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A B S T R A C T  
 

 

Bend existence causes changes in the flow pattern, velocity and the water surface profile. The ability to 

simulate three-dimensional flow pattern is an important and significant issues in curved channel. In the 
present study, using three-dimensional model of computational fluid dynamics (CFD) and artificial 

neural network (ANN) model of multi-Layer perceptron (MLP), two velocities and pressure variables 

on the channel bed with 90º sharp bend is predicted and compared. Also extensive experimental work 
has been conducted to measure the flow variables in this bend. Experimental results are used to train 

and test the neural network model accordingly. Comparison of the numerical with experimental results 

show that CFD model with average Root Mean Square Error (RMSE), 0.02 and 0.13 and ANN model 
with R2 (determination coefficient) value, 0.984 and 0.99 to predict velocity and pressure respectively, 

has reasonable accuracy. Also, velocity pattern and flow pressure with both numerical (CFD and 

ANN) models at any point of the field channel is predictable. Comparison of the CFD and ANN 
models show that the ANN model with the average value of Mean Absolute Error (MAE), 0.048 to 

CFD model with the average MAE, 0.06 in prediction of velocity and pressure has more accuracy. The 

present neural network with less time and cost in designing and implementation of curved channels 
than other expensive and time consuming experimental and computational models can be used.
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1. INTRODUCTION1 
 

In the path of rivers and artificial channels can be seen 

that there are several curves which caused considerable 

difficulties in understanding the flow pattern in this 

path. Therefore, the characteristics of the flow in this 

region are great importance of hydraulic researchers. 

The numerical and experimental studies have been 

done a lot in this area. Blanckaert and Graf [1] carried 

out wide experimental investigations on a 120° sharp 

bend, and paid the pattern of turbulent flow in the 

bend. The results showed that the lack of shear stresses 

coordination in the cross-section led to the formation of 

the secondary rotating cell near the outer bend of 60° 

cross section. Lu et al. [2] did numerical study in a 

180° curved channel. The researchers found that in the 
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channel width of the curved part, flow direction tilted 

initially at 0° to 90° toward the inner wall and then at 

90° to 180° toward the outer wall of channel. Bodnar 

and Prihoda [3] using the finite volumes method paid 

numerical study of the free surface flow in 90° sharp 

bend and focused on non-linear gradient of water 

surface. Zhang and Shen [4] investigated water level 

changes, longitudinal and transverse velocity profiles 

and flow separation phenomena in curved channels by 

a three-dimensional numerical model. Naji et al. [5] did 

numerical and experimental simulation of flow patterns 

in 90° bend. They investigated the changes of the flow 

velocities component, streamlines, bed shear velocity 

and the secondary flows. Their results showed that the 

main cause of changes in velocities component are 

secondary flows. Gholami et al. [6] examined the flow 

pattern in the 90º sharp bend according to extensive 

experimental research and computational fluid 

dynamics model. In addition, velocity distribution, the 

mailto:Bonakdari@yahoo.com
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shear stress distribution, streamlines, velocity contours 

and secondary flow formation was studied as well. The 

result is considered as the maximum velocity position 

and displacement. They stated that the maximum 

velocity in sharp bends to the end sections of the bend 

remains in the vicinity of the inner wall. There are 

many other numerical studies about channels [7-11].

In recent decades, artificial intelligence methods in 

addition to reduce the computation time, are able to 

predict the flow parameters in all conditions, especially 

in places where experimental data are not available. 

Therefore, in recent years the useing of these methods 

has a special place among water engineers [12-21]. A 

MLP model is a type of artificial neural network used 

for predicting variables. Sahu et al. [22], used artificial 

neural networks to study and predict the velocity 

profiles in open channel meanders.  The correlation 

coefficient between results showed the efficiency and 

accuracy of the neural network model to predict the 

velocity. Bonakdari et al. [23] predicted the velocity 

field values in a mild bend using ANN and the Genetic 

Algorithm. They used three-dimensional numerical 

modeling to verify the results where no experimental 

results were available. Their results indicated that there 

is an acceptable level of consistency between the 

results of the numerical and ANN models. Baghalian et 

al. [24] took a sediment tool into account and studied 

the flow in a 90° mild bend. According to their results, 

the numerical and ANN models were more consistent 

with the experimental values compared with the 

analytical solution. Gholami et al. [25] predicted two 

velocity and water surface variables in 90º sharp bend 

using both CFD and MLP models. They decared that 

the ANN model perform more accurate than CFD 

model.

In this study, the two variables velocity and channel 

bed pressure is investigated at 90° sharp bend by using 

two different numerical models (CFD and ANN) which 

is rarely addressed in previous studies. First, a 

computational fluid dynamics model is used to 

investigate the three-dimensional flow pattern in sharp 

bends. In the end, two artificial neural network models 

is trained to based on available experimental data to 

predict the flow velocity and pressure. The 

performance of these models to predict the velocity and 

channel bed pressure are assessed by using three 

statistical parameters: R
2
, RMSE, and MAE. 

 

 

 
2. GOVERNING EQUATIONS 
 
Governing equations are the equations of continuity and 

momentum equations in the incompressible turbulent 

flow with viscosity and constant density as an average 

of the time can be expressed as follows: 
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)( jiu = The velocity component in the direction i (j), P= 

total pressure, ρ = Density of the fluid, ν= molecular 

viscosity, 
ixg = gravitational acceleration in the direction 

jx  and 
jiuu = the Reynolds stresses that apply 

turbulence effect on the fluid.   

 

3.NUMERICAL AND EXPERIMENTAL MODELS 
 

The desired solution field is consistent with the available 

experimental model, the channel details are a 90° curved 

channel with two straight channels in the upstream and 

downstream. The length of upstream 3.6m and 

downstream channel 2m is considered and the dimensions 

of the rectangular channel is 30cm×40.3cm (height and 

width of the channel); the central angle of bend is 90° and 

central radius is 60.45 cm (Rc= 60.45cm), according to the 

channel width (b = 40.3cm) bend is sharp (Rc/b= 1.5<3). 

Bed and walls of the channel are fix and made of 

Plexiglas, and manning coefficient is n=0.008, so the 

cross section is hydraulically smooth. To measure the 

longitudinal velocity, the PROPLER one-dimensional 

velocity meter was used. The flow height was measured 

with a micrometer. The micrometre measured the depth 

with 0.1 mm precision and the velocity with 2 cm/s 

precision [6, 26]. Flow hydraulic characteristics are 

shown in Table 1. Considering the Froude number= 0.34 

and Reynolds number=44705, flow regime is subcritical 

and turbulent. Figure 1 is shown a view of the 

experimental flume. 

To construct the numerical model, as shown in Figure 

2 the geometry of the flow field created in the software 

Gambit then to adjust the grid of flow field near the 

channel bed, walls, inside the bend and also at the 

interface of the two phases finer gridding and in other 

areas larger gridding is considered. In general, network 

with 73,346 nodes is generated. In the present numerical 

model, for closure equations, )(RNGk   
turbulence 

model is used.  
 

TABLE 1. Hydraulic characteristic of the tests 

Flow Discharge (lit/s) 25.3 

Velocity (m/s) 0.418 

Flow depth (cm) 15 

Froude number 0.34 

Reynolds number 44705 
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Figure 1. The geometry of the experimental model 

 

 

 
Figure 2. Gridding of 90° bend in plan and cross-section 

 

 

Boundary condition for the flow entrance is Velocity 

Inlet that for the water and air phase is considered 

separately. Free surface boundary condition Pressure 

Inlet in the case of two-phase flow, the outlet boundary 

condition Pressure Outlet in the open channel state and 

free surface level, and boundary condition of the bed and 

the walls Wall have been considered.  
 

 

4. ARTIFICIAL NEURAL NETWORK (ANN) MODEL 
 
Implementation of the amazing features of the brain in 

an artificial system is always tempting and desirable. 

Generally, an artificial neural network composed of 

interconnected nodes called neurons, that in three basics 

layers input, hidden, and output are arranged. Neurons 

in each layer are connected to the neurons of the next 

layer by weights. In this study, the multi-layer 

perceptron neural network (MLP-NN) is used. The 

flexible structure of MLP in simulation of nonlinear 

problems with their high efficiency causes the 

widespread use of this model in practical conditions [13, 

27]. The structure of a multi-layer perceptron consists of 

one input layer and one or more hidden layers and one 

output layer is shown in Figure 3. 

The MATLAB R2011b software is utilized to 

prepare a proper neural network model. The input layer 

introduces the input variables to the model with neurons 

and transmits them to the hidden layer. The hidden layer 

gatters the input layer neurons by using a weighted 

summation and so transmits them to a non-linear future 

by activation functions. MLP models often use sigmoid 

activation functions [28, 29]. Any function that has a 

proportional relation between the input and output 

variables is a sigmoid function. In the present study, the 

hyperbolic tangent activation function is used for the 

hidden layer (Equation (1)) [30]: 

1
e1
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The output layer of the MLP performs like a linear 

regressor. Therefore, a weighted summation of the 

hidden layer neurons is done in this layer to asseses the 

final model results. The number of input and output 

layer neurons is equal to the number of input and output 

model variables, respectively. Two separate neural 

network model are trained for predicting the velocity 

and the other one to predict the channel bed pressure. At 

the ANN model for velocity prediction, 3, 40, and 1 

neuron respectively in the input layer, hidden layer, and 

output layer are used. Where the inputs are point 

coordinates in three dimensions (x, y, z) and the output 

is velocity corresponding to these points. At the network 

of the pressure prediction, 2, 30, and 1 neuron 

respectively in the input layer, hidden layer, and output 

layer is used. In this model, points coordinates on the 

channel bed are input and output is the pressure of 

points. There are no specific rules for determining the 

number of neurons in the hidden layer. If the number of 

neurons is very low, it reduces the analysis capability 

and the numerical accuracy of prediction. However, if 

the number of hidden layer neurons is excessively high, 

the model will undergo overtraining and memorize 

rather than analyse the data. Therefore, using the trial 

and error method [23, 25, 31] and considering the 

different number of neurons in the hidden layer, various 

models are tested and the model that provided the best 

results as final neural network model is selected. The 

hidden and output layers need weighted summations. 

Determination of weight coefficient in MLP model is 

named training. In the present paper, Levenberg-

Marquardt (LM) method is used for training process 

[32]. The LM method uses backpropagation algorithm 

for model weight determination. Criteria “stop” training 

in the present study is considered 100 epoch which 

occurs when the model converges completely [19, 

31]. An epoch is considered an iteration. The number of 

epochs (iterations) was selected relative to each model 

until network reached an acceptable error level between 

the data obtained with the ANN model and the 
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experimental data. The model should converge for each 

number of epochs. In the present study, given that the 

MLP models converged at 100 epochs, the number of 

epochs considered was 100.  

•  At the ANN model for velocity prediction: In this 

study, a total of 320 experimental data were used to 

train the network, of which 225 and 95 data have 

been used to train and test the network, respectively. 

• At the ANN model for bed pressure prediction: 104 

experimental data (75 data for training and 29 data 

for testing the network) is used. Cross sections, 

points located on the each cross section, and the 

distance from the channel bed (z) are shown in 

Figure 4. For the velocity network, this points in 

three distance from the bed of the channel (z = 3, 6, 

and 9 cm) and for the pressure network points at the 

bed of the channel network (Z = 0) are used. 

 

 

5. RESULTS AND DISCUSSION 

5. 1. Statistical Indices       In the present study, to 

better compare experimental data and the results of 

numerical models, some error criterion is used. "Root 

Mean Square Error" is briefly called RMSE indicates the 

difference between the estimated and measured data is 

obtained from Equation (4), the other way 

"determination coefficient" or R
2 

according to Equation 

(5) and "Mean Absolute Error" is called MAE for short, 

is obtained from Equation (6): 
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In these equations, N is the number of measurement 

points, ti experimental measured data and Oi predicted by 

the model and O the mean of the model values. The lower 

RMSE and MAE value and the greater value of R
2
, 

indicating the high accuracy of the model was estimated 

and predicted more consistent with experimental data. 

The RMSE and MAE values show the difference between 

experimental and numerical values by the same scale and 

unit and as the values are closer to zero, the model 

accuracy will be high. 

 

5. 2. Model Performance Evaluation       Figures 5 

and 6 show the correlation analysis between the velocity 

values and the bed pressure values predicted by the ANN 

model and the experimental data in train and test states, 

respectively. The RMSE and R
2
 is shown above each 

figure. At the Figures 5 and 6, it can be seen that all data 

on both sides of the line fitted with a 45º angle have been 

largely symmetrical. Also, shown in Figure 5, in train 

state, R
2 

equal to 0.9834 and the network test state, the R
2 

value is equal to 0.984. At the bed pressure prediction 

network, the R
2
values at the train and test states are 

0.9883 and 0.99, respectively. Due to the proximity of the 

R
2 

value in the train and test states, can be concluded that 

both obtained ANN models are not been over train. In this 

figure, linear fitted line equation with y=C1x+C2 is used. 

The value of C1 and C2 is closer to 1 and the value of C2 

is closer to 0, the proposed model is more accurate. The 

given values of C1 in Figure 5 at the train and test state 

are 1.0121 and 1.006, respectively. Also, the amount of 

C2 in this relationship are 0.0018 and 0.0113 that can 

contribute to the accuracy of ANN model to predict the 

velocity in train and test states, respectively. In Figure 6, 

the values of C1, at the train and test states are 1.0121 and 

1.006, respectively, and the value of C2 in this 

relationship are 0.0018 and 0.0113, respectively, which 

indicate the accuracy of the ANN model to predict the 

pressure on the bed of the channel in the train and test 

states. Given these values, we find that both ANN models 

are well-trained and their performance in predicting the 

velocity and the channel bed pressure are satisfactory. 

 

 

 
Figure 3. Multi- layer perceptron network general diagram 

 

 

 
Figure 4. Various used points in each cross section and in 

different Zs in order to train ANN models 
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5. 3. Models Comparison       In Figure 7, the 

longitudinal velocity distribution simulated by CFD and 

ANN models have been compared with experimental 

data in different cross sections in the Z = 3cm level 

(near the channel bed). In Table 2, the RMSE and MAE 

values have been collected for the velocity transverse 

profiles between the results obtained from the CFD and 

ANN models with experimental data in different cross 

sections. According to figures, the CFD results with 

experimental results coincide with the RMSE average 

value of 0.0205 and MAE, 0.018. The RMSE value of 

0.008 and MAE of 0.006 between ANN model results 

with experimental data shows high accuracy of ANN 

model in predicting velocity. In Figure 8, the transverse 

pressure profiles predicted by CFD and ANN models 

are compared with experimental data on the channel bed 

in 8 cross section. In Table 2, the amount of error 

(RMSE and MAE) is given between the predicted results 

of pressure distribution in different cross sections 

(Figure 8). Be careful of these values, can be seen that 

the CFD model with RMSE, 0.13 and MAE, 0.11 cm in 

accordance with experimental results is acceptable. 

The CFD model with the  RMSE average value of 

0.12 and MAE, 0.11 acts well in prediction of pressure 

variable. With the arrival to the bend, due to the 

centrifugal force creation, transverse slope of the water 

surface decreases at the inner wall of the channel and 

increases at the outer wall. 
 

 

 

  
Figure 5. Comparison of velocity values predicted by the 

CFD model and experimental model in: a- Train and b- Test 

states 

 

 

 

 

Figure 6. Comparison of pressure values predicted by the 

ANN model and experimental model in: a- Train and b- Test 

states 

  
Figure 7. Comparison of transverse profiles of longitudinal 

velocity at: a- CFD model with experimental data and b- 

ANN model with experimental data 

 

 

The pressure value is equal to height of water 

surface multiple in specific gravity (p= γ×h), where p, 

the pressure, h, water surface height and γ
 

specific 

gravity of the water is equal 9810 (N / m
2
). Therefore, 

the pressure changes are like water surface changes 

pattern in channel bed. So, in the inner cross sections, 

the maximum pressure occures in the outer wall and the 

minimum pressure occures in the inner wall of the 

channel. This process creates transverse pressure 

gradient within the cross section of the channel. As in 

the channel bed, pressure gradient overcomes to the 

centrifugal force and at the water surface, the 

centrifugal force to the pressure gradient, and so the 

rotational cell is created in channel cross section. This 

rotational flow is moved to the inner wall at the channel 

bed and to the outer wall at the water surface. This 

rotational cell called secondary flow phenomena that are 

typical subjects of the curved channels. As previously 

mentioned, a neural network has been trained and 

ensured their performance. In this section, we will study 

the velocity distribution by ANN model in the points 

which no experimental data are available and then to 

compare these values with the values obtained by the 

CFD simulations. In this study, the experimental data 

obtained only in 8 sections but neural network can study 

the velocity and water depths values in other sections. 

In Figures 9, the depth averaged velocity distribution 

are predicted in the different cross sections by the ANN 

and CFD model and compared by each other. 

In Table 3, the RMSE and MAE amounts are given 

between the results of ANN and CFD model to predict 

pressure distribution in different cross sections (Figure 

9). As can be seen, both models (ANN and CFD), are 

well able to predict the average velocity at different cross 

sections, also there is acceptable match between the 

results of both models with the RMSE, 0.08 and MAE, 

0.066. In this figure carefully and as described, the 

maximum velocity occurs at the channel inner wall. 

Forward along the bend, due to the power of the 

secondary flow, maximum velocity goes to channel axis, 

and finally moves to the outer wall in the section located 

after the bend. 
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TABLE 2. Comparing velocity and pressure distribution in the CFD and ANN model with the experimental model at Z = 3cm 

from the channel bed at different cross sections  

 Velocity Prediction Pressure Prediction 

 CFD model ANN model CFD model ANN model 

Cross Section RMSE MAE RMSE MAE RMSE MAE RMSE MAE 

40 cm before 0.026 0.023 0.008 0.006 0.0048 0.0047 0.0047 0.0045 

0° 0.029 0.024 0.0075 0.006 0.12 0.09 0.10 0.09 

22.5° 0.03 0.027 0.006 0.005 0.096 0.087 0.11 0.09 

45° 0.027 0.025 0.005 0.004 0.12 0.096 0.12 0.094 

67.5° 0.022 0.019 0.0055 0.003 0.22 0.2 0.24 0.20 

90° 0.01 0.01 0.0123 0.008 0.15 0.105 0.14 0.095 

40 cm after 0.009 0.008 0.008 0.0055 0.13 0.12 0.127 0.1 

80 cm after 0.0115 0.009 0.0102 0.008 0.165 0.164 0.176 0.17 

Averaged Values 0.0205 0.018 0.008 0.006 0.13 0.10 0.127 0.09 

 

 

 

 

 

 

 

Figure 8. Comparing pressure distribution in the CFD and 

ANN model with the experimenyal model at: (a) 40 cm 

before the bend, (b) 0°, (c) 22.5°, (d) 45°, (e) 67.5°, (f) 90°, 

(g) 40 cm and, (h) 80 cm after the bend cross sections
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Figure 9. Comparing depth averaged velocity distribution in 

the CFD and ANN model at: (a) 30 cm before the bend, (b) 

20°, (c) 30°, (d) 50°, (e) 70°, and (f) 30 cm after the bend 

cross sections 

 

 
TABLE 3. Comparing pressure distribution in the CFD and 

ANN model at channel bed at different cross sections 

Cross Section RMSE (cm) MAE (cm) 

30 cm before the bend 0.068 0.06 

20° 0.048 0.043 

30° 0.207 0.2 

40° 0.05 0.043 

50° 0.031 0.026 

60° 0.034 0.028 

70° 0.08 0.04 

30 cm after the bend 0.096 0.09 

Averaged Values 0.08 0.066 

 

 

Another point to note is that in the present sharp bend, 

the position of the maximum velocity is often in the 

inner portion of bend because of longitudinal flow 

power and its dominance on the secondary flow in these 

bends. 

 
 
6. CONCLUSION 
 
In the present study, experimental model, finite volumes 

numerical model and neural network model are used to 

predict the velocity and channel bed pressure at a 90° 

sharp bend. For this purpose, at first the numerical 

computational fluid dynamics model is used to simulate 

the bend’s flow pattern. The two multi-layer perceptron 

neural network (MLP-NN) models have been trained to 

predict the velocity and pressure of channel bed. 

Acceptable compliance of the both CFD and ANN 

numerical models results with experimental model 

represents the high accuracy of numerical models in 

prediction of two velocity and flow pressure variables in 

90º sharp bend. Both models predict the velocity and 

pressure pattern on the channel bed as well. In sharp 

bends, the maximum velocity is happened in the inner 

wall and moves to outer wall of channel in the sections 

located after the bend which is predicted well by two 

CFD and ANN models. However, in comparison of two 

models, it can be said that the ANN model with less 

error value than the CFD model perform more accurate. 

Both models can also predict the flow variables values 

in other parts and cross sections of channel which there 

is no experimental data, accordingly. The ANN model 

with time-consuming and less expensive than the CFD 

model is able to predict the flow velocity and pressure 

at each point of the channel.  
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چكيده
 

توانایی شبیه سازی الگوی جریان سه بعدی  گردد.وجود قوس موجب تغییر در الگوی جریان، پروفیل سرعت و سطح آب می

لات از موضوعات مهم و قابل توجه در کانال های خمیده می باشد. در تحقیق حاضر، با استفاده از مدل سه بعدی دینامیک سیا

درجه پیش  09شبکه عصبی چند لایه ی پرسپترون، دو متغییر سرعت و فشار وارد بر کف کانال قوس تند  محاسباتی و مدل

شود. همچنین تحقیقات آزمایشگاهی گسترده ای در اندازه گیری متغییرهای جریان در این قوس انجام شده  بینی و مقایسه می

موزش و تست مدل شبکه عصبی استفاده می شود. مقایسه ی نتایج حاصل از مدلهای است. از نتایج آزمایشگاهی موجود برای آ

عددی با نتایج آزمایشگاهی نشان می دهد که مدل دینامیک سیالات محاسباتی با مقدار متوسط مجذور مربعات خطا برابر  

ترتیب سرعت و فشار جریان بینی بهبرای پیش 00/9و  089/9و مدل شبکه عصبی با مقدار ضریب تشخیص  31/9و  90/9

و شبکه )دینامیک سیالات محاسباتی  جریان به کمک هر دو مدل عددیو فشار همچنین الگوی سرعت دقت قابل قبولی دارند. 

مقایسه ی این دو مدل با هم نشان می دهد که مدل شبکه  باشد.بینی میدر هر نقطه از میدان حل قابل پیش ممصنوعی( عصبی

بینی سرعت در پیش 90/9نسبت به مدل دینامیک سیالات با متوسط خطای مطلق  998/9عصبی با مقدار متوسط خطای مطلق 

ل های و فشار دقت بیشتری دارد. می توان از مدل شبکه عصبی حاضر با صرف وقت و هزینه ی کمتر در طراحی و اجرای کانا

 خمیده بجای دیگر مدلهای گران و وقت گیر آزمایشگاهی و  محاسباتی استفاده کرد. 

 doi: 10.5829/idosi.ije.2016.29.01a.03 

 

 


