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A B S T R A C T  
 

 

In this paper, the similarity solution of turbulent boundary layer flow on the flat plate with zero 
pressure gradients is presented. By employing similarity variables the governing partial differential 

equations are transformed to ordinary ones with inconsistent coefficients and solved numerically with 

the use of Runge–Kutta and shooting methods in conjunction with trial and error procedure. For a large 
domain of Reynolds number, the distribution of velocity, friction coefficient and thickness of boundary 

layer are calculated and compared with the experimental results extracted from the literature, where a 

good agreement between them are observed. The novelty of this study is to propose two new relations 
for the friction coefficient and thickness of the boundary layer. 

 
doi: 10.5829/idosi.ije.2015.28.11b.17  

 

 
NOMENCLATURE   

fC  Friction coefficient Greek Symbols  

l  Mixing length    Boundary layer thickness 

L  Length of the plate   Dimensionless variable 

Rex   Reynolds number   Dynamic viscosity 

u  Velocity component in x direction   Density 

u v   Time-averaged value of u v   0  Wall shear stress 

U  Free stream velocity    Kinematic viscosity  

v  Velocity component in y direction t   Eddy viscosity  

    Stream function 

 
 
1. INTRODUCTION1 
 

Facing turbulent flows is inevitable in daily life and 

there is a certain need to study this kind of flows in 

details to understand its characteristics [1, 2]. Turbulent 

boundary layer flow over a flat plate is one of the most 

common phenomena which occur in turbo machine 

blades, rotary compressors and calculating the friction 

force on lifting surfaces and fuselage [3]. Since da 

Vinci’s time, many scientists and researchers have been 

                                                           

1*Corresponding Author’s Email: br.zafarmand@gmail.com (B. 

Zafarmand) 

concerning about finding different aspects of turbulent 

flow. Blasius [4] presented a technique called 

“similarity solution” to reduce the partial differential 

boundary layer equation to nonlinear ordinary 

differential. Blasius seminal study became a base to 

simplify complex turbulent equations. A turbulent flow 

is called self-similar when all or some of its statistical 

properties are dependent to particular combination of 

independent variables [5]. Thus, self-similar flow 

depends on fewer variables and obviously dealing with 

this kind of flows is much easier. Turbulence is a very 

complicated phenomenon and its analysis and accurate 

identification is not routine, so many scientists have 
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tried to find a similarity solution which can simplify the 

solution process [6-9]. Experimental activities and 

various theories about the self-similarity boundary 

layer, demonstrated that the free-stream velocity as a 

function of power law is required for self-similarity. 

Self-similar boundary layer is a useful phenomenon that 

simplifies the solution and helps us for better 

understanding of the boundary layer; organized category 

laboratory and experimental results. Principle of self-

similarity solution in turbulent flow was introduced by 

Townsend [10]as the symbol of a dynamic equilibrium. 

A dimensionless variable that is written as a function of 

dimensionless coordinates is called self-similar if the 

stream line at the downstream of the flow does not 

change. Wolfshtein[1, 2, 11] performed a feasibility 

study about the existence of self-similar solution for the 

2-D incompressible turbulent boundary layer. Clauser 

[12] carried out some experiments in which a desirable 

pressure gradient generates a self-similarity turbulent 

boundary layer. He introduced a constant dimensionless 

pressure gradient as a condition for self-similarity of 

boundary layer. Mellor and Gibson [13] showed that 

self-similarity may be achieved when free stream 

velocity can be declared as a function of longitude 

coordinates. Townsend [10]with the use of length and 

velocity scales analyzed outer layer equation turbulent 

boundary layer, which led to an addition condition that 

the length scale must vary linearly with the downstream 

coordinate. Shome [14] studied numerically the 

oscillating boundary layer flow over a flat plate. The 

Lk k    turbulence model was used for the Reynolds 

number ranging from fully laminar flow to fully 

turbulent flow. 

Despite of frequently mentioned applications in the 

industry, to the best knowledge of authors, no analytical 

solution has been presented for turbulent boundary layer 

flow over a flat plate yet. The only accomplished 

research in this field is based on direct numerical 

simulation. This simulation is based on four common 

turbulence models: algebraic K  , K   and 

Reynolds stress modeling [3, 15]. Still there is much 

debate about similarity solutions of turbulent boundary 

layer on the flat plate or pressure gradient. In addition, 

knowing these solutions is useful for better 

understanding of turbulence concepts; it helps us to 

guess an accurate initial scale for the experimental 

studies using wind tunnel [7]. It should be mentioned 

that turbulent boundary layer flow is more complicated 

than shear flow and turbulent jet flow because of the 

presence of a solid wall that imposes an additional force 

to the problem. It is obvious that fluid viscosity exerts 

no-slip condition to boundary layer conditions i.e. fluid 

velocity on a solid surface must be equal to the surface 

velocity [16, 17]. Ganji et al. [18] investigated the 

problem of forced convection over a horizontal flat plate 

under condition of variable plate temperature. In order 

to compute an approximation to the solution the 

homotopy perturbation method (HPM) is used. 

Moreover, recently some researches have worked on 

similarity solution [19, 20]. 

In the current study, a similarity solution for 

calculating the distribution of velocity, friction 

coefficient and thickness of the boundary layer are 

presented for a turbulent flow over the flat plate. Using 

Reynolds decomposition, turbulence viscosity is 

appeared in the equations. Employing Prandtl mixing 

length reported in the literature [21] and similarity 

variables, the PDE equations collapse into an ODE one. 

Finally the obtained equation is solved by Runge–Kutta 

and shooting methods in conjunction with trial and error 

procedure. The main advantage of this method is the 

independency of the solution from upstream and 

downstream characteristics of the flow. Furthermore, 

based on the results, two new relations for the friction 

coefficient and boundary layer thickness are presented. 

 

 

2. GOVERNING EQUATION 
 
An incompressible flow over a flat plate with no 

pressure gradient is considered. It is assumed that the 

free stream velocity is U
. Thus, the Reynolds 

averaged Navier-Stokes equations for a two-

dimensional turbulence flow can be expressed as 

follows [3, 5]: 

0
u v

x y

 
 

 
 (1-a) 

( )
u u u

u v u v
x y y y


   

   
   

 (1-b) 

where u  and v  are components of the velocity in x  

and y  direction, respectively and   is the kinematic 

viscosity. Also, the boundary conditions are defined as:  

0 : 0

:

y u v

y u U

  


 
 (2)  

In Equation (1-b), Reynolds stress can be expressed by 

the following relation [3, 5]: 

( )t

u
u v y

y



  


 (3) 

in which 
t  is the Eddy viscosity. By substituting 

Equation (3) into Equation (1-b), it can be written: 

2

2
( )t

u u u u
u v

x y y y y
 

    
  

    
 (4) 

file:///C:/Users/hamid/Downloads/Numerical%23_ENREF_14


A. K. Jakhar and K.Rajnish / IJE TRANSACTIONS B: Applications  Vol. 28, No. 11, (November 2015)  1680-1686                        1682 

 

It is obvious that 
t  

does not appear in the laminar 

boundary layer equations. 

By employing Prandtl mixing length [3, 5], the 

turbulent viscosity can be assumed to be in the 

following form: 

2

t

u
l

y






 (5) 

The stream function is defined as bellow: 

( ) ( )U g x f 
 

(6) 

 where: 

y g   (7) 

It should be noted that ( )g x  and ( )f   are exclusive 

functions of x  and  , respectively. 

According to definition of the stream function, the 

terms of Equation (4) can be obtained as: 

 

u U f
y

v U g f f
x











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


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u U
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2 2

2
2 2 2 2
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( ) ( ( ) ) ( )t

u U
f

y g

u u U
l l f
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








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

    
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(8) 

Hence, Equation (4) can be formulated as: 

2
2 2 2

2 3
( )

g U U
U f f f l f

g g g



 



 
    


 (9) 

The boundary layer over a plate can be divided into 

two layers: inner and outer layers with their own 

specific scaling [3, 5]. In this research, based on the 

experimental mixing length curve, presented by 

Anderosn and Kays [20], the following equation is 

proposed: 

( )nl y


 
  (10) 

where   is the thickness of the boundary layer and   

is a constant. Comparing Equation (10) with the 

mentioned curve [20], it can be concluded that: 

0.5

0 0.1

0.1

y if y
l

y if y



 

 
 

 
 (11) 

Regarding Equation (10): 

2 2 2 2 2( )n n ny
l l y  



    (12) 

Substituting Equation (7) into Equation (12), the mixing 

length can be reformed as: 

2 2 2 2 2 2n n nl g    (13) 

By using Equation (13), Equation (9) can be 

reformulated as: 

2 1 2 2 2 2 2( ) 0n n n

U gg
f f f

U
g f



  
 



 


  


 



 (14) 

In order to obtain a similarity solution, the 

coefficients have to be independent of x . Thus, it is 

assumed that: 

2
1

U gg x
g

U









    (15) 

Therefore, based on Equation (11), the solution domain 

can be divided into two sections: 

A) At the vicinity of the wall ( 1n l y    where 

0.41  ), Equation (14) will be reduced to: 

2 2 2( ) 0
U

f f f g f 
 
 

    


 (16) 

According to Equation (7), it can be concluded: 

99
g


   (17) 

It should be noted that  99 0.99f   . 

Substituting Equation (17) into Equation (16) and 

based on the definition of Re U   , Equation (16) 

can be simplified as: 

2 2 2

99

Re
( ) ( ) 0f f f f 

 


    


 (18) 

and the boundary conditions are defined as: 

 99(0) 0, (0) 0, ( ) 1 ( ) 0.99f f f f         (19) 

B) Farther from the wall ( 0.1 , 1 2y n  ). In this 

case, Equation(14) will be changed into: 

2 2( ) 0
U

f f f f

 

 
 

    


 (20) 

where the numerical value of 0.13   is obtained from 

a simple curve fitting over the one reported by 

Andreson and Kays [20]. 
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According to the nonlinear Equations (18, 20), a 

similarity solution for the turbulent boundary layer can 

be obtained. It should be mentioned that the relation 

between Re  and Rex
 is as: 

99 99
99

2
Re 2Rex

U U g U x

U


   


  
  



     (21) 

 
 
3. SOLUTION ALGORITHM 
 
As already mentioned, the governing equations for a 

turbulent boundary layer flow Equations (18, 20) can be 

presented as follows: 

2 2

2 2

2 2

99

2

99

2 2Re
0 0.1

1 2 2Re

2Re
0.1 1

1 2 2Re

x

x

x

x

ff f y
f if

f

ff f y
f if

f

 

 

 

  

  
   



  
   



 
(22) 

with the boundary conditions defined in Equation (19). 

In order to solve the system of Equations (22), with 

the use of shooting method (0)f   is obtained, then an 

iterative procedure is employed to calculate 
99  at a 

specific Reynolds number. In other words, for a specific 

Reynolds number, (0)f   and 
99  are obtained 

simultaneously by shouting method and trial and error 

procedure, respectively. It should be stated that (0)f   

represents friction coefficient and can be expressed as 

follows: 

0

3

0

2

(0)

(0) (0)
22

(0)

2 2Re

f

x

u U
f

y g

U U
f f

xx

U

C f

U

  












 






  



 


 

 

(23) 

where   and   are dynamic viscosity and density, 

respectively. Furthermore, according to Equation (17) 

the boundary layer thickness can be written as follows:  

99

2

Rexx


  (24) 

 
 
4. RESULT AND DISCUSSION 
 
Equation (22) with the boundary conditions of Equation 

(19), has been solved numerically via the shooting 

method based on the Runge-Kutta scheme. A 

FORTRAN code has been prepared to find the 

numerical solution of the present boundary value 

problem (BVP). The Runge-Kutta scheme as a standard 

integration scheme is used to determine the distributions 

of the velocity. In order to avoid the grid dependency, 

the integration step was chosen from 10
-5

 to 10
-6

 and no 

dependency was observed. It should be mentioned that 

the major difficulty of the solution is existansce of the 

unknown upper limit of integration (
99 ) in Equation 

(22). Thus, to calculate 
99  which is dependent on the 

Reynolds number, the trial and error procedure must be 

employed. The variation of this parameter is shown in 

Figure 1.  

Once Equation (22) is solved, the velocities, 

friction coefficient and boundary layer thickness would 

be obtained from Equations (8), (23) and (24), 

respectively.  

The comparision of dimensionless velocity profie (

u U
) versus y   with the 1/7 power law [5] at 

8Re 1.125 10   is illustrated in Figure 2 and an 

acceptable agreement beween them is observed.  It 

should be stated that from Equations (7) and (24): 

99 y   . 

The influence of Reynolds number on 

dimensionless velocity profiles versus y   is 

demonstrated in Figure 3. According to this figure, it is 

clear that as Rex  increases, the momentum transferred 

between the core of the flow and the wall has to be 

increased, thus the velocity gradient at the vicinity of 

the wall increases.  

Figure 4 depicts the variation of friction coefficient 

( fC ) versus Reynolds number. Also, the results of the 

well-known relation of  
2

2 0.455 ln 0.06Ref xC      [5, 

22] are plotted too and an excellent agreement between 

them is observed. According to this figure, by 

increasing Reynolds number, fC  decreases. 

Furthermore, by using curve fitting method it is possible 

to obtain a novel formula for fC  as:  

0.1181

0.009397

2 Re

f

x

C
  (25) 

The comparison of Equation (25) with the relation of 

 
2

2 0.455 ln 0.06Ref xC      is shown in Figure 5.  

From Equation (24) and obtaining 99  from Figure 1, 

the variation of x  versus Reynolds number is 

demonstrated in Figure 6. Based on these data, another 

novel formula can be presented by curve fitting method 

for thickness of boundary layer as follows: 

0.13

0.082Rex
x


  

(26) 
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This formula satisfies the fact that the thickness of 

boundary layer should increase when Reynolds number 

growths (here 0.918Re  ). 

 

 

 

 
Figure 1. Variation of 99  versus Reynolds number 

 

 

 
Figure 2. Comparision of dimensionless velocity profie   (

u U ) versus y   with the 1/7 power law at 

8Re 1.125 10   

 

 

 
Figure 3. Variation of of dimensionless velocity profie             

( u U ) versus y   for different Reynolds numbers 

 
Figure 4. Comparison of the friction coefficient obtained by 

the present work with the experimental formula [5, 21] 

 

 

 
Figure 5. Comparison of the proposed relation for friction 

coefficient (Equation (25)) with the experimental formula [5, 

21] 

 

 

 
Figure 6. Variation of x  versus Reynolds number 

 

 

 

5. CONCLUSION 
 
This research studied the turbulent boundary layer flow 

over a flat plate in a large domain of Reynolds number. 

Employing similarity transformation, the basic partial 

differential equations (PDE) were reduced to an 

ordinary differential equation (ODE). The solution of 

this equation is independent of upstream and 

downstream characteristics of the flow. It should be 

noted that unlike the laminar boundary layer equation 

(Blasius equation), the Reynolds number was appeared 

in the obtained ODE. Therefore, a semi-similarity 

solution was used. Accordingly, a trial and error 

procedure in conjunction with Runge-Kutta and 

shooting methods were employed to solve the equation. 

The results were compared with the experimental data 

and a good agreement between them was observed. For 
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a large domain of Reynolds number, the distribution of 

velocity, friction coefficient and thickness of boundary 

layer were obtained and discussed. Moreover, two new 

relations for friction coefficient and boundary layer 

thickness as exclusive functions of Reynolds number 

were proposed. 
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هچكيد
 

 

پرردادد  در ابدردا مدراد      با گرادیان فشار صفر می تشابهی جریان درهم بر روی صفحه تخت مقاله حاضر به بررسی حل

ی آن با طول اخدلاط پراندل در نظر گرفده شرده و سر ب برا ترييرر     پيوسدگی و حرکت با حضور ترم تنش رینولدد و رابطه

تبدیل شده و در این بين شررای  تشرابهی    ، مداد   فوق به یک مدادله دیفرانسيل مدمولی غيرخطیحل تشابهی مدريرهای

گردد  مدادله دیفرانسيل بدست آمده یک مدريره بوده منجر به یافدن توابع مجهول به خدمت گرفده شده در تريير مدريرها می

بره   کوتا و پرتابی-آید  این مدادله با اسدفاده اد روش رانگاما یكی اد ضرایب این مدادله بر حسب عدد رینولدد بدست می

ادای اعداد رینولدد مخدلف حل شده و نهایدا تنش برشی دیواره و ضریب اصطكاک محاسبه و با ندایج تجربی مقایسه شرده  

ای و ضخامت  یه مردی ها برای اصطكاک پوسدهکه تطابق بسيار عالی مشاهده گردید  همچنين با اسدفاده اد برادش منحنی

 است ی مسدقل پيشنهاد شدهدو رابطه
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