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A B S T R A C T  
 

 

Video magnification is a computational procedure to reveal subtle variations during video frames that 

are invisible to the naked eye. A new spatio-temporal method which makes use of connectivity based 
mapping of the wavelet sub-bands is introduced here for exaggerating of small motions during video 

frames. In this method, firstly the wavelet transformed frames are mapped to connectivity space and 

then decomposed into different spatial frequency bands by applying Laplacian Pyramid to determine 
the pixels having more chance to be a part of a movement. Finally each candidate is partially magnified 

based on its time history. The performance of the proposed method is evaluated on real videos which 
contain several subtle motions. Parameters for performance evaluation are presented and obtained 

results are compared with one of the state-of-the-art video magnification methods. Increased true 

positive rate parallel with simultaneous decrease in false positive rate confirms the effectiveness of the 
proposed method in amplifying subtle motions. 
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1. INTRODUCTION1 

 

The world is full of small spatio-temporal variations 

which are impossible to monitor with naked eyes. 

Variable color in skin happens as blood circulates [1] 

and human head shakes with each heart beat [2]. Video 

magnification is the duty to magnify such variations to 

show meaningful and important small motions [3, 4]. 

Some techniques have been used for video 

magnification including Lagrangian methods, Eulerian 

methods, phase-based methods and is Dynamic Video 

Magnification (DVM) methods.  

In Lagrangian video magnification techniques [3], 

motions are estimated explicitly by extracting feature 

point trajectories followed by segmenting them into two 

stationary and moving sets. In these techniques some 

motion models (for example affine model) are fitted to 

the stationary points which register the examined 

sequence on a reference frame and then motions are re-
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estimated, scaled and added back to the registered 

sequence. This strategy generates the magnified output. 

Some other researches utilize Eulerian video 

magnification (EVM) to detect small motions in image 

sequences [4]. In this approach an input sequence is first 

decomposed into a multiscale stack (Laplacian or 

Gaussian) and then subtle variations are temporally 

filtered. Finally the variations scaled and added back to 

the input sequence, therefore a magnified output may be 

rendered [5]. EVM is able to amplify small motions in 

videos without explicitly computing optical flow. 

Unlike Lagrangian approaches which may only magnify 

motion changes, Eulerian methods are able to magnify 

motion as well as color changes.  Unfortunately this 

algorithm supports only small magnification factors at 

high spatial frequencies; therefore it may magnify noise 

significantly when the magnification factor is increased. 

Phase-based methods [6] are a group of the most 

popular techniques for video magnification. In these 

techniques the steerable pyramid [7] decomposes an 

image according to spatial scale, orientation, and 

position. The sub-sampling scheme in the steerable 

 

mailto:shojadini@irost.ir


S. V. Shojaedini et al. / IJE TRANSACTIONS C: Aspects  Vol. 29, No. 3, (March 2016)  313-320                                         314

pyramid keeps it away from spatial aliasing and 

therefore allows meaningful signal phase measurements 

from the coefficients of the pyramid. Such a scheme 

supports larger amplification factors and is significantly 

less sensitive to noise compared to the EVM method. 

As the amplification factor is increased, noise is 

translated rather than amplified. Unfortunately phase-

based motion magnification is limited by the specific 

support of the complex steerable pyramid filters. The 

Riesz pyramid is often used for real-time phase-based 

motion magnification. Several investigations have used 

Riesz pyramid concept for real-time phase-based 

motion magnification. Motion-magnified videos which 

are produced with this representation have comparable 

qualities to those produced with the complex steerable 

pyramid. Riesz pyramid is efficiently implemented 

because of shared computing between bands, symmetry 

of the filters, and because the Riesz transform is 

approximated by two three tap limited difference filters. 

The key intuition into why the Riesz transform may be 

used is that it is a steerable Hilbert transformer and 

allows us to compute a quadrature pair that is 90 

degrees out of phase with respect to the most dominant 

orientation at every pixel [8].  

Another technique is DVM [9] which contains two 

main components: Warping to discount large motions 

and Layer-based Magnification. The Warping stage 

seeks to remove large motions while preserving small 

ones. Layer-based magnification is based on 

decomposing image into a foreground, background 

through an alpha matte. An alpha matte is a piece of 

footage that tells the program running it exactly what is 

supposed to be seen through which parts. This method 

is capable of handling small motions within large ones 

and consequently shows larger amplification factors and 

significant reduction in artifacts over state of the art.  

In this paper a new method is introduced to magnify 

small motions in video sequences by utilizing wavelet 

sub-bands. In the proposed method firstly the 2D 

wavelet transform is applied on the video under test and 

then the transformed images are mapped to connectivity 

space which leads to exaggeration of subtle variations in 

each frame. Each mapped frame is decomposed into 

different spatial frequency bands by applying Laplacian 

Pyramid to extract those pixels having more chance to 

include small motions (i.e. candidate pixels). Finally 

each candidate pixel in mapped images is partially 

magnified based on its time history which leads to more 

magnification for candidates having more chance of 

being a part of a movement. In the proposed method the 

mapping procedure leads to selecting candidates not 

only based on their own intensities but also due to 

connectivity with their neighboring pixels. Such a 

strategy leads to ignoring noisy pixels which logically 

have less connectivity with other pixels existing in their 

around region.  This fact enables the proposed algorithm 

to support less sensitivity to noise even in presence of 

large amplification coefficients.  

The paper is organized as follows. In section (2) the 

proposed algorithm is introduced which includes 

wavelet based connectivity mapping, pyramid 

decomposition and temporal processing. In section (3) 

the performance of the proposed method is evaluated in 

important frames of video sequence to investigate the 

resultant improvement due to applying the proposed 

scheme. In section (4), the obtained results are 

compared with results obtained from some existing 

methods using their effective parameters. Conclusion is 

presented in the last section of the paper. 

 

 

2. MATHEMATICAL MODEL 
 
The proposed method is composed of spatial and 

temporal processing. In spatial processing the video 

sequence is decomposed into different spatial frequency 

bands and then temporal processing is applied on 

successive sequences of frequency bands in order to 

magnify probable small motions. 

 

2. 1. Spatial Processing      Suppose I  is a video 

sequence and It  is a frame which occurs at time slot t . 

For this frame ( , )I x yt  is the brightness of a pixel 

which is located in row x  and column y . Now 

suppose smoothing function ( , )x y  which satisfies the 

following conditions [10]: 
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(1) 

Then the scaled version of the smoothing function at 

scale s  is defined as follow: 

1
( , ) ( , )

x y
x ys

s s s
 

 (2) 

Equation (3) shows that the scaled version of the first 

derivative of smoothing function ( , )x y  may be used as 

a basic function for mother wavelet function for 

purposes of edge detection. The Fourier transform of 

this function is focused near zero and therefore acts as a 

noise suppressor by low-pass filtering. The mother 

wavelet functions may be defined as the scaled 

derivatives of ( , )x y as: 
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 (3) 

According to the above mother wavelet functions two-

dimensional wavelet transform is computed as follows 

[11]:   
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This procedure may be simply written as: 
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The amplitude of the above terms which indicates the 

magnitude of the changes in image intensity is 

computed as [12]: 

2 21 2
, ,( , ) ( ) ( )t s s tx y x yI x y W I W It     (6) 

In the next step, important changes are extracted by 

applying Laplacian Pyramid [13] on ( , )I x yt
as follows.  

Firstly, ( , )I x yt is convolved with a Gaussian 

kernel which leads to its low pass filtered version. The 

Laplacian is then computed as the difference between 

( , )I x yt and the mentioned low pass filtered image. 

This process is continued to obtain a set of band-pass 

filtered images (since each of them is the difference 

between two levels of the pyramid). In the rest of paper 

 ( ,  )E I x ytl
 demonstrates the value of a pixel which is 

located at position ( ,  )x y  in l th pyramid of  ( , )I x yt
. A 

fast algorithm for generating these pyramids is given as 

a Pseudo code in Figure 1. The generation of pyramid 

involves the use of two complementary functions 

REDUCE and EXPAND, which the former decreases 

the size of image and the latter performs the reverse 

operation. 

 

2. 2. Temporal Processing       After a video has been 

spatially processed, it is then subjected to temporal 

processing. For this purpose firstly the history of 

pyramids which have been estimated for each pixel is 

constructed via a time sequence as: 

      0 1( ,  ) , ( ,  ) ,..., ( ,  )( ,  , ) l l l ttl E I x y E I x y E I x yI x y t    
 (7) 

The relation between temporal processing and motion 

magnification [12] may be demonstrated based on 

Taylor series expansion for ( , , )I x y t
tl
 as bellow: 

"
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In above equation ( ,  , )x y t  is displacement function 

which shows translational motion in image, such that

( , , ) ( , (
"

, , ))  tltlI x y t x y x y tI    and therefore it may 

be simply written that ( , , 0)
"

( , )tltlI x I x yy  . 

Assuming that the motion signal ( , , )x y t is within the 

band pass zone, the temporal band pass filter may be 

constructed as:  

   
"

( ,  , )
,  ,   ,  ,  tlI x y t

U x y t x y t
x y





 

  (9) 

 

Figure 1. Pseudo code estimating Laplacian Pyramid 
 

 

Based on the above equations, amplifying the above 

band pass term by using amplification factor  leads to 

exaggeration of small motion  ,  ,x y t . Finally the 

amplified motion is added back to the last frame of 

sequence ( ,  , )  tlI x y t  which leads to  , ,   
AM
tlI x y t as its 

magnified version. 

     ,  ,     , ,   ( ,  )AM
ttl lI x y t U x y tE I x y  

  (10) 

Begin Loop 

  For frame length (T) 

    Input set of frames as ( ,  )I x yt  

    While (t<T)  

    Initialize primary Gaussian as 

(  ( ,  ) ( ,  )
0

G I x y I x y
t t
  ) 

  For 1:l L  

     Calculate Gaussian Kernel as:  

( , ) ( ). ( )w r c w r w c  

     Set weights as, 

1 1 1 1
(.) , , , ,

4 2 4 4 4 2
w

 
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 
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     Do reduction by REDUCE function 

    ( ,  ) ( ,  )
1

G I x y REDUCE G I x y
l t l t

 


 

     Where:  

 : Conv image, Gaussian kernelREDUCE  

     End Do 

  Compute   ( ,  )
1
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l t




 as   
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     Estimate Laplacian Pyramid as: 

  ( , ) ( ,  ) ( ,  )1E x y I x y EXPAND G I x yl ttl
     

     End For 

 End While 

End Loop 
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As all steps of the temporal processing are done in 

pyramid domain, i.e. as different frequency bands based 

on pyramid definition, therefore the magnified terms 

which are resulted from Equation (10) should be 

incorporated to reconstruct the final magnified image. 

Consequently in the last step of the proposed algorithm, 

the frequency bands are restructured to form a video in 

which motions are magnified, after they have been 

pooled and processed. The Laplacian Pyramid 

reconstructed back with the reverse procedure described 

in previous section [12, 14]. 

 

 

3. TESTS AND RESULTS  
 

In order to evaluate the performance of the proposed 

algorithm it was applied on a set of videos containing 

several small motions. Table 1 depicts some important 

parameters corresponding to videos. More details about 

the dataset may be found elsewhere [4]. 

The proposed method was implemented using 

Matlab 2014a on a PC with a six-core CPU with 

2.40GHz   processor and 32 GB RAM.

 

 

 
TABLE 1. Specifications of examined videos 

Specifications of input videos Baby Shadow 

Frame. rate 30 fps 30 fps 

Number of frames 301 frames 180 frames 

Frame size 960*554 960*624 

Duration 10 s 6 s 

 

 

 
Figure 2. Representative frames from two examined videos     

(so-called baby and shadow) 

 

 

Additionally, EVM [4] was implemented to compare 

with the proposed algorithm. Figure 2 shows two 

representative frames belonging to so called baby and 

shadow videos, respectively.  

For brevity some results obtained from applying the 

proposed and EVM algorithms on these two videos are 

graphically compared in this part of article by focusing 

on those areas which contain small motions, but the 

complete statistics of the test results will be discussed in 

next section. 

Figure 3 shows the regions including movement in 

four successive frames of the baby video. Figures (4-a) 

to (4-d) show results obtained from the magnification of 

theses frames by utilizing EVM method and similarly 

Figures (5-a) to (5-d) show magnified frames by using 

proposed method.  It may be considered in Figure (4-a) 

that the main and side zipper heights obtained as 20 and 

5 pixels using EVM, while the proposed algorithm gave 

these parameters as 22 and 13 pixels as shown in Figure 

(5-a). Another example may be the comparison of 

Figures (4-b) and (5-b) which in the former the heights 

of zipper have been obtained as 16 and 6 pixels while in 

latter these parameters have been computed as 17 and 

16 pixels.  

Furthermore increasing of contrast between moving and 

static areas has been computed as another parameter for 

quantifying the effectiveness of video magnification. 

Based on this idea, the average of contrast for EVM 

results has been estimated as 26% while for the 

proposed method it has been achieved as 31%. Two 

next frames also show similar results which indicate 

that the motion of the zipper containing area is more 

visible when observed after applying the proposed 

spatio-temporal processing. 

Figures 6 to 8 illustrate the similar analysis on 

another video sequence, so called shadow, which 

contains several motions but with some different 

contents and specifications. Figure 6 shows original 

frames. Figure 7 shows that a number of branches and 

leaves which were invisible in original frames have 

become apparent by applying EVM while the proposed 

method has extracted these details more accurate than 

EVM as shown in Figure 8.  Some samples for such 

regions have been indicated in corresponding frames of 

these figures by a red circle. For instance the indicated 

area in (8-a) shows the branches more distinguished 

than what appeared in (7-a).  Other frames also show 

similar results which demonstrate that the proposed 

algorithm has extracted details of branches and leaves 

better than its alternative. 

 

 

4. PERFORMANCE EVALUATION 
 

To investigate the effectiveness of the proposed 

algorithm, real videos including several types of small 

motions were analyzed using the proposed method and 

then the obtained results were compared with the results 

obtained from EVM method by utilizing some standard 

parameters.  

The first parameter was the similarity between the 

corresponding original and processed frames which is 

called structural similarity (SSIM) index. SSIM is 

defined as an image quality metric that assesses the 

visual impact of three characteristics of an image: 
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luminance, contrast and structure [15]. The measure 

between two windows centered at x  and y of common 

size N N , was defined as:  
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 In which x , y and x , y  are the average and 

variance of  x and y.  Further 2
1 1( )C K D ,

2
2 2( )C K D   represent two variables for stabilizing the 

division with weak denominator, in them D
demonstrates the dynamic range of the pixel-values and

1 0.01K  , 2 0.03K    by trial and error. 

Figure 9 shows the obtained changes in SSIM for 

two different videos (i.e. baby, shadow) across their 

successive frames. It should be noted that the computed 

SSIM for the proposed method was approximately 2% 

less than the obtained value for EVM algorithm for so 

called baby sequence. This gap is more when the 

shadow sequence was investigated in such way that the 

proposed method led to SSIM approximately 10% less 

than the obtained value for EVM.  

Other evaluation parameters were True Positive Rate 

(TPR) and False Positive Rate (FPR) which were 

defined as: 

TP
TPR

TP FN




  (12) 

FP
FPR

FP TN




 
 (13) 

In above equations True Positive (TP) was defined as 

the number of pixels which their movement was 

exaggerated correctly. The static pixels which had been 

properly unmagnified were counted as True Negatives 

(TN). False Positive (FP) was defined as the number of 

static pixels that had been incorrectly magnified. 

 

 

 

 
Figure 3. Four frames from the original video sequence 

(baby).  

 
Figure 4. The same four frames with subtle motion in zipper 

amplified using EVM 

 

 

 
Figure 5. The same four frames with subtle motion in zipper 

amplified using proposed method 

 

 

 
Figure 6. Four frames from the original video sequence 

(shadow). 

 

 

 
Figure 7. The same four frames with subtle motion amplified

 using EVM 
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Figure 8. The same four frames with subtle motion amplified

 using proposed method  

 

 

For computing Equations (12) and (13), firstly 

several frames were inspected to mark moving regions 

as ground truth to compare the automatic methods (for 

instance the zipper area in video so-called baby).Then 

the regions which were exaggerated using automatic 

methods were justified with the above ground truth. By 

using this strategy, the changes of detection rate versus 

false detection rate (e.g. ROC curve) were obtained for 

baby and shadow videos as shown in Figures (10-a) and 

(10-b). For better interpretation of results FPR=5% and 

TPR =95% were considered as typical acceptable 

thresholds for false detection and detection rates which 

led to Table 2 for baby sequence and Table 3 for 

shadow sequence. By exploiting these tables better 

performance of the proposed method was proven 

compared to EVM algorithm in such way that the 

proposed algorithm achieved to TPR values 2.2% and 

3.6% better than EVM for two above sequences, in 

presence of false detections equal to 5%. In similar way 

the proposed method reached to FPR value which was 

17 and 19% better than its alternative in presence of at 

least 95% of detection rate. 

 

 

 

 

TABLE 3. The obtained results from examining algorithms 

on shadow video 

Algorithm TPR (v.s.FPR=5%)  FPR (v.s.TPR=95%) 

EVM 92.3% 20% 

Proposed Method 95.9% 1% 

 

 

 
TABLE 2. The obtained results from examining algorithms 

on baby video 

Algorithm TPR (v.s.FPR=5%) FPR (v.s.TPR=95%) 

  EVM 93.8%    20% 

Proposed Method 96% 3% 

 

 

 

Figure 9. SSIM v.s. frames obtained for (a) video so-called 

baby and (b) video so-called shadow. Proposed method 

(line-red) and EVM (line-green) 

 

 

 




Figure 10. ROC curves obtained for (a) video so- called baby 

and (b) for video so-called shadow. Proposed method (solid 

line-blue), EVM (red dashed-line) 
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5. CONCLUDING REMARKS 
 
In this paper a new method was introduced for 

exaggerating subtle motions in video using wavelet 

based spatio-temporal processing of image sequence. 

This procedure was started by selecting some candidates 

to be member of moving regions due to their 

connectivity in wavelet mapped plane. Then Laplacian 

pyramid decomposition followed by estimating a 

displacement function was utilized to amplify the small 

motions. This connectivity-based scheme enables the 

proposed algorithm to highlight subtle motions in video 

without incorporating noisy pixels which logically have 

less connectivity with the around pixels. 

To evaluate the performance of the proposed 

algorithm, it has been applied on several video frames 

containing small movements. The performance of the 

proposed algorithm was also compared with EVM 

approach in terms of three effective parameters 

including SSIM, TPR and FPR. Numerical comparison 

showed better performance of the proposed algorithm in 

detecting and amplifying small motions compared to its 

alternative. It was observed that the proposed algorithm 

has magnified subtle motions at least 2.2% and better 

than EVM method in presence of FPR equal to 5%. 

Furthermore it was shown that false detection rate of the 

proposed algorithm has been at least 17% better than 

those which had been obtained for EVM. This 

considerable improvement in FPR initiates from the 

noise suppression nature of the proposed algorithm 

which has been explained in body of paper. Finally 

structural similarity index belonging to the proposed 

algorithm have been obtained minimally 2% better than 

those obtained by the EVM for the examined sequences. 

Consequently, we believe that the proposed method 

may be used as a suitable alternative for magnifying 

motions in video sequences which include weak 

movements. 

 

 

6. REFERENCES 
 

1. Rubinstein, M., Wadhwa N., Durand F., Freeman, W. and 

Eugene, H., "Revealing invisible changes in the world", MIT 

Computer Science and Artificial Intelligence Lab (CSAIL),  
Vol. 339, (2013), 518-519. 

 

 

 

 

 

 

 

 

 

 

 

2. Balakrishnan, G., Durand, F. and Guttag, J., "Detecting pulse 
from head motions in video", in Proceedings of the IEEE 

Conference on Computer Vision and Pattern Recognition, 

(2013), 3430-3437. 

3. Wu, H.-Y., Rubinstein, M., Shih, E., Guttag, J.V., Durand, F. 

and Freeman, W.T., "Eulerian video magnification for revealing 

subtle changes in the world", MIT Computer Science and 
Artificial Intelligence Lab, (2012). 

4. Fuchs, M., Chen, T., Wang, O., Raskar, R., Seidel, H.-P. and 

Lensch, H.P., "Real-time temporal shaping of high-speed video 
streams", Computers & Graphics,  Vol. 34, No. 5, (2010), 575-

584. 

5. Wadhwa, N., Rubinstein, M., Durand, F. and Freeman, W.T., 

"Phase-based video motion processing", ACM Transactions on 

Graphics (TOG),  Vol. 32, No. 4, (2013). 

6. Simoncelli, E.P. and Freeman, W.T., "The steerable pyramid: A 

flexible architecture for multi-scale derivative computation", 

Proceedings of the International Conference on Image 
Processing, Vol. 3, (1995). 

7. Wadhwa, N., Rubinstein, M., Durand, F. and Freeman, W.T., 

"Riesz pyramids for fast phase-based video magnification", in 
Computational Photography (ICCP), IEEE International 

Conference on, (2014), 1-10. 

8. Elgharib, M.A., Hefeeda, M., Durand, F. and Freeman, W.T., 
"Video magnification in presence of large motions", Qatar 

Computing Research Institute, (2015), 4119 - 4127. 

9. Guojin, C., Miaofen, Z., Yongning, L.I. and Wanqiang, W., 
"Research on image focusing method and system with wavelet 

filtering", International Conference on Optoelectronics and 

Image Processing, (2010), 236 - 239. 

10. Hao, Y., Changshun, L. and Lei, P., "An improved method of 

image edge detection based on wavelet transform", International 

Conference on Computer Science and Automation Engineering,  
Vol. 3, (2011), 678-681. 

11. Burt, P.J. and Adelson, E.H., "The laplacian pyramid as a 

compact image code", Communications, IEEE Transactions on,  
Vol. 31, No. 4, (1983), 532-540. 

12. Do, M.N. and Vetterli, M., "Frame reconstruction of the 

laplacian pyramid", in Acoustics, Speech, and Signal 
Processing, Proceedings.(ICASSP'01), IEEE International 

Conference on, Vol. 6, (2001), 3641-3644. 

13. Sarode, L. and Mandaogade, N., "Video motion magnification 
using spatio-temporal algorithm", International Journal of 

Computer Applications,  Vol. 96, No. 9, (2014). 

14. Wang, Z., Simoncelli, E.P. and Bovik, A.C., "Multiscale 
structural similarity for image quality assessment", in Signals, 

Systems and Computers, Conference Record of the Thirty-

Seventh Asilomar Conference on, Vol. 2, (2003), 1398-1402.   

 

 

 

 

 

 

 

 

 

 

 

 

 



S. V. Shojaedini et al. / IJE TRANSACTIONS C: Aspects  Vol. 29, No. 3, (March 2016)  313-320                                         320

  

A New Wavelet Based Spatio-temporal Method for Magnification of Subtle Motions 

in Video  
 

S. V. Shojaedini a, M. M. Koohi b, R. K. Haghighi a 

a Department of Electrical Engineering and Information Technology, Iranian Research Organization for Science and Technology, Iran. 
b Department of Electrical, Biomedical and Mechatronics Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran 

 

 
P A P E R  I N F O   

 
 
Paper history: 
Received 11 January 2016 
Received in revised form 07 February 2016 
Accepted 03 March 2016 

 
 

Keywords:  
Video Magnification 
Spatio-temporal Analysis 
Wavelet Transform 
Connectivity Based Mapping 

 
 

 

چكيده
 

 

های ویدئویی است که به بزرگنمایی ویدئویی، روشی محاسباتی برای آشکارسازی آن دسته از تغییرات ضعیف در فریم

مکانی برای بزرگنمایی  -مشاهده نمی باشند. در این مقاله یک روش جدید زمانیطور معمول با چشم غیر مسلح قابل 

های تبدیل های ویدئویی معرفی می شود که با استفاده از نگاشت مبتنی بر پیوستگی زیرباندحرکات کوچک در فریم

ستگی نگاشته شده و های حاصل از اعمال تبدیل موجک، به فضای پیوموجک عمل می نماید. در این روش، ابتدا فریم

هایی که شانس های مختلف فرکانسی مکانی تجزیه می شوند تا آن دسته از پیکسلسپس با استفاده از هرم لاپلاسین به باند

بیشتری برای متحرك بودن دارند، مشخص گردند. در نهایت هر یک از این پیکسل های کاندیدا براساس سابقه زمانی خود 

های واقعی که شامل حرکات ضعیف متنوعی هستند، ارزیابی می ش ارائه شده، بر روی ویدئوشود. عملکرد روتقویت می

های استفاده شده برای های لازم برای ارزیابی عملکرد ارائه شده و نتایج بدست آمده با یکی از روشگردد. پارامتر

ت کاهش در میزان نتایج کاذب، بزرگنمایی ویدئویی مقایسه می گردند. افزایش نرخ آشکارسازی صحیح  به موازا

 کند.سودمندی روش پیشنهادی را در تقویت حرکات ضعیف تایید می

 
 doi: 10.5829/idosi.ije.2016.29.03c.05 

 

 

 

 

 

 


