selected

chromosomes of the population (Figure 8).

Figure 6. DynamicValue Local Search procedure

Procedure DynamicValueLocalSearch
Begin

n = number of jobs;

m = number of machines;

γ Crossover Proboblity;

γ Mutation Proboblity;

IR = Increase Rate

DR = Decrease Rate

for i = 1 to 𝑔𝑒𝑛 do

Do

Get initial solutions & ;

α = random_integer_number [1,nm];

β = random_integer_number [1,nm] , β ≠ α;

Pc&PM = random_ number [0,1];

if (Pc γ) then
′

′ = POXCrossover () and

 MachineCrossover ()

d = random_integer_number [1,2];

if (d >) then
′

′ = TwoPointCrossover1 () and

 MachineCrossover ()

End if

End if

if (PM γ) then
′

′ = Swap Mutation (α β)

δ δ = random_integer_number [1,2];

if (δ >) then
′

′ = Insert Mutation (α β)

else if (δ >) then
′

′ = Inverse Mutation (α β)

End if

if (fitness(
′) fitness()) then

′

elseif (fitness(
′) fitness()) then

′

End if

if (“convergency test is ok”, count(elite solutions) = min(i,nm)

 then γ γ D &γ γ

End if

while γ 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 𝑃𝑟𝑜𝑏𝑜𝑏𝑙𝑖𝑡𝑦

End while

End for

disp (min(fitness())

End.

353 N. Nahavandi et al./ IJE TRANSACTIONS C: Aspects Vol. 29, No. 3, (March 2016) 347-358

Figure 7. Bottleneck Local Search procedure

Figure 9. Elite Local Search procedure

C) Elite Local Search Agent (ELSA)

This procedure performs elite local search on the elite

chromosomes of the population (Figure 9).

6. DESIGN AND ADMINISTER OF NUMERICAL
TESTS

6. 1. Method of Selection/ Production of Sample
Problems In this section, the performance of the

heuristic solving method for sub problem of bottleneck

detection (TA-DJS) and GA with intelligent agents

(GAIA) using different sample problems has been

evaluated. These sample problems incorporate different

classes of standard JSP problems such as FT test

problems created by Fisher and Thompson (1963), LA

test problems created by Lawrence (1984), and ORB

test problems created by Applegate and Cook (1991).

Simulation details for each sample (such as number of

machines, jobs, operations, and process time for each

operation as well as, process route) are placed in the

following route:

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/jobshop1.txt

In the first step in order to analyse TA-DJS

performance, JS scheduling benchmark problems

including different sizes of operation from 50, 75, 100,

150, 200, and 300. The estimation index includes .

Dispatching rules for this index include FCFS, LPT,

LOR, MWR, SPT, LWR, MOR, WINQ, and NINQ

[28]. Furthermore, the selected orthogonal array based

on 9 selected estimated indexes include
 (or

). In the second step, in order to analyse GAIA

operation, all three sets of job shop scheduling

benchmark problems is used. In addition, the values for

GAIA parameters are as the Table 2.

Figure 8. Local Search procedure

Procedure BottleneckLocalSearch

Begin

γ Crossover Proboblity;

γ Mutation Proboblity;

Get initial solutions s & s ;

 s ;

 s ;

n = number of jobs;

m = number of machines;

𝜗 = number of bottleneck machine;

α = random_integer_number [1,nm];

β = random_integer_number [1,nm] , β ≠ α;

Pc PM = random_ number [0,1];

if (Pc γ) then
′

′ = POXCrossover () and

MachineCrossover ()

d = random_integer_number [1,2];

if (d >) then
′

′ = TwoPointCrossover2 (𝜗) and

MachineCrossover ()

elseifthen
′

′ = TwoPointCrossover1 () and

MachineCrossover ()

End if

End if

if (PM γ) then

δ δ ,δ ,δ4,δ5,δ6 = random_integer_number [1,2];

if (δ >) then
′

′ = Swap Mutation2 (α β 𝜗)

else if (δ >) then
′

′ = Insert Mutation2 (α β 𝜗)

else if (δ >) then
′

′ = Inverse Mutation2 (α β 𝜗)

else if (δ4 >) then
′

′ = Swap Mutation3 (α β 𝜗)

else if (δ5 >) then
′

′ = Insert Mutation3 (α β 𝜗)

else if (δ6 >) then
′

′ = Inverse Mutation3 (α β 𝜗)

End if

if (fitness(
′

) fitness()) then
′

elseif (fitness(
′

) fitness()) then
′

End if

if (fitness() fitness(s)) then s

elseif (fitness() fitness(s)) then s

End if

End.

Procedure LocalSearch

Begin

Get solution S;

 S;
n = number of jobs;
m = number of machines;

for i = 1 to nm do

for j = 1 to nm do

if (≠) then

Begin

 ′ = Swap ()
if (fitness(′) fitness()) then ′

End if

End if

End for

End for

if (fitness() fitness(S)) then S

End if

End.

Procedure EliteLocalSearch

Begin

Get elite solution E;

 E;

n = number of jobs;

m = number of machines;

for i = 1 to nm do

for j = 1 to nm do

if (≠) then

Begin

 ′ = Swap ()
if (fitness(′

) fitness()) then ′

End if

End if

End for

End for

if (fitness() fitness(E)) then E

End if

End.

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/files/jobshop1.txt

N. Nahavandi et al. / IJE TRANSACTIONSC: Aspects Vol. 29, No. 3, (March 2016) 347-358 354

6. 2. The TA-DJS Results For performance analysis

of BD methods, the SBD method has more reliability

than the other common methods of BDP [5]. Apart from

that, this method can present excellent result for DJSP

[20]. Therefore, in this study, we compare the

performance of the proposed TA-DJS method with the

performance of MWL, BDOE, and SBD methods in the

BDP. In the SBD method, we should calculate the

optimal schedules before computing the machine active

period. To compare the results, we suppose that the

entrance time of the jobs to the shop is zero. All other

parameters are similar to (1) and (11) references [7, 15].

In this section, the results from simulation are

presented. For this reason, TA-DJS performance (in

two-status dynamic and static) is compared to a prior-

to- run BD called BD-OE and a posterior-to-run

BDcalled SBD and MWL methods. The results are

shown in Tables 3, 4 and 5. According to the studies of

Hinckeldeyn et al. (2014), there are various bottleneck

counter measures such as scheduling solution, targeted

source increase, increase of resource flexibility, process

important, reduce workload of BR, and bottleneck

oriented counter pricing [3]. Among these, 75% of the

investigated researches by Hinckeldeyn et al. (2014) are

carried counter out using scheduling solution approach

as the bottleneck counter measures are [3]. Accordingly,

in this study, in order to analyse the results of

differences for the 3 mentioned methods, the MODJS

with the objective of makespan and based on the

detected bottleneck, has been solved and the results are

brought about in Table 6.

TABLE 2. The GAIA Parameters

 γ_2 IR DR

100 100 0.95 0.10 0.001 0.001

TABLE 3. BD results for small scale problems

Problem’sNumber Problem’sSize(nm)

Bottleneck Resource(s) Computational Time(s)

DynamicTA-

DJS

StaticTA-

DJS

BD-

OE

SBD MWL DynamicTA-

DJS

StaticTA-

DJS

SBD

LA 01 105 5 5 5 5 5 0.30 0.30 7.50

LA 02* 105 5 1 1 4 4 0.30 0.30 43.70
LA 03 105 1 2 2 2 2 0.31 0.31 47.90

LA 04* 105 1 5 1,3,5 1,3 5 0.30 0.30 46.60
LA 06 155 1 1 1 1 1 0.55 0.55 56.20

LA 07 155 1 1 1 1 1 0.55 0.55 55.60

LA 08* 155 3 4 3 5 5 0.55 0.55 65.30
LA 09 155 2 2 2 2 2 0.54 0.55 47.40

Instances with * express that the bottlenecks detected by the three methods are different.

TABLE 4. BD results for median scale problems

Problem’sNumber Problem’sSize(nm)

Bottleneck Resource(s) Computational Time(s)

DynamicTA-

DJS

StaticTA-

DJS

BD-

OE

SBD MWL DynamicTA-

DJS

StaticTA-

DJS

SBD

LA 16* 1010 3 3 1,3 1,3 1 5.62 5.64 112.60

LA 17 1010 4 4 4 4 4 5.54 5.51 134.90

LA 18 1010 2 1 1 1 1 5.55 5.56 171.50
LA 19* 1010 3 10 2 7 7 10.14 9.88 263.60

 LA 21 1510 10 10 10 10 1 9.81 9.96 240.60

LA 22 1510 5 5 5 5 8 9.85 9.98 208.10
LA 23 1510 7 7 7 7 7 9.86 9.96 251.60

LA 24* 1510 10 2 10 10 10 5.62 5.64 112.60

TABLE 5. BD results for large scale problems

Problem’sNumber Problem’sSize(nm)

Bottleneck Resource(s) Computational Time(s)

DynamicTA-

DJS

StaticTA-

DJS

BD-OE SBD MWL DynamicTA-

DJS

StaticTA-

DJS

SBD

LA 26* 2010 2 2 5 5 1 15.49 15.52 380.30

LA 27 2010 4 4 4 4 7 15.19 15.36 376.80
LA 28 2010 2 2 2 2 2 15.40 15.46 356.40

LA 29 2010 4 4 4 4 4 15.37 15.45 340.80

LA 31 3010 1 1 1 1 1 29.38 29.43 623.40
LA 32* 3010 9 2 9 7 7 29.49 29.49 585.50

LA 33 3010 4 4 4 4 4 29.87 29.94 632.20

LA 34* 3010 2 2 7 7 7 29.86 29.78 633.20

Instances with * express that the bottlenecks detected by the three methods are different.

355 N. Nahavandi et al./ IJE TRANSACTIONS C: Aspects Vol. 29, No. 3, (March 2016) 347-358

TABLE 6.The scheduling results using the BD by the 3 methods

Problem’s Number Problem’s Size(nm)

Bottleneck Resource(s) Computational Time (second)

Static

TA-DJS

BD-OE SBD Static

TA-DJS

BD-OE SBD

LA 02 105 1 1 4 821.8 821.8 870.0

LA 04 105 5 5 3 702.6 702.6 760.4

LA 08 105 4 3 5 902.0 1007.4 1137.9
LA 16 105 3 1 3 1088.0 1102.3 1088.0

LA 19* 155 10 2 7 962.0 951.0 1060.0

LA 24 155 2 10 10 1126.6 1354.0 1354.0
LA 26 155 2 5 5 1488.0 1716.3 1116.3

LA 32 155 2 9 7 1996.0 2593.8 2540.9

Instances with * express that the bottlenecks detected by the three methods are different.

TABLE 7. Experimental results on FT, ORB and LA instances.

Problem Size CGA BD GAIA BAS RPI GRASP RPI2 GLS1 RPI3 GLS2 RPI4 PaGA RPI5 Adaptive RPI6
Parameterized

Active
RPI7 LSGA RPI8 aLSGA RPI9

FT06 66 55 6 55 55 0.00 55 0.00 – – – – 55 0.00 57 3.64 55 0.00 55 0.00 55 0.00

ORB05 1010 985 6 889 891 -0.22 891 0.00 – – – – 936 5.05 976 9.54 – – 903 1.35 901 1.12

ORB09 1010 1029 9 939 943 -0.42 945 0.21 – – – – 994 5.41 996 5.62 – – 980 3.92 943 0.00

LA01 105 666 5 666 666 0.00 666 0.00 666 0.00 666 0.00 666 0.00 666 0.00 666 0.00 666 0.00 666 0.00

LA03 105 674 2 597 597 0.00 604 1.17 613 2.68 609 2.01 617 3.35 648 8.54 597 0.00 597 0.00 606 1.51

LA05 105 593 1 593 593 0.00 593 0.00 593 0.00 593 0.00 593 0.00 593 0.00 593 0.00 593 0.00 593 0.00

LA06 155 926 1 926 926 0.00 926 0.00 926 0.00 926 0.00 926 0.00 926 0.00 926 0.00 926 0.00 926 0.00

LA07 155 939 1 890 890 0.00 890 0.00 890 0.00 890 0.00 890 0.00 890 0.00 890 0.00 890 0.00 890 0.00

LA08 155 909 4 863 863 0.00 863 0.00 863 0.00 863 0.00 863 0.00 863 0.00 863 0.00 863 0.00 863 0.00

LA09 155 951 2 951 951 0.00 951 0.00 951 0.00 951 0.00 951 0.00 951 0.00 951 0.00 951 0.00 951 0.00

LA10 155 958 2 958 958 0.00 958 0.00 958 0.00 958 0.00 958 0.00 958 0.00 958 0.00 958 0.00 958 0.00

LA11 205 1225 1 1222 1222 0.00 1222 0.00 1222 0.00 1222 0.00 1223 0.08 1222 0.00 1222 0.00 1222 0.00 1222 0.00

LA12 205 1052 1 1039 1039 0.00 1039 0.00 1039 0.00 1039 0.00 1039 0.00 1039 0.00 1039 0.00 1039 0.00 1039 0.00

LA13 205 1168 4 1150 1150 0.00 1150 0.00 1150 0.00 1150 0.00 1150 0.00 1150 0.00 1150 0.00 1150 0.00 1150 0.00

LA14 205 1292 2 1292 1292 0.00 1292 0.00 1292 0.00 1292 0.00 1292 0.00 1292 0.00 1292 0.00 1292 0.00 1292 0.00

LA15 205 1314 1 1207 1207 0.00 1207 0.00 1207 0.00 1207 0.00 1273 5.47 1207 0.00 1207 0.00 1207 0.00 1207 0.00

LA17 1010 827 4 784 784 0.00 784 0.00 791 0.89 791 0.89 793 1.15 793 1.15 784 0.00 792 1.02 784 0.00

LA31 3010 1917 1 1784 1784 0.00 1784 0.00 1784 0.00 1784 0.00 1844 3.36 – – 1784 0.00 1784 0.00 1784 0.00

LA32 3010 1904 2 1850 1850 0.00 1850 0.00 1850 0.00 1850 0.00 1907 3.08 – – 1850 0.00 1850 0.00 1850 0.00

LA33 3010 1838 4 1719 1719 0.00 1719 0.00 1719 0.00 1719 0.00 – – – – 1719 0.00 1745 1.51 1719 0.00

LA35 3010 1983 7 1888 1888 0.00 1888 0.00 1894 0.32 1890 0.11 – – – – 1888 0.00 1958 3.71 1888 0.00

TABLE 8. Average RPI

Algorithm NIS

Mean RPI

OA GAIA
Improvement

GAIA

GRASP 21 0.07 0.06 -0.01

GLS1 18 0.22 0.22 0.00

GLS2 18 0.17 0.17 0.00

PaGA 19 1.42 1.45 0.04

Parameterized

 Active
19 1.68 1.72 0.04

Adaptive 17 0.00 0.00 0.00

LSGA 21 0.55 0.58 0.03

aLSGA 21 0.13 0.16 0.03

Figure 10. Makespan versus generation for CGA and GAIA

for LA29 instance

N. Nahavandi et al. / IJE TRANSACTIONSC: Aspects Vol. 29, No. 3, (March 2016) 347-358 356

Figure 11. Makespan versus generation for CGA and GAIA

for FT10 instance

6. 3. The GAIA Results In order to determine the

performance of the GAIA, results are compared with

other algorithms. A summary of experimental results is

given in Tables 7–8. Tables list problem name, problem

size, and GAIA in two stages of dynamic and static. In

the section for comparing GAIA results in static state,

the mentioned tables, as well as, incorporating GAIA

results in static state and the Best Available Solution

(BAS) from running the algorithms utilized for solving

the research problem include as index called Relative

Percentage of Improvement (RPI) by using the

following equation:

 P

 (10)

A comparison between average RPI obtained by

proposed approach and the other algorithms are given in

Table 8. This table shows the number of instances

solved (NIS), and the average relative percent

improvement (RPI) for the GIAI, and for the other

algorithms (OA) listed in the table. The column named

improvement shows the reduction of RPI obtained by

the GAIA with respect to each of the other algorithms.

For showing the behavior of the convergence point, the

GAIA is compared with simple GA. The algorithms

applied on some problem instances during various

generations and the average makespan of the best

schedules obtained are shown in Figures 10 and 11.

7. SENSITIVITY ANALYSIS

7. 1. Analyzing the Performance of TA-DJS
According to the results revealed in Tables 3, 4, 5 and 6,

The bottleneck’s conforming rate:

 in the two methods of TA-DJS and SBD for

different scale problems of DJS is up to 63%.

 in the two methods of TA-DJS and BD-OE for

small, medium, and large scale problems of DJS is

up to 88%, 63%, and 63% respectively. In addition,

the bottleneck’s conforming rate for in the two

methods of TA-DJS and BD-OE for problems to

different scales of DJS is generally up to 71%.

 The results from solving scheduling problem based

on the detected bottleneck for variations indicate

significant in 89% of problems.

7. 2. Analysis of GAIA Performance According to

the inserted results in the Tables 2, 3 and 4, it is

observed that:

 Improvement rate of the BAS for sample problems

with different scales for DJS in the ORB class, with

objective function is up to %78 (7 better

samples among 9 samples).

 Improvement rate of the BAS for sample problems

with different scales for DJS in the LA class, with

objective function is up to %20.

According to Table 5, it is observed that the proposed

algorithm has created a significant improvement in the

quality of solutions, in comparison with almost all other

algorithms (except Parameterized Active Algorithm).

Diagrams (13) and (14) illustrate the effect of

implementing GAIA and classic GA methods on the

sample problems of LA29 and FT10. As illustrated in

these diagrams, the convergence rate in GAIA is more

than that of classic GA and solution resulted from

GAIA in the number of different generation possess

shorter lengths compared to those of classic GA. Hence,

taking advantage of intelligent agents during running

the GA increases convergence rate and improve in

quality of these algorithms.

8. CONCLUSION REMARKS

In this study, a genetic algorithm based on intelligent

agents (GAIA) was proposed for solving DJS problem

by using BR. The proposed GA is adaptable in the

amount and range of coverage for its crossover and

mutation operators. The results of numerical tests

indicate that the proposed GA has acted efficiently in

finding optimum and near optimum solutions for sample

DJS problems. In addition, the results of the robustness

of the solutions from the proposed method compared to

the solutions from the classic GA conforms the results

of the Figures 10 and 11. According to these graphs, the

intelligence and adaptability of operators has

accelerated the amount and range of coverage of the

convergence speed and has improved GA operation.

Therefore, we can conclude that the proposed algorithm

has acted efficiently in both aspects of solution quality

and algorithm robustness. Developing the proposed

method for the multipurpose DJS problems, flexible

DJS problems, and scheduling of the material flow, as

well as, combining it with scheduling in DJS

357 N. Nahavandi et al./ IJE TRANSACTIONS C: Aspects Vol. 29, No. 3, (March 2016) 347-358

environments are such available fields for further

research.

9. REFERENCES

1. Asadzadeh, L., "A local search genetic algorithm for the job
shop scheduling problem with intelligent agents", Computers &

Industrial Engineering, Vol. 85, (2015), 376-383.

2. Zhang, R. and Wu, C., "Bottleneck machine identification
method based on constraint transformation for job shop

scheduling with genetic algorithm", Information Sciences, Vol.

188, (2012), 236-252.

3. Hinckeldeyn, J., Dekkers, R., Altfeld, N. and Kreutzfeldt, J.,

"Expanding bottleneck management from manufacturing to

product design and engineering processes", Computers and

Industrial Engineering, Vol. 76, (2014), 415-428.

4. Gupta, M., Ko, H.-J. and Min, H., "TOC-based performance

measures and five focusing steps in a job-shop manufacturing
environment", International Journal of Production Research,

Vol. 40, No. 4, (2002), 907-930.

5. Bruker, P., Jurisch, B. and Sievers, B., "Discrete applied
mathematics'', The Journal of Combinatorial Algorithms,

Informatics and Computational Sciences, Vol. 49, (1994),

107-112.

6. Carlier, J. and Pinson, E., "An algorithm for solving the job-

shop problem", Management Science, Vol. 35, No. 2, (1989),

164-176.

7. Brandimarte, P., "Exploiting process plan flexibility in

production scheduling: A multi-objective approach", European

Journal of Operational Research, Vol. 114, No. 1, (1999), 59-
71.

8. Lee, Y.H., Jeong, C.S. and Moon, C., "Advanced planning and

scheduling with outsourcing in manufacturing supply chain",
Computers & Industrial Engineering, Vol. 43, No. 1, (2002),

351-374.

9. Tay, J.C. and Ho, N.B., "Evolving dispatching rules using
genetic programming for solving multi-objective flexible job-

shop problems", Computers & Industrial Engineering, Vol.

54, No. 3, (2008), 453-473.

10. Gao, J., Gen, M. and Sun, L., "Scheduling jobs and

maintenances in flexible job shop with a hybrid genetic

algorithm", Journal of Intelligent Manufacturing, Vol. 17, No.
4, (2006), 493-507.

11. Moreno-Torres, J.G., Llora, X. and Goldberg, D.E., "Binary
representation in gene expression programming: Towards a

better scalability", in Intelligent Systems Design and

Applications, ISDA'09. Ninth International Conference on,
IEEE, (2009), 1441-1444.

12. Dagli, C. and Sittisathanchai, S., "Genetic neuro-scheduler: A

new approach for job shop scheduling", International Journal

of Production Economics, Vol. 41, No. 1, (1995), 135-145.

13. Ghedjati, F., "Genetic algorithms for the job-shop scheduling

problem with unrelated parallel constraints: Heuristic mixing
method machines and precedence", Computers & Industrial

Engineering, Vol. 37, No. 1, (1999), 39-42.

14. Kurz, M.E. and Askin, R.G., "Scheduling flexible flow lines
with sequence-dependent setup times", European Journal of

Operational Research, Vol. 159, No. 1, (2004), 66-82.

15. Kurz, M.E. and Askin, R.G., "Comparing scheduling rules for
flexible flow lines", International Journal of Production

Economics, Vol. 85, No. 3, (2003), 371-388.

16. Tay, J.C. and Wibowo, D., "An effective chromosome
representation for evolving flexible job shop schedules", in

Genetic and Evolutionary Computation–GECCO, Springer,

(2004), 210-221.

17. Abbasian, M. and Nahavandi, N., "Minimization flow time in a

flexible dynamic job shop with parallel machines", Journal of

Sharif, in press, (2010).

18. Abbasian, M. and Nahavandi, N., "Minimization flow time in a

flexible dynamic job shop with parallel machines", Tehran,
Tarbiat Modares University, Engineering Department of

Industrial Engineering, Master of Science Thesis, (2009).

19. Goldberg, D.E., "Genetic algorithms in search optimization and
machine learning, Addison-wesley Reading Menlo Park, Vol.

412, (1989).

20. Ho, N.B., Tay, J.C. and Lai, E.M.K., "An effective architecture
for learning and evolving flexible job-shop schedules",

European Journal of Operational Research, Vol. 179, No. 2,

(2007), 316-333.

21. Amiri, M., Falah, J.S. and Salehi, S.J., "A genetic algorithm

approach for statistical multi-response models optimization: A

case study", (2009).

22. Abbasian, M. and Nahavandi, N., "Solving multi-objective

flexible dynamic job-shop scheduling problem with parallel

machines", International Journal of Industrial Engineering of

Production Research, Vol. 21, No. 3, (2011).

23. Verma, A., Llora, X., Venkataraman, S., Goldberg, D.E. and

Campbell, R.H., "Scaling ecga model building via data-intensive
computing", in Evolutionary Computation (CEC), IEEE

Congress on, IEEE, (2010), 1-8.

24. Zhai, Y., Sun, S., Wang, J. and Niu, G., "Job shop bottleneck
detection based on orthogonal experiment", Computers &

Industrial Engineering, Vol. 61, No. 3, (2011), 872-880.

25. Zhai, Y., Sun, S., Wang, J. and Wang, M., "An effective
bottleneck detection method for job shop", International

Conference on Computing, Control and Industrial Engineering,

(2010), 198-201.

26. Park, B.J., Choi, H.R. and Kim, H.S., "A hybrid genetic

algorithm for the job shop scheduling problems", Computers &

Industrial Engineering, Vol. 45, No. 4, (2003), 597-613.

27. Abbasian, M., Nosratabadi, H. and Fazlollahtabar, H.,

"Applying an intelligent dynamic genetic algorithm for solving a

multi-objective flexible job shop scheduling problem with
maintenance considerations", Journal of Applied &

Computational Mathematics, in press, (2015).

N. Nahavandi et al. / IJE TRANSACTIONSC: Aspects Vol. 29, No. 3, (March 2016) 347-358 358

Solving the Dynamic Job Shop Scheduling Problem using Bottleneck and Intelligent

Agents based on Genetic Algorithm

N. Nahavandi, S.H. Zegordi, M. Abbasian

Faculty of Industrial and Systems Engineering, Tarbiat Modares University, Tehran, Iran

P A P E R I N F O

Paper history:
Received 27December 2015
Received in revised form 19February 2016
Accepted 03March 2016

Keywords:
Dynamic Job Shop
Genetic Algorithm
Unmaturity Convergency
Inteligent Agent
Theory of Constraint
Bottleneck Resource(s) Detection

چكيده

رود. این مسئله از دسته شمار می بندی ماشین به ترین حالات زمان (یکی از پیچیدهDJSبندی کار کارگاهی پویا) مسئله زمان

های ابتکاری و فراابتکاری متعددی برای حل آن ارائه شده است. رود که تاکنون روش شمار می به NP-Hardمسائل

آمیزی برای حل این دسته از مسائل مورد استفاده واقع طور موفقیت هاست که به (از جمله این روشGAهای ژنتیک) ریتمالگو

ها و نیز استواری آنها ها هنوز هم اجتناب از همگرایی زودرس الگوریتم، بهبود کیفیت جواب اند. البته در این دسته از روش شده

تواند به عنوان رویکردی در مقدار و حوزۀ تحت پوشش می GAپویایی عملگرهای ند.برانگیز هست از جمله مباحث چالش

(در گام اول: پویایی در مقدار عملگرهای الگوریتم بر اساس نرخ شیب همگرایی GAIAپیشنهادی) GAکارآ عمل نماید. در

، نخست بر روی منابع GAی دهد. سپس در گام دوم: پویایی در حوزۀ تحت پوشش عملگرها زودرس الگوریتم روی می

دهد. این امر های نخبه روی می شوند(اعمال شده و سپس در مرحلۀ بعدی بر روی جواب گلوگاهی)که در ابتدا شناسایی می

شود. مقایسۀ نتایج الگوریتم در حالت استاتیک از تری از فضای جواب مسئله می های محتمل منجر به تمرکز الگوریتم بر حوزه

 های موجود در ادبیات تحقیق، حاکی از کارآیی بالای رویکرد پیشنهادی است. نتایج حاصل از روشمسئله با

doi: 10.5829/idosi.ije.2016.29.03c.09

