
IJE TRANSACTIONS B: Applications  Vol. 28, No. 11, (November 2015)  1571-1578 
 

  

Please cite this article as: X. Zhou, J. Shen, Least Squares Support Vector Machine (LSSVM) for Constitutive Modeling of Clay, International 
Journal of Engineering (IJE), TRANSACTIONS B: Applications  Vol. 28, No. 11, (November 2015)  1571-1578 

 
 

International Journal of Engineering 
 

J o u r n a l  H o m e p a g e :  w w w . i j e . i r  
 

 

Least Squares Support Vector Machine for Constitutive Modeling of Clay 

X. Zhou*a,b, J. Shenc 
 

a School of Mathematics and Physics, Huanggang Normal University, Huanggang, Hubei Province, China 
b School of Mechanics and Materials, Hohai University, Nanjing, Jiangsu Province, China 
c School of Civil and Transportation Engineering, Hohai University, Nanjing, Jiangsu Province, China 

 

 

P A P E R  I N F O   

 
 

Paper history: 
Received 10 July 2015 
Received in revised form 27 August 2015 
Accepted 16 October 2015 

 
 

Keywords:  
Constitutive Modeling 
Artificial Neural Network  
Support Vector Machine  
Least Squares Support Vector Machine  
Fujinomori Clay
 
 
 
 

 
 

A B S T R A C T  
 

 

Constitutive modeling of clay is an important research in geotechnical engineering. It is difficult to use 

precise mathematical expressions to approximate stress-strain relationship of clay. Artificial neural 

network (ANN) and support vector machine (SVM) have been successfully used in constitutive 
modeling of clay. However, generalization ability of ANN has some limitations, and application of 

SVM in large scale function approximation problems is limited during optimization. In this paper, least 

squares support vector machine (LSSVM) is proposed to simulate stress-strain relationship of clay. 
LSSVM is a robust type of SVM, maintains the good features of SVM and also has its own unique 

advantages. LSSVM offers an effective alternative for mimicking constitutive modeling of clay. The 

good performance of the LSSVM models is demonstrated by learning and prediction of constitutive 

relationship of Fujinomori clay under undrained and drained conditions. In the present study, three 

versions of LSSVM models are built by considering more history points. The results prove that the 

LSSVM based models are superior to Modified Cam-clay model. 

 
doi: 10.5829/idosi.ije.2015.28.11b.04 

 

 
1. INTRODUCTION1 

 

Clay is a very common and important kind of 

engineering geomaterials, and the constitutive behavior 

of clay is vital to numerical analysis in many 

engineering problems. Two main methodologies are 

used to research the constitutive behavior of materials, 

one is the conventional modeling method, which uses 

specific mathematical expressions to approximate the 

experimentally observed behavior of materials; the 

other is a fundamentally different approach, some 

learning machines such as artificial neural network 

(ANN) [1-5] and support vector machine (SVM) [6], are 

proposed as more effective approaches to represent 

complex and nonlinear constitutive relationship of 

materials. 

As is well known, it is difficult to give a satisfactory 

formulation for the constitutive relationship of clay that 

incorporates a concise statement of nonlinearity, 

inelasticity and stress dependency based on a set of 

                                                           

1*Corresponding Author’s Email zhouxj@hhu.edu.cn (X. Zhou) 

assumptions and proposed failure criteria. On the other 

hand, the methods of constitutive modeling based on 

ANN were originally proposed by Ghaboussi et al. [1, 

2] and have successfully been applied to numerical 

analysis with improved accuracy [7-13], but the models 

based on ANN have some drawbacks, such as no 

information about the relative importance of various 

parameters, slow convergence speed, less generalizing 

performance, arriving at local minimum, over-fitting 

problems and so on [14]. However, ANN based learning 

methods appeared to be losing their favors, especially 

after the emergence of SVM. SVM is a promising 

technique developed by Vapnik [15] and can overcome 

several deficiencies encountered in ANN models [6, 

16]. Unfortunately, application of SVM in large scale 

function approximation problems with a wide range of 

experimental data is limited by the time and memory 

consumed during optimization [17].  

In 1999, a robust type of SVM, i.e. least squares 

support vector machine (LSSVM), was presented by 

Suykens and Vandewalle [17]. In contrast to SVM 
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learning methods, LSSVM maintains the good features 

of SVM，and also has its own unique advantages: 

· LSSVM utilizes all data points in order to find a 

satisfactory approximation, but in SVM only a 

portion of support vectors are used to construct an 

approximation model. 

· LSSVM can improve work efficiency by solving 

linear equation sets instead of convex quadratic 

programming problems in SVM. 

The research presented in this paper attempts to 

develop constitutive models taking advantage of 

LSSVM. Next, the overview of SVM and LSSVM will 

be presented. Third, the representation in LSSVM 

material modeling will be discussed. Fourth, LSSVM 

algorithm will be employed for simulating the 

constitutive relationship of Fujinomori clay under 

undrained and drained conditions. Finally, conclusions 

will be made. 

 

 

2. SUPPORT VECTOR MACHINE (SVM) AND LEAST 
SQUARES SUPPORT VECTOR MACHINE (LSSVM) 

 
SVM has recently emerged as an elegant pattern 

recognition tool and a better alternative to ANN 

methods. The algorithm has been developed firstly by 

Vapnik [15, 18, 19] and drawn the attention of several 

researchers and scientists owing to its high performance 

in efficiently solving complicated nonlinear problems. 

In function approximation or regression problems, 

SVM methods are formulated to solve a convex 

optimization problem and a quadratic programming 

situation arises which is subjected to inequality 

constraints aiming to find support vectors. Therefore, 

applying SVM for regression problems is associated 

with high computational burden owing to employed 

constraint optimization programming.  

In 1999, Suykens and Vandewalle proposed a 

modified version of SVM, called least squares support 

vector machine (LSSVM) attempting to minimize its 

complexity and improve its convergence speed. In many 

fields, it has been proved that LSSVM methodology 

gives excellent results [20-22]. 

Assume that we have a set of experimental data: 

  , , , 1, 2, ,
d

i i i i
x y x R y R i n    (1) 

where ix denotes the input pattern, and iy represents 

output pattern. In general, the optimization regression 

problem in LSSVM is formulated as follows: 
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subject to: 

  , 1,2, ,T

i i iy x b e i n      
 
(3)  

where   denote weight vectors,   is regularization 

parameter, ie represent the regression errors,   and  b  

are the mapping function and bias term, respectively, 

the superscript T  denotes the transpose matrix. 

Constructing Lagrange functions, and according to the 

conditions for constrained optimization theory, we can 

obtain nonlinear regression of LSSVM as follows: 

   
1

,
n

i i

i

f x K x x b


 
 

(4) 

where 
i  

are Lagrange multipliers, and: 

     , =
T

i iK x x x x   (5) 

denotes kernel function, and several available kernel 

functions in SVM learning methods such as linear, 

polynomial, Gaussian radial basis function (RBF) and 

sigmoid etc., the most popular type, i.e. RBF is 

employed in the presented study. RBF Kernel function 

is expressed by: 

 
2

2
, =exp

2

i

i

x x
K x x



 
 
 
 

 
(6) 

where 2 stands for the squared variance of the Gaussian 

function. In order to train the LSSVM models, 

determination of input and output variables is important, 

and standardization of the data needs to be entered, in 

this study the input and output values should be 

determined from mapping the actual values into the 

range of [-1,1]. The values of parameters  in Equation 

(2) and 2 in Equation (6) for each LSSVM model 

should be chosen properly and respectively. 

 

 

 

3. REPRESENTATION IN LSSVM MATERIAL 
MODELING 
 
Similar to others learning algorithms, LSSVM is 

applied in modeling of behavior of material based on a 

fundamental observation on the nature of material 

behavior data. If the experiment data include enough 

relevant information, it can generalize the constitutive 

relationship by utilizing LSSVM to train the obtained 

data.  

 

 

 
TABLE 1. Values of Fujinomori clay parameters [23] 

Compression 

index 

Swelling 

index 

Initial 

void 

ratio 

Angle of 

internal 

friction 

Poisson’s 

ratio 

    
0e      

0.085 0.019 0.68 33.7 0.3 
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Figure 1. Process flow for a strain-controlled LSSVM model 

 

 

When strain variables ε  are given as input, and 

stress variables σ  are given as output, the general form 

of a strain-controlled LSSVM model can be expressed 

as : 

(7)  = LSSVMσ ε 

Figure 1 demonstrates the process flow for a strain-

controlled LSSVM model. In order to mimic the 

relationship between strains and stresses, we can set 

strains to input and stresses to output, and LSSVM uses 

nonlinear mapping based on kernel functions to convert 

an input space into a high dimension space, then finds a 

nonlinear relationship between input and outputs in that 

space. While stress variables σ  are given as input, and 

strain variables ε  are given as output, the general form 

of a stress-controlled LSSVM model can be described 

as: 

 = LSSVMε σ  (8) 

The LSSVM model used in Equations (7) and (8) is 

referred to as a one-point version, because the forms 

include the current state of variables only. One-point 

models are suitable for moderately path dependent or 

independent path behavior. For the sake of representing 

strongly dependent path material behavior, a two-point 

version model and a three-point version model can be 

expressed as: 

      1
= LSSVM ,

n n n
σ ε ε  (9) 

      1
= LSSVM ,

n n n
ε σ σ  

(10) 

        1 2
= LSSVM , ,

n n n n 
σ ε ε ε  (11) 

        1 2
= LSSVM , ,

n n n n 
ε σ σ σ  (12) 

where the superscript (n)
 
represents the current state of 

stress and strain variables, and the superscripts
 
(n-1)

 
and 

(n-2)
 

represent two previous stresses and strains 

variables along the loading path. The LSSVM modeling 

version used in Equations (9) and (10) is described as a 

two-point version, including the current state and one 

history point, and the LSSVM modeling version used in 

Equations (11) and (12) is described as a three-point 

version, including the current state and two history 

points. 

Meanwhile, with increasing the number of history 

points in LSSVM modeling, it is able to represent 

dependent path material behavior better and better. 

These LSSVM models can be expressed generally as: 

        1 2
= LSSVM , , ,

n n n n 
σ ε ε ε  

(13) 

        1 2
= LSSVM , , ,

n n n n 
ε σ σ σ

 
(14) 

We can realize that, the aforesaid LSSVM models 

will be more and more complex with increasing the 

number of history points. As will be seen later in this 

paper, the three versions of LSSVM models will be 

used to simulate the constitutive relationship of clay. 

 

 

4. LSSVM MODELING OF UNDRAINED AND 
DRAINED BEHAVIOR OF CLAY 
 
LSSVM will be applied in modeling of the undrained 

and drained behavior of clay in this section. The 

capability of the three version of LSSVM models in 

simulating and predicting undrained and drained 

behavior of clay has been examined under triaxial 

compression condition on normally consolidated 

Fujinomori clay [23-25] (experimental data from Nakai 

and Matsuoka; Nakai et al.), and the modified Cam-clay 

model has been compared by the three models 

respectively, because the modified Cam-clay model is 

acknowledged as the most successful model of clay. 

The values of Fujinomori clay parameters used in the 

models are listed in Table 1. 

The aim is to use the experimental data to train the 

three LSSVM models to simulate and predict 

Fujinomori clay in both undrained and drained tests for 

initial void ratio 0.68 and confining pressure 196 kPa. A 

total number of 74 undrained and 68 drained triaxial test 

samples are used as the database. The undrained or 

drained test sample points will be divided into two 

groups randomly，one of the groups is used in training 

the LSSVM models, the other group (selected 4 samples 

of each test) is used to test the performance of the 

trained LSSVM models. In the following narration, 

there are two subsections for the three LSSVM models 

on the undrained and drained conditions, respectively. 

 

4. 1. LSSVM Models for Constitutive Relationship 
On Undrained Tests          Firstly, a one-point LSSVM 

model is developed to express the constitutive 

relationship, and then the history points will be added to 

the models. The one-point LSSVM model can be 

written in the following form: 

    0LSSVM1 ,
n n

eσ ε  (15) 
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In this equation,  = ,p qσ ,  = ,v d ε , 0e  denotes 

initial void ratio, mean effective stress  1 32 3p      , 

deviator stress 
1 3q    , volumetric strain 

1 32v    , deviator strain 
1 3d    , 

1  is axial 

stress, 
2 3=   is lateral stress, 1  is axial strain, 

2 3=   

is lateral strain,
i i u    , 1,2,3i  , u denotes pore 

pressure. It is worth mentioning that, volumetric strain
 

v  
is always zero in the undrained LSSVM models, and 

void ratio is invariable approximately, so deviator strain 

d  and initial void ratio 0e  are actually given as input 

in undrained models. However, volumetric strain
 
and

 
void ratio are variable in the drained LSSVM models, 

and then the input in drained models should include 

volumetric strain
 
and

 
void ratio along the loading path. 

The two-point LSSVM model is obtained by 

attaching a history point added to the one-point model. 

The two-point LSSVM model can be written in the 

following form: 

      -1

0LSSVM2 , ,
n n n

eσ ε σ  (16) 

Then, the three-point LSSVM model is obtained by 

attaching two history points added to the one-point 

model. The three-point LSSVM model can be written in 

the following form: 

        -1 -2

0LSSVM3 , , ,
n n n n

eσ ε σ σ  (17) 

In the following, we can train the above three 

LSSVM models. Figure 2 shows the performance of the 

one-point model LSSVM1, the two-point model 

LSSVM2 and the three-point model LSSVM3 of 

undrained condition on Fujinomori clay, in terms of the 

relation between the normalized deviator stress 

0q p (P0=196 kPa) and the deviator strain d . 

According to Figure 2, the three LSSVM models 

perform much better than modified Cam-clay model, 

however, to evaluate further the performance of the 

three LSSVM models, they should be used to test the 

other group of sample points. 

 

 

 

 
 

 
 

 
 

Figure 2. Performance of LSSVM models on undrained 

compression tests 

 

 

 

A relative error index defined by the following 

equation can provide a measure of the accuracy of 

LSSVMs in modeling clay behavior: 

0

0
1

1

n

L
n

i i

i i

y y
Relative Error Index

y


 

 
(18) 

where n is the number of sample points, Ly  denotes the 

output of LSSVM models and 0y  denotes the 

corresponding values of samples. The relative error 

index can be used to calculate training errors and test 

errors. 

The results in term of relative error indices for all 

the training and testing cases are summarized in Tables 

2. Table 2 is presented separately for each output 

variable of the three LSSVM models, and the third 

columns of training and testing case show the combined 

relative errors. It can be observed that the relative errors 

of deviator stresses are larger than the values of mean 

effective stresses, but the combined relative errors 

should be acceptable, and it is able to demonstrate the 

good performance of the three LSSVM models once 

again.  

 

4. 2. LSSVM Constitutive Models on Drained Tests         
Under the condition of drained, LSSVM models will be 

changed slightly, since volumetric strain
 
and

 
void ratio 

are variable along the loading path, and pore pressure 

equals to zero approximately. In order to demonstrate 

distinctly the drained behavior of Fujinomori clay, 

LSSVM will be used to not only express stress variables 

by strain variables, but also strain variables by stress 
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variables in this part. Firstly, the one-point version, two-

point version and three-point version LSSVM models of 

expressing stress variables by strain variables (i.e. 

strain-stress relationship) can be written in the following 

forms: 

      LSSVM1 ,
n n n

eσ ε  (19) 

        -1
LSSVM2 , ,

n n n n
eσ ε σ

 
(20) 

          -1 -2
LSSVM3 , , ,

n n n n n
eσ ε σ σ  

(21) 

Compared to Equations (15), (16) and (17), initial 

void ratio
 0e

 
should be replaced by void ratio of current 

state  n
e , mean effective stress p  equals to mean 

effective p approximately, and volumetric strain
 v  

is 

not zero. Secondly, the three LSSVM models of 

expressing strain variables by stress variables (i.e. 

stress-strain relationship) can be expressed in the 

following equations: 

      LSSVM1 ,
n n n

eε σ
 

(22) 

        -1
LSSVM2 , ,

n n n n
eε σ ε  

(23) 

          -1 -2
LSSVM3 , , ,

n n n n n
eε σ ε ε  

(24) 

Compared to Equations (19), (20) and (21), except 

for switching the input variables and output variables, 

the variables reflecting path are strains in Equations 

(23) and (24). 

Then, we can train the three LSSVM models for 

strain-stress and stress-strain relationship. Figure 3 

shows the strain-stress performance of the one-point 

LSSVM1, the two-point LSSVM2 and the three-point 

LSSVM3 of drained condition on Fujinomori clay, in 

terms of the relation between the principal stress ratio 

1 3  and the axial strain 1 . The principal stress ratio 

1 3  and the axial strain 1  can be calculated by the 

following equations: 

1

3

3 2

3

p q

p q










 
(25) 

1

2

3

v d 





 
(26) 

Figure 4 shows the stress-strain performance of the 

three LSSVM models of drained condition on 

Fujinomori clay, in terms of the relation between the 

volumetric strain
 v  

and the axial strain 1 . 

According to Figure 3 and 4, the three LSSVM 

strain-stress and stress-strain models perform also better 

than modified Cam-clay model. Furthermore, they 

should be used to test the other group of sample points. 

The relative errors of the two kinds of LSSVM models 

can be calculated by Equation (18), and the results are 

listed in Table 3 and 4. 

 

 

 
TABLE 2. The relative errors for LSSVM models on 

undrained compression tests 

 Training case 

Output variable p (%) q (%) Combined(%) 

LSSVM1 0.45 9.57 5.01 

LSSVM2 0.25 4.38 2.32 

LSSVM3 0.30 5.46 2.88 

 Testing case 

Output variable p (%) q (%) Combined(%) 

LSSVM1 1.56 9.51 5.54 

LSSVM2 2.00 11.77 6.89 

LSSVM3 1.67 10.36 6.02 

 

 

 
 

 
 

 
 

Figure 3. Performance of LSSVM strain-stress models on 

drained compression tests 
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Figure 4. Performance of LSSVM stress-strain models on 

drained compression tests 

 

 

TABLE 3. The relative errors for LSSVM strain-stress 

models on drained compression tests 

 Training case 

Output variable p (%) q (%) Combined(%) 

LSSVM1 0.62 8.22 4.42 

LSSVM2 0.47 6.22 3.35 

LSSVM3 0.52 6.51 3.52 

 Testing case 

Output variable p (%) q (%) Combined(%) 

LSSVM1 2.03 10.32 6.18 

LSSVM2 2.89 12.78 7.84 

LSSVM3 3.11 13.82 8.47 

 

 

TABLE 4. The relative errors for LSSVM stress-strain 

models on drained compression tests 

 Training case 

Output variable v (%) 
d (%) Combined(%) 

LSSVM1 0.21 0.66 0.44 

LSSVM2 0.21 1.01 0.61 

LSSVM3 0.18 1.06 0.62 

 Testing case 

Output variable v (%) 
d (%) Combined(%) 

LSSVM1 10.95 20.23 15.59 

LSSVM2 9.54 19.20 14.37 

LSSVM3 7.84 18.70 13.27 

The structure of Tables 3 and 4 is same as Table 2, it 

can be observed that the relative errors of deviator 

stresses are also larger than the values of mean effective 

stresses in Table 3, and testing errors are larger than 

training errors in Table 3 and 4. But the combined 

relative errors of strain-stress models are no more than 

9%, stress-strain models are not exceeding 16%, 

however, it is enough for practical engineering 

problems. On the other hand, the two kinds of LSSVM 

models perform much better than modified Cam-clay 

model, so the results of LSSVM models should be 

acceptable. 

 

 

5. CONCLUSIONS 
 

Least squares support vector machine (LSSVM) which 

is a robust type of SVM offers an effective alternative 

for simulating constitutive modeling of clay. In the 

present research, three versions of LSSVM models are 

set up by adding more history points, though LSSVM 

models will be more and more complex with increasing 

the number of history points, they represent dependent 

path material behavior better and better. The good 

performance of the LSSVM models is demonstrated by 

simulating and prediction of constitutive relationship of 

clay under undrained and drained conditions. 

Comparing with conventional modeling methods, i.e. 

modified Cam-clay model, LSSVM models need not 

assumptions and calculation of parameters in a 

mathematical model, and LSSVM just utilizes 

experimental data to set up models, thus more 

objectively and accurately. In contrast to artificial 

neural networks (ANN) and support vector machine 

(SVM), LSSVM can overcome some shortcomings of 

ANN or SVM models, and LSSVM works very well for 

all the complex situations, thus more effectively.  

In the future step, the models of LSSVM can be 

coupled with finite element methods in numerical 

analysis. On the other hand, if there are more effective 

data, LSSVM models can express behavior of clay 

under some complex stress states with the increase in 

the number of history points. 
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چكيده
 

 

استفاده از عبارات دقیق ریاضی برای  .تحقیقات مهم در مهندسی ژئوتکنیک استاز جمله مدل سازی ساختاری خاک رس 

با  (SVM) و ماشین بردار پشتیبان  (ANN) شبکه عصبی مصنوعی .ستادشوار کرنش خاک رس -تخمین رابطه تنش

برخی از  بابا این حال، توانایی تعمیم شبکه عصبی  .موفقیت در مدل سازی ساختاری خاک رس استفاده شده اند

در  .تقریب تابع در مقیاس بزرگ در طول بهینه سازی محدود است سائلمدر  SVM و استفاده از ها روبروستمحدودیت

کرنش خاک رس پیشنهاد شده -برای شبیه سازی رابطه تنش (LSSVM) این مقاله، حداقل مربعات ماشین بردار پشتیبانی

و همچنین دارای مزایای کرده حفظ را   SVMویژگی های خوب  که است SVM یک نوع قوی از LSSVM .است

عملکرد  .ساختاری خاک رس ارائه می دهد برای تقلید مدل سازی یجایگزین موثر LSSVM است. منحصر به فرد خود 

تحت شرایط زهکشی نشده و  Fujinomori خاک رسختاری با یادگیری و پیش بینی رابطه سا LSSVM خوب مدل

بیشتر ساخته شده  یبا در نظر گرفتن نقاط تاریخ LSSVM در مطالعه حاضر، سه نسخه از مدلشود.  میخشک نشان داده 

 برتری دارند. نسبت به مدل بادامک خاک رس اصلاح شده LSSVM بر اساس  مدل های کند که مینتایج ثابت . است
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