
IJE TRANSACTIONS B: Applications Vol. 28, No. 11, (November 2015) 1579-1588

Please cite this article as: A. K. Jakhar, K.Rajnish, Measurement of Complexity and Comprehension of a program through a Cognitive
Approach, International Journal of Engineering (IJE), TRANSACTIONS B: Applications Vol. 28, No. 11, (November 2015) 1579-1588

International Journal of Engineering

J o u r n a l H o m e p a g e : w w w . i j e . i r

Measurement of Complexity and Comprehension of a Program Through a Cognitive

Approach

A. K. Jakhar*, K. Rajnish

Department of Computer Science & Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India

P A P E R I N F O

Paper history:
Received 08 February 2015
Received in revised form 21 September 2015
Accepted 16 October 2015

Keywords:
Complexity
Basic Control Structure
Cognitive Informatics
Operators
Operands
Cognitive Weight

A B S T R A C T

The inherent complexity of the software systems creates problems in the software engineering industry.
Numerous techniques have been designed to comprehend the fundamental characteristics of software

systems. To understand the software, it is necessary to know about the complexity level of the source

code. Cognitive informatics perform an important role for better understanding the complexity of the
software. These informatics also facilitate researchers to understand the behavior of the source code,

internal as well as the control structure. This paper presents a new cognitive complexity measure

(C2M) for measuring the complexity of the software system and it is tested on 50 ‘C’ programs. The
proposed C2M measure was also validated with the help of Weyuker property; eight out of nine

properties were satisfied by the proposed measure. The performance of the proposed measure was also

compared with other existing cognitive complexity measures. The test data was distributed among 10

undergraduate students of our institute and they were asked to understand the source code. The time

taken by the individual student was recorded and the meantime of the recorded data from students was

considered as the actual time required to understand the program. It was further correlated with the
estimated time, which was calculated through C2M measure. From the experimental results, it was

observed that proposed measure provided better quality results.

doi: 10.5829/idosi.ije.2015.28.11b.05

1. INTRODUCTION1

Software estimation is a complex process due to the

inherent complexity of softwares. Till date, numerous

complexity measures have been developed to measure

the software systems. These measures assist researchers

to analyze the behavior of the source code that can be

utilized further to measure the software in some

different facets. The traditional approach to measure the

software is lines of code (LOC) [1] that is used to

measure the project’s physical size. This approach is

programmer dependent because the naive users increase

the program size unnecessarily as compared to

sophisticated users. To overcome the aforementioned

limitation, McCabe’s [2] developed Cyclomatic

Complexity in 1976 that is used to count the

independent paths in software system and the

1*Corresponding Author’s Email: amitjakhar69@gmail.com (A. K.

Jakhar)

complexity is measured with the help of the connected

graph that shows the complete structure of the software.

This measure only considers the control structure of the

software to measure the complexity. In 1977, Halstead

proposed another measure which concerns the internal

structures, but disregards the control structures [3]. In

that work, operators and operands are used to measure

the complexity of software. In continuation of his work,

Halstead proposed a lot of methods to measure the

software in different aspects. Several other measures

also have been reported to find the clarity of the

software [4, 5]. It is observed from the literature that the

software complexity depends on both the control

structure and the internal structure of the software and

the cognitive technique can do this job very well.

Cognitive Informatics (CI) is used in various research

fields to find the solution of a given problem such as

software engineering, artificial intelligence, and

cognitive sciences, thus, cognitive informatics is an

inter-disciplinary research area [6, 7]. CI [8] is utilized

mailto:amitjakhar69@gmail.com

A. K. Jakhar and K.Rajnish / IJE TRANSACTIONS B: Applications Vol. 28, No. 11, (November 2015) 1579-1588 1580

to measure the software system by understanding the

essential characteristics of the source code. Cognitive

complexity focuses on the mental effort required to

understand the software or how difficult it is to perform

the tasks. In CI, it is found that the functional

complexity of the software depends on three facets:

input, output and internal architecture [6]. The cognitive

complexity measures emphasis on all aspects of

software systems. Numerous cognitive complexity

measures are available for measuring the software

systems. Each complexity measure has its own benefits

and limitations and it is not an easy task to find a most

suitable measure for the software systems. Still, it is an

ongoing process which can comprehend all aspects of

the software systems accurately. Whenever, a new

measure is proposed, it is necessary to analyze the

outcome of the measure with some existing approach

for finding its effectiveness. Weyuker [9] has proposed

nine properties to validate a new complexity measure.

These nine properties are utilized to determine the

efficiency of any complexity measure for software

systems. Most of the properties should be satisfied by a

good measure and eight out of nine properties are

satisfied by the proposed measure.

The aim of this paper is to develop a new cognitive

complexity measure for calculating the complexity and

the required time to understand the software system.

The proposed measure is based on some attributes of the

source code like: operands, operators, data types, lines

of code, and cognitive weight of the basic control

structures (BCSs). The performance of the proposed

measure is also compared with some existing

complexity measures such as CFS [10], MCCM [11],

CPCM [12], and NCCoP [13]. In other work, Adamo

[14] presented an experimental design and tool for

finding out the cognitive weights of the BCSs for a

particular programming language. Fourteen Java

programming experienced graduate students

participated in the experiments. Some code snippets

were given to the participants and the time taken by

individual participants for understanding the snippets

was recorded for both correct and incorrect responses.

Another work [15] addresses the reduction of space and

time complexity in the network system. In another

investigation [16], the authors proposed a cognitive

complexity metric to measure the code complexity of

Java programs with the help of six attributes of the

source code. These programs were ranked by seven

experts of Java programming language. Jakhar et al.

[17] also proposed a complexity measure for OO system

in 2015. In this paper, the authors utilized some

attributes of the program like: operands, operators and

ratio of accessing similar parameters by methods of a

class and the cognitive weight (Wc) to measure the

complexity of OO programs. However, the proposed

approach focuses on measuring the cognitive

complexity of the procedural language instead of OO

languages. Both approaches have different structures

and features. So, we dropped these efforts to further

study in our experiments. In addition to our proposed

work, 10 undergraduate students of the institute were

participated in an experiment and they were asked to

comprehend the source code of 50 ‘C’ programs. The

time taken by the individual student was recorded and

meantime of the recorded data from all the students was

considered as an actual time needed to understand the

code. The average time indicates the complexity level of

the programs, means, if a program has higher

complexity, then the time required to understand the

program increases due to the complex structure of the

program and vice versa. Finally, correlation is

calculated between the actual time and estimated time to

verify the outcome.

The rest of the paper is organized as follows: Section

2 deals with the existing cognitive complexity measures.

The description of proposed measure and analytical

evaluation besides Weyuker property is provided in

section 3. Section 4 gives a comparative analysis of the

proposed and existing complexity measures. Section 5

summarizes the conclusion and future work of this

paper.

2. EXISTING COGNITIVE COMPLEXITY MEASURES
Numerous complexity measures rely on the cognitive

informatics. Some of them are studied and examined in

the following subsections.

2. 1. Cognitive Functional Size (CFS) Wang et

al. [10] proposed a cognitive functional size (CFS)

measure to compute the complexity of the software.

This measure relies on the cognitive informatics. The

functional size of the software is computed by using a

number of inputs, output and cognitive weight (Wc) of

all BCSs. Generally, every software consists of three

specified structures which are sequential, branch and

iterative structure [18]. In CFS, the aforementioned

parameters are taken into account for measuring the

complexity of software. The CFS is calculated using

Equation (1).

coi WNNCFS)((1)

where Ni: number of inputs; No: number of outputs; and

Wc: overall cognitive weight of all the BCSs present in

the source code and cognitive weight (Wc) of individual

BCS are assigned by Wang et al.[10].

In formulation of CFS, Wc of all BCSs is calculated

by using Equation (6).

As aforementioned, CFS only considers the number

of input, output and cognitive weight (Wc). However, it

is also observed that the complexity also depends on the

1581 A. K. Jakhar and K.Rajnish / IJE TRANSACTIONS B: Applications Vol. 28, No. 11, (November 2015) 1579-1588

total occurrence of input, output and other attributes

which are comprised in the source code. These

attributes are also contributing in the complexity of the

software. So, it is suggested that these parameters

should also be considered while calculating the

cognitive complexity of software.

2. 2. Modified Cognitive Complexity Measure
(MCCM) MCCM has been proposed by Sanjay

Misra in 2006 [11]. This measure utilized the total

number of operands, operators and cognitive weight

(Wc) of the BCSs for calculating the complexity of the

software. MCCM is defined as:

cii WNNMCCM)(21
 (2)

where, Ni1, Ni2 are total occurrences of operands and

operators, respectively and Wc is cognitive weight of all

the BCSs.

The resulted values of MCCM are very large, due to

the multiplication of the BCSs cognitive weight with the

sum of all operators and operands of the software. In

large software applications, this approach can create

difficulty while measuring the complexity. If one

branch, loop or function is added, then cognitive

complexity of the software increases rapidly, though, in

reality, it is not true. So, to overcome this limitation, the

attributes of the software are arranged in such a manner

that the resulted value is in under control.

2. 3. Cognitive Program Complexity Measure
(CPCM) CPCM has also been developed by

Sanjay Misra in 2007 [12]. In continuation of his work,

it is found that operands of the program affect the

complexity of software. In this work, each occurrence of

input and output variables are considered to measure the

cognitive complexity. The cognitive weight of each

BCS is added with the calculated operands of the

program. The formula of CPCM is given as below in

Equation (3).

cIO WSCPCM (3)

where, SIO = Ni (total occurrences of input variables) +

No (total occurrences of output variables), and Wc is the

cognitive weight of all the BCSs.

To validate CPCM measure, Weyuker property has

been used. Seven out of nine properties are satisfied by

the CPCM measure. This measure ignore the

occurrences of operators while measuring the

complexity of software. The CPCM measure stated that

operators do not affect the complexity of a software

system whether the software is large or small. However,

a software comprises of operators and operands and

both have a significant contribution to calculating the

complexity of software. It is to be noted that the

information is manipulated with the help of operators

and the manipulated information is very hard to handle

and even harder to understand. So, the number of

operators should be included while measuring the

complexity of software or using some other techniques

to compensate it.

2. 4. New Cognitive Complexity Measure of
Program (NCCoP) NCCoP measure has been

proposed by Jakhar et al. [13]. In their work, variables

and constants along with the BCSs cognitive weight are

considered for computing the cognitive complexity of

the programs. This work is carried out line by line from

starting to the end of the program. But, operators are

excluded from the formation of NCCoP as the BCS

cognitive weight is multiplied with the number of

operands of each LOC. Equation (4) is used to find the

complexity of software.

)()(
1 1

kWkNNCCoP C

LOCs

k

n

V

V

(4)

where, Nv and Wc are the total number of operands and

the cognitive weight of LOC k, respectively. The entire

complexity of the program is calculated by summation

of the complexity of each LOC. For an “if” statement

the complexity of the following LOC “if (a>b)” is

evaluated according to NCCoP which is 4, i.e. 2×2=4,

as two variables a and b are present in the statement and

the cognitive weight Wc of “if” structure is 2.

If a program follows only a sequential structure then

the result of CPCM [12] and NCCoP is identical,

whereas NCCoP includs total number of operators as

well, then outcome of the MCCM [11] and NCCoP is

identical. Generally, the software does not follow the

sequential structure for solving today’s complex

problems, so this is not the case of today’s scenario.

Now, we analyze the result of NCCoP by considering

and ignoring the operators of the program. Consider the

“for” statement that is given below:

for (i=0; i<10; i++)

When operators are taken into account:

Modified NCCoP [13]=

[5 (operands)+3 (operators)]×3 (Wc)=24

MCCM [11]=

[5 (operands)+3(operators)]×3 (Wc)=24

When operators are not taken into account:

NCCoP [13]=5 (operands)×3 (Wc)=15

CPCM [12]=5 (operands)+3 (Wc)=8

As the result indicates that the complexity value of

NCCoP and MCCM measures is the same when the

number of operators are considered, i.e. 24, but the

complexity value of NCCoP and CPCM is not same as

multiplication is used instead of addition in CPCM. If

the Wc is added with the number of operands and

operators instead of multiplication in NCCoP, then this

A. K. Jakhar and K.Rajnish / IJE TRANSACTIONS B: Applications Vol. 28, No. 11, (November 2015) 1579-1588 1582

measure generates the same complexity value as CPCM,

i.e. 8. The complexity of the same statement is:

Modified NCCoP [13]=

[5 (operands)+3(operators)]+3(Wc)=11

Modified NCCoP [13]=5(operands)+3(Wc)=8

The overall result of the program by NCCoP will not be

same as CPCM and MCCM. Because in NCCoP, Wc of

each LOC is multiplied with the number of operands of

the same LOC, but in later cases the entire Wc of the

program is added or multiplied with the calculated

information like operands and operators.

As the above result indicates, if the operators are

included in NCCoP, then the measure may generate the

same complexity value as MCCM. For larger software,

MCCM creates problem due to its high complexity

value that is not desirable. That’s why the operators are

ignored and multiplication is used instead of addition as

in CPCM. NCCoP cognitive complexity technique can

be helpful in modular programming to measure the

complexity of the individual modules. This is a

hypothesis that an overly complex code due to bad

structure with low cohesion is unreliable and difficult to

maintain [19]. The most efficient way to deal with the

large software is dividing the software into smaller

modules. The smaller modules are reliable, easy to

maintain and test. In order to calculate the complexity of

individual modules the NCCoP measure is helpful.

3. PROPOSED COGNITIVE COMPLEXITY MEASURE
(C2M)

In this section, an attempt is made to develop a new

cognitive complexity measure (C2M), which is used to

calculate the complexity of the software. The software

is a collection of information and the information is

manipulated through operators. Specific operations can

be performed on a particular data type and it directly

affects the complexity of the code. So, the number of

data types also plays an important role while calculating

the complexity of software. Hence, in this work, a new

measure (C2M) is proposed which consideres five user-

defined parameters to measure the cognitive complexity

of the software. The proposed Cognitive Complexity

Measure (C2M) depends on the followings parameters:

 The total occurrence of operands (variables and

constants).

 The total occurrence of operators (only pure

operators).

 The total number of data types present in the

program (int, char, float, structure, pointer, etc.).

 The total executable LOCs of the program.

 The cognitive weight (Wc) of all BCSs.

In this proposed approach, a relation is formed between

several parameters of the source code for calculating the

complexity of software, which is given in Equation (5).

clocDTOperatorsOperands WExeNNNMC ,,,,2 (5)

All attributes of C2M measure are described above and

the Wc is assigned to each BCS according to the effort,

time and difficulty to comprehend the source code [6].

All BCSs of the source code and their respective

cognitive weights are allotted on the classification of

cognitive phenomenon as given by Wang et al. [10].

The structure of a program may include the sequential,

iterative, branch and embedded instructions. Further,

these BCSs are either linear or nested/embedded

structure.

For the nested structure, total Wc of a software

component is calculated as the sum of cognitive weights

of its q linear blocks composed of individual BCSs.

Each block may consist of m layers of nesting and n

linear control structures. Therefore, the overall Wc is

calculated using Equation (6).

)],,([
1 1 1

ikjWW
q

j

m

k

n

i

cc

(6)

If no nested structure presents in any of the q blocks, i.e.

m=1, then Equation (6) can be simplified as:

),(
1 1

ijWW
q

j

n

i

cc

(7)

How Equation (6) is used to calculate the Wc is shown

in Figure 1. Wc is calculated with nested structure of the

BCSs as shown in Figure 1. The repetition of the loops

are not considered here because to understand the

software, repetition does not enhance the difficulty level

of the source code. The Wc ‘3’ is assigned to the

iterative statements according to its difficulty level

that’s why number of repetitions are not considered. If

all the BCSs are linear in the program, then the assigned

cognitive weight of the individual BCSs are simply

added. Illustration of C2M and other existing cognitive

complexity measures with an example is given below.

Figure 1. An example Wc calculations

1583 A. K. Jakhar and K.Rajnish / IJE TRANSACTIONS B: Applications Vol. 28, No. 11, (November 2015) 1579-1588

The example program “sum of n numbers” is used to

elaborate how the cognitive complexity measures

calculate the complexity of software. The given

example program consists of two BCSs: sequential and

iterative. The source code of the example program is

given below.

//A program to calculate the sum of n numbers:

main() {

int i, n, sum=0;

printf("enter the number");

scanf("%d" , &n);

for (i=1;i<=n;i++)

sum=sum+i;

printf("the sum is %d" ,sum);

getch(); }

Here, we elaborate the proposed C2M measure to

calculate the complexity of the example program by

calculating its attributes separately.

NOperands=14

NOperators=6

NDT=1

EXELOC=5

Wc=1+3=4

C2M=14+6+1+5+4=30

Therefore, the cognitive complexity of the program

using proposed C2M measure is ‘30’. Table 1 contains

the calculated complexity result value of the example

program with our proposed and other existing measures

in the domain of cognitive complexity. The result of

each measure is calculated by their own formula given

in the respective subsections. Different attributes are

used by the complexity measures in some different

sequences, that’s why each measure yields different

complexity values.

The calculated value from the proposed measure is

also further utilized to estimate the understand-ability

factor of the software. It indicates the required time to

understand the source code. When a person starts

reading the source code, the simple things can be flip

very easily, but when the complex concepts are

introduced, then it is difficult for the person to

understand it, so the required time increases. Hence, it is

very helpful in the testing and maintenance phase of the

software development life cycle. So, this factor is also

calculated with the help of proposed measure and it is

7% of the complexity value.

3. 1. Theoretical Validation of Proposed
Cognitive Complexity Measure (C2M)
Whenever, a new metric is proposed, it is necessary to

validate the metric with the help of some practical and

formal validation techniques. Weyuker [9] proposed

nine properties in 1988, which can evaluate the strength

and weaknesses of the new complexity metric.

TABLE 1. Calculated complexity values of existing and

proposed cognitive complexity measures

LOC CFS CPCM NCCOP MCCM C2M

5 12 16 24 80 30

These nine properties are used to validate the C2M

measure and 50 ‘C’ programs are taken into account

from the literature [20]. Eight out of nine properties are

satisfied by the proposed C2M measure. The result of

the proposed and other measures as a complexity value

of all 50 programs is provided in Table 3.

Weyuker property is described below one by one

with proposed cognitive complexity measure.

Property 1: (∃P) (∃Q) (|P|≠|Q|), and program P and Q

are the body of the program.

This Weyuker property states that a measure should

not rank all the programs as equally complex. Referring

to Table 3, Program 1 and program 2 are considered to

analyze the first Weyuker property. The cognitive

complexity of program 1 according to the proposed

measure, as Equation (5), is=17+0+6+7+1=31. In

program 1, the only sequential structure is incorporated.

The cognitive complexity of program 2 as Equation (5)

is=16+4+2+14+7=43. In program 2, sequential and

embedded components are present in the program body.

So, the Wc of the BCSs is used as ‘7’ instead of ‘1’ as

stated in the evaluation of program 1. The analysis of

program 1 and program 2 clearly indicates that both

programs are not equally complex. Hence, the proposed

cognitive complexity measure holds the first Weyuker

property.

Property 2: Let c be a non-negative number then there

are only finitely many programs of complexity c.

The software is a set of information and the

information is the function of operands and operators.

Each program of any language contains some finite

operands, operators, control structures, executable

LOCs, etc. for solving the problems. Without these

parameters, a program cannot do anything. The

proposed measure is built on all the above-said

parameters, which are incorporated in each program of

any language. Hence, the C2M holds the second

Weyuker property.

Property 3: There are distinct programs P and Q such

that |P|=|Q|

This property states that two different programs

can be denoted as equally complex. Two programs 4

and 6 are considered to check this property. Program 4

has two internal structures: sequential and iterative.

According to the proposed measure, total cognitive

complexity of program 4 is=14+6+1+5+4=30, and the

cognitive complexity of the program 6

is=15+6+1+7+1=30, only sequential structure is

A. K. Jakhar and K.Rajnish / IJE TRANSACTIONS B: Applications Vol. 28, No. 11, (November 2015) 1579-1588 1584

incorporated into program 6, so cognitive weight ‘1’ is

used instead of ‘4’ as in program 4.

TABLE 3. Cognitive complexity values of 50 programs with

concerned cognitive complexity measures

S.

No

Col-

pp.no
Loc CFS

MC

CM
CPCM

NC

CoP

C2

M

1 1-32 7 12 17 18 17 31

2 1-33 14 35 140 23 16 43

3 2-34 16 8 54 47 46 73

4 2-77 5 12 80 18 20 30

5 1-40 5 4 29 20 19 36

6 2-46 7 4 21 16 15 30

7 2-47 7 5 26 19 18 35

8 1-51 7 10 66 52 51 76

9 2-71 11 20 285 42 41 75

10 1-78 7 24 84 18 19 33

11 2-86 3 1 21 14 33 26

12 2-87 6 1 43 28 71 51

13 2-90 5 8 64 16 16 26

14 2-91 8 12 174 24 30 45

15 1-92 8 12 186 26 31 46

16 2-93 6 12 162 24 35 41

17 2-98 8 10 75 15 20 29

18 1-115 23 36 657 59 76 106

19 1-122 9 9 69 22 25 36

20 1-126 21 40 250 45 58 78

21 2-136 9 20 260 28 32 46

22 1-157 8 36 210 32 48 50

23 2-158 15 91 897 63 99 98

24 1-169 13 77 506 45 60 71

25 1-171 18 70 790 66 83 108

26 1-182 20 624 4641 127 165 180

27 2-183 23 624 5148 136 189 196

28 1-198 11 180 1050 65 94 98

29 1-217 38 640 5248 155 194 237

30 2-223 7 7 266 32 45 55

31 2-227 6 8 68 17 23 30

32 2-229 14 21 336 43 60 72

33 1-232 10 12 234 35 36 58

34 2-245 11 21 231 32 49 54

35 1-246 7 12 174 26 37 45

36 1-250 13 12 270 35 60 67

37 1-268 7 9 60 21 26 32

38 2-285 23 80 1056 72 85 106

39 1-313 13 49 469 43 46 89

40 2-332 10 8 92 24 28 39

41 1-355 9 28 336 32 37 50

42 2-355 13 72 702 47 46 73

43 2-359 17 56 287 33 36 71

44 2-412 172 1664 5678
4

482 537 826

 45 1-435 34 216 1992 89 101 143

46 1-450 42 252 2912 105 118 177

47 2-89 9 16 232 28 34 47

48 1-89 7 12 156 23 30 40

49 47+48 21 42 722 58 70 98

50 4+48 11 36 540 39 42 72

Program 4 and program 6 are different programs,

still the proposed measure rank these two programs as

equally complex, i.e. equal complexity value. So, from

the above-given description, it is clear that the proposed

measure also satisfies the third property of Weyuker.

Property 4: (∃P) (∃Q) (P≡Q & |P|≠|Q|).

This property states that the two programs are

implemented with different algorithms and the

functionality of both programs is same, but the

complexity of both implemented programs should be

different from each other. Program 45 and 46 are

considered to check whether this Weyuker property is

satisfied by the proposed measure or not. Both programs

are related to the stack implementation, the former uses

an array and the later uses a linked list to implement a

stack. The cognitive complexity of program 45

is=65+18+2+34+24=143. The internal structure of this

program includes the sequential, branch, iteration and

embedded components. Cognitive complexity of the

program 46 is=77+27+3+42+28=177, and the

sequential, branch, iteration, and embedded structures

are incorporated. These two programs have the same

functionality, but the implementation algorithm is

different. According to the above-described example, it

is quite clear that both programs are not equally

complex, i.e. 143 # 177. Hence, C2M also holds this

Weyuker property.

Property 5: (∀P) (∀Q) (|P|≤|P; Q| and |Q|≤|P; Q|).

This fifth property of Weyuker states that when the

two program body are combined into a third single

program body then the newly constructed program has

higher complexity than both of the individual programs.

Program 47, 48, and 49 are used to verify this property.

Program 47 is used to find whether the number is prime

or composite. Program 48 is used to find the factorial of

a given number and program 49 is the combination the

functionality of program 47 and 48 into a single

program body. The cognitive complexity of the program

47 is=20+9+1+9+8=47, and the cognitive complexity of

program 48 is=17+9+1+7+6=40. When the functionality

of these two program is embedded into a single

program, i.e. 49, then the cognitive complexity

is=42+17+2+21+16=98. Sequential, branch and

iterative statements are incorporated into the first two

programs, but in the third program, one more embedded

structure is incorporated. It is clear from the above-

described example that, the cognitive complexity of

individual programs are ’47’ and ‘40’ which are less

than the complexity of the combined program, i.e.

(98>(47+40)). So, the fifth property is also satisfied by

the proposed cognitive complexity measure.

Property 6(a): (∃P) (∃Q) (∃R) (|P|=|Q|) &

(|P;R|≠|Q;R|)

Property 6(b): (∃P) (∃Q) (∃R) (|P|=|Q|) &

(|R;P|≠|R:Q|).

1585 A. K. Jakhar and K.Rajnish / IJE TRANSACTIONS B: Applications Vol. 28, No. 11, (November 2015) 1579-1588

Weyuker’s sixth property declares that the two

program bodies have the same cognitive complexity and

these programs are separately concatenated into the

third program. After that, the proposed measure should

yield different complexity values of both the newly

generated programs. Program 14 and 35 are taken into

account to verify this property. Both programs have the

equal complexity, i.e. ‘45’. Now, program 31 is

integrated into both programs. After addition, the

cognitive complexity of both programs will be ‘73’ and

‘71’, respectively. This is because of the new data type

and one new executable line incorporated into the new

generated program R (comprises of program 14 and 31).

Hence, 73 # 71, indicates that the proposed C2M

measure also hold this Weyuker property.

Property 7: There are program bodies P and Q such

that Q is formed by permuting the order of the statement

of P and (|P|≠|Q|).

As aforementioned, the proposed approach utilizes

the number of operands, operators, data types,

executable LOCs, and cognitive weight of BCSs to

measure the complexity of the software. The proposed

cognitive complexity values will not change due to the

permuting the order of the instruction of the source

code. Thus, this property is not satisfied by the proposed

measure.

Property 8: If P is renaming of Q, then |P|=|Q|.

The result of the proposed measure is always a

positive numeric value, which does not depend on the

file name. If the file is renamed, then there will be no

effect on complexity value of the proposed measure. So,

this eighth Weyuker property is obviously satisfied by

the C2M.

Property 9: (∃P) (∃Q) (|P|+|Q|<(|P;Q|).

The ninth Weyuker property states that, if the

program size grows, then the complexity of the program

should further increase. If programs 47, 48, and 49 are

considered, the cognitive complexity value of the

individual programs 47 and 48 is ’47’ and ‘40’,

respectively. Later, the functionalities of both programs

are incorporated into a third program, i.e. program 49.

The cognitive complexity of the newly generated

program is ‘98’ as described earlier in the fifth property,

which shows that the summation of complexity values

of individual program is smaller than the concatenated

program, i.e. (87 (47+40)<98). This is due to the

additional information and BCSs are added into the

component bodies of the united program. A larger

program is always harder to understand and unreliable

than many similar small programs. So, this Weyuker

property is clearly satisfied by the proposed C2M.

Weyuker property shows that the proposed measure is

valid for measuring the complexity of the programs.

These properties are necessary to satisfy by an effective

complexity measure, but this does not provide sufficient

condition for complete validation.

TABLE 2. Conformance of proposed and other cognitive

measures to Weyuker’s property

S. No LOC CFS MCCM CPCM NCCoP C2M

1 Y Y Y Y Y Y

2 Y Y Y Y Y Y

3 Y Y Y Y Y Y

4 Y Y Y Y Y Y

5 Y Y Y Y Y Y

6 N N N N N Y

7 N Y N N N N

8 Y Y Y Y Y Y

9 N Y Y Y Y Y

The proposed measure is not a direct measure because it

uses some different parameters in different sequences to

calculate the complexity of programs. C. Karner [21]

provides a more practical approach to validate the

measures. The description of the practical approach to

validate the proposed cognitive complexity measure is

given below.

Measure’s purpose: the main purpose of the

measure is calculating the cognitive complexity of the

program and on the basis of calculated complexity value

the developers can self-analyze whether the complexity

of the software is legitimate or not. If they feel any

problem in the program behavior, further action can be

accommodated to overcome the problem before it

becomes critical at later stages.

Measure’s scope: measure can be used after the

development of the source code but not at earlier stages

of the software development life cycle. This may be

applied to earlier stages if some attributes of the source

code can be predicted before the development of the

code.

Measure’s instruments: measurement of the

proposed approach can be done manually or by using

some automated tools.

Instrument natural variability while measurement:

the proposed measure is simple and straightforward, so

there is no variability while measuring the attributes of

the proposed cognitive complexity measure.

Relation between parameters and the metric value: a

direct relation exists between the parameters and the

metric value because when the C2M value increases it

means, the complexity increases and the quality of the

product decreases with respect to time and space. The

proposed metric is a quality indicator but not unique.

The effect of the automated instrument: once an

automated tool is developed, there is no further

A. K. Jakhar and K.Rajnish / IJE TRANSACTIONS B: Applications Vol. 28, No. 11, (November 2015) 1579-1588 1586

personnel required for calculation of attributes of

software and only the automated tool cost will be

imposed on the company. After analysis of the above

discussion, it is found that the C2M measure has good

capability to measure the complexity of the software.

4. RESULT EVALUATION OF C2M AND OTHER
COGNITIVE COMPLEXITY MEASURES

This section deals with the analysis of the proposed and

other cognitive complexity measures. For analysis of the

cognitive complexity measures, 50 programs are

collected from “Programming in C” [20]. Results of our

approach and other approaches like: CFS [10], MCCM

[11], CPCM [12], and NCCoP [13] are provided in

Table 3.

In addition to it, another experiment is also

conducted with the help of 10 undergraduate students of

our institute. The programs are distributed among all the

students to understand the program. The time taken by

the individual student is recorded and the meantime of

all the students is expected as the actual time required to

understand the source code. The actual time (the

meantime of the recorded data from students) and

estimated time (calculated with the help of proposed

measure) of all concerned programs is provided in Table

4. Actual time to understand (ATU) and estimated time

to understand (ETU) the source code are quality

parameters that can be utilized in testing as well as in

maintenance phase.

Coding efficiency of all 50 programs is also

calculated using proposed and other existing cognitive

complexity measures. Equation (8) is used to calculate

coding efficiency of the programs.

LOCsvaluecomplexityCognitiveCE /__ (8)

High value of CE indicates that more information is

located into a small program, means, the complicated

statements present in source code. With the help of CE

factor, the productivity of the individual programmer

can be estimated that can be useful to measure the

development effort and time of the program.

Cognitive Functional Size (CFS) includes the input,

output and the Wc of all BCSs to calculate the

complexity of the software. The problem with CFS is

that, this measure does not consider the local

information, which is not a part of input and output.

Another issue with CFS is that, if only one branch or

iteration statement increases in the program, then the

cognitive complexity according to CFS can be twice or

thrice, respectively. The same problem also happens

with MCCM, it can be verified from Table 3.

TABLE 4. Calculated coding efficiency, ATU and ETU of 50

programs
S. no. CFS MCCM CPCM NCCoP C2M ATU ETU

1 1.7 2.4 2.6 2.4 4.4 1.5 2.2

2 2.5 10.0 1.6 1.1 3.1 3.6 3.0

3 0.5 3.4 2.9 2.9 4.6 3.6 5.1

4 2.4 16.0 3.6 4.0 6.0 2.3 2.1

5 0.8 5.8 4.0 3.8 7.2 2.0 2.5

6 0.6 3.0 2.3 2.1 4.3 1.8 2.1

7 0.7 3.7 2.7 2.6 5.0 2.0 2.5

8 1.4 9.4 7.4 7.3 10.9 3.7 5.3

9 1.8 25.9 3.8 3.7 6.8 4.6 5.3

10 3.4 12.0 2.6 2.7 4.7 2.4 2.3

11 0.3 7.0 4.7 11.0 8.7 1.6 1.8

12 0.2 7.2 4.7 11.8 8.5 2.6 3.6

13 1.6 12.8 3.2 3.2 5.2 2.1 1.8

14 1.5 21.8 3.0 3.8 5.5 3.3 3.1

15 1.5 23.3 3.3 3.9 5.8 3.5 3.2

16 2.0 27.0 4.0 5.8 6.8 3.2 2.9

17 1.3 9.4 1.9 2.5 3.6 2.2 2.0

18 1.6 28.6 2.6 3.3 4.6 6.6 7.4

19 1.0 7.7 2.4 2.8 4.0 2.8 2.5

20 1.9 11.9 2.1 2.8 3.7 5.4 5.5

21 2.2 28.9 3.1 3.6 5.1 3.9 3.2

22 4.5 26.3 4.0 6.0 6.3 4.1 3.5

23 6.1 59.8 4.2 6.6 6.5 8.2 6.9

24 5.9 38.9 3.5 4.6 5.5 5.6 5.0

25 3.9 43.9 3.7 4.6 6.0 8.0 7.6

26 31.2 232.1 6.4 8.3 9.0 13.8 12.6

27 27.1 223.8 5.9 8.2 8.5 13.7 13.7

28 16.4 95.5 5.9 8.5 8.9 7.9 6.9

29 16.8 138.1 4.1 5.1 6.2 27.7 16.6

30 1.0 38.0 4.6 6.4 7.9 3.9 3.9

31 1.3 11.3 2.8 3.8 5.0 2.2 2.1

32 1.5 24.0 3.1 4.3 5.1 4.8 5.0

33 1.2 23.4 3.5 3.6 5.8 4.2 4.1

34 1.9 21.0 2.9 4.5 4.9 3.8 3.8

35 1.7 24.9 3.7 5.3 6.4 3.4 3.2

36 0.9 20.8 2.7 4.6 5.2 4.6 4.7

37 1.3 8.6 3.0 3.7 4.6 2.6 2.2

38 3.5 45.9 3.1 3.7 4.6 8.8 7.4

39 3.8 36.1 3.3 3.5 6.8 5.3 6.2

40 0.8 9.2 2.4 2.8 3.9 2.8 2.7

41 3.1 37.3 3.6 4.1 5.6 4.6 3.5

42 5.5 54.0 3.6 3.5 5.6 6.4 5.1

43 3.3 16.9 1.9 2.1 4.2 4.9 5.0

44 9.7 330.1 2.8 3.1 4.8 57.5 57.8

45 6.4 58.6 2.6 3.0 4.2 11.1 10.0

46 6.0 69.3 2.5 2.8 4.2 13.6 12.4

47 1.8 25.8 3.1 3.8 5.2 3.6 3.3

48 1.7 22.3 3.3 4.3 5.7 3.1 2.8

49 2.0 34.4 2.8 3.3 4.7 7.8 6.9

50 1.8 18.7 2.8 3.2 4.2 4.3 3.9

1587 A. K. Jakhar and K.Rajnish / IJE TRANSACTIONS B: Applications Vol. 28, No. 11, (November 2015) 1579-1588

LOC measure totally depends on the programmer.

Skilled programmers can reduce the lines of code by

using the smart techniques and some programmers

increase the LOCs unnecessarily. Consider, the

programs 1, 6, 7, and 8. All programs have seven

executable LOCs. According to LOC, all programs are

equally complex. But the cognitive complexity of these

programs by different cognitive complexity measures,

especially of program 8 is ‘10’ (CFS), ‘66’ (MCCM),

‘52’ (CPCM), ‘51’ (NCCoP), and ‘76’ (C2M). CFS

yields minimum complexity value among all cognitive

complexity measures, it is due to the sequential

structure of the program (since there is no branch or

iteration in the program). From the aforementioned

discussion, it is concluded that a small program may be

more complex than a larger program.

In CPCM and NCCoP measure, the operators are

ignored. Only the operands are utilized to measure the

cognitive complexity of programs. If the internal

information of the program is similar, then CPCM and

NCCoP may generate the same result as a complexity

value due to the sequential structure of the program.

Program 45 implements a stack using an array and

program 46 implements the equivalent using a linked

list. In both programs, internal information is almost

identical and both measures rank the programs with

almost equal complexity. But, it is far from reality

because the implementation of any data structure using

linked list is a challenging task than array

implementation. We also test our proposed approach on

same programs 45 and 46. The results of our proposed

approach for programs 45 and 46 are ‘143’ and ‘177’,

respectively. The difference indicates that the later

program is very much complex than former program.

So, the proposed work of this paper calculates the

complexity of programs more accurately.

Table 4 lists the result of the coding efficiency of all

cognitive measures along with the actual and the

estimated time to understand the programs. The

meantime of 10 students is assumed as an actual time

required to understand the source code. On the basis of

recorded actual time, the authors calculate a constant

factor to measure the necessary time required to

understand the source code. After analysis of the

proposed cognitive complexity measure (C2M), it is

found that the understand-ability factor is approximately

7% of the C2M value.

The correlation is also calculated to verify the result.

The correlation between actual time and estimated time

to understand the code is 0.98. This shows that the

proposed approach has good capability to measure the

understand-ability factor. This analysis of the cognitive

complexity measures indicate the effectiveness of the

C2M in several aspects and satisfies most of the features

of a good measure.

5. CONCLUSION AND FUTURE WORK

In this paper, an attempt was made to present a new

cognitive complexity measure which covers the

different characteristics of the source code. The results

of the proposed measure were compared with the other

existing cognitive complexity measures. To compare the

performance of the different cognitive complexity

measures, 50 ‘C’ language programs were utilized. The

results of all measures about cognitive complexity,

coding efficiency and ATU and ETU are provided in

Tables 3 and 4. Weyuker property and a practical

framework were used to validate the proposed measure.

After analysis of Weyuker property, eight out of nine

properties were met by the proposed cognitive

complexity measure. The measure also satisfied several

parameters required by the practical framework.

Another important quality parameter “understand-

ability” was also calculated with the help of 10

undergraduate students of our institute. The meantime

was taken as the actual time required to understand the

source code. It was found that the time required to

understand the code is approximately 7% of the C2M

value and the correlation factor between actual and

estimated time is 0.98. The proposed measure is

computationally simple and helps the developers and

practitioners in evaluating the cognitive complexity of

the software. It also establishes a relationship between

the C2M value and the required time to understand the

program. This measure satisfies most of functionality

that a good measure should be satisfied for qualifying a

worthy measure. Therefore, all these statistics reveal

that, the proposed cognitive complexity measure (C2M)

effectively calculates the complexity of software using

different attributes of the software. This work can be

extended in certain aspects like: estimating the time

required to test the software, the time needed to debug

and may be some other products metrics.

6. REFERENCES

1. Kearney, J.P., Sedlmeyer, R.L., Thompson, W.B., Gray, M.A.

and Adler, M.A., "Software complexity measurement",

Communications of the ACM, Vol. 29, No. 11, (1986), 1044-
1050.

2. McCabe, T.J., "A complexity measure", Software Engineering,

IEEE Transactions on, No. 4, (1976), 308-320.

3. Halstead, M.H., "Elements of software science (operating and

programming systems series), Elsevier Science Inc., (1977).

4. Basili, V., "Qualitative software complexity models: A
summary", Tutorial on models and methods for software

management and engineering, (1980).

5. Oviedo, E.I., "Control flow, data flow and program complexity",
in Software engineering metrics I, McGraw-Hill, Inc. (1993),

52-65.

A. K. Jakhar and K.Rajnish / IJE TRANSACTIONS B: Applications Vol. 28, No. 11, (November 2015) 1579-1588 1588

6. Wang, Y., "On cognitive informatics", in Cognitive Informatics,

2002. Proceedings. First IEEE International Conference on,
IEEE., (2002), 34-42.

7. Salehi, S., Taghiyareh, F., Saffar, M. and Badie, K., "A context-

aware architecture for mental model sharing through semantic
movement in intelligent agents", International Journal of

Engineering-Transactions B: Applications, Vol. 25, No. 3,

(2012), 233-241.

8. Wang, Y., "On the cognitive informatics foundations of software

engineering", in Cognitive Informatics, 2004. Proceedings of the

Third IEEE International Conference on, IEEE., (2004), 22-31.

9. Weyuker, E.J., "Evaluating software complexity measures",

Software Engineering, IEEE Transactions on, Vol. 14, No. 9,

(1988), 1357-1365.

10. Wang, Y. and Shao, J., "Measurement of the cognitive

functional complexity of software", in Cognitive Informatics,

2003. Proceedings. The Second IEEE International Conference
on, IEEE., (2003), 67-74.

11. Misra, S., Modified cognitive complexity measure, in Computer

and information sciences–iscis., Springer.(2006) 1050-1059.

12. Misra, S., "Cognitive program complexity measure", in

Cognitive Informatics, 6th IEEE International Conference on,

IEEE., (2007), 120-125.

13. Jakhar, A.K. and Rajnish, K., "A new cognitive approach to

measure the complexity of software’s", International Journal

of Software Engineering & Its Applications, Vol. 8, No. 7,

(2014).

14. Adamo Jr, D., "An experiment to measure the cognitive weights

of code control structures", (2014).

15. Ghasemzadeh, M., "Complexity reduction in finite state
automata explosion of networked system diagnosis", (2014).

16. Shehab, M.A., Tashtoush, Y.M., Hussien, W.A., Alandoli, M.N.

and Jararweh, Y., "An accumulated cognitive approach to
measure software complexity", Journal of Advances in

Information Technology, Vol. 6, No. 1, (2015) 145-161.

17. Jakhar, A.K. and Rajnish, K., "Measure of complexity for
object-oriented programs: A cognitive approach", in

Proceedings of 3rd International Conference on Advanced

Computing, Networking and Informatics, Springer., (2016), 397-
406.

18. Wang, Y., "The real-time process algebra (rtpa)", Annals of

Software Engineering, Vol. 14, No. 1-4, (2002), 235-274.

19. Harrison, W., "An entropy-based measure of software

complexity", Software Engineering, IEEE Transactions on,

Vol. 18, No. 11, (1992), 1025-1029.

20. Thareja, R., "Programming in c", Oxford University Press,

(2011).

21. Kaner, C., "Software engineering metrics: What do they
measure and how do we know?", in In METRICS. IEEE CS,

Citeseer., (2004).

Measurement of Complexity and Comprehension of a Program Through a Cognitive

Approach

A. K. Jakhar, K.Rajnish

Department of Computer Science & Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India

P A P E R I N F O

Paper history:
Received 08 February 2015
Received in revised form 21 September 2015
Accepted 16 October 2015

Keywords:
Complexity
Basic Control Structure
Cognitive Informatics
Operators
Operands
Cognitive Weight

هچكيد

کند. تکنیک های متعددی برای مشکلاتی را در صنعت مهندسی نرم افزار ایجاد میپیچیدگی ذاتی سیستم های نرم افزاری

درک ویژگی های اساسی سیستم های نرم افزاری طراحی شده اند. برای درک نرم افزار، باید از سطح پیچیدگی کد منبع

ین انفورماتیک همچنین درک آگاه بود. انفورماتیک شناختی نقش مهمی برای فهم بهتر پیچیدگی های نرم افزار دارد. ا

کند. در این مقاله یک اقدام جدید پیچیدگی شناختی محققان از رفتار کد منبع، ساختار داخلی و کنترل را تسهیل می

(C2Mبرای اندازه گیری پیچیدگی سیستم نرم افزار ارائه می) برنامه 05شود که در'C' تست شده است. اندازه گیری

C2M نین با کمک ارائه شده است همچWeyuker شود؛ هشت خاصیت از نه خصوصیت با معیار پیشنهادی ارزیابی می

مطابقت دارد. عملکرد معیار ارائه شده همچنین با دیگر معیارهای موجود پیچیدگی شناختی مقایسه شده است. داده های

سته شد تا کد منبع را بشناسند. زمان دانشجو در مقطع کارشناسی از موسسه ما توزیع شده و از آنها خوا 05تست در میان

گرفته شده توسط هر دانش آموز ثبت شد و زمان متوسط داده های ثبت شده دانش آموزان به عنوان زمان واقعی مورد نیاز

شد مرتبط محاسبه می C2Mبرای شناخت برنامه لحاظ گردید. در ادامه با زمان تخمین زده شده که از طریق اندازه گیری

 دهد تایج با کیفیت بهتر ارائه مینتایج تجربی، مشاهده شد که معیار پیشنهادی نشد. از

doi:10.5829/idosi.ije.2015.28.11b.05

