
IJE TRANSACTIONS C: Aspects Vol. 28, No. 9, (September 2015) 1276-1285

Please cite this article as: P. Ashooriyan, Y. Baleghi, A Comparative Study of VHDL Implementation of FT-2D-cGA and FT-3D-cGA on Different
Benchmarks, International Journal of Engineering (IJE), TRANSACTIONS C: Aspects Vol. 28, No. 9, (September 2015) 1276-1285……

International Journal of Engineering

J o u r n a l H o m e p a g e : w w w . i j e . i r

A Comparative Study of VHDL Implementation of FT-2D-cGA and FT-3D-cGA on

Different Benchmarks

P. Ashooriyan, Y. Baleghi*

Department of Electrical & Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran

P A P E R I N F O

Paper history:
Received 18 September 2014
Received in revised form 30 June 2015
Accepted 30 July 2015

Keywords:
Fault Tolerance
Cellular Genetic Algorithm
FT-2D-cGA
FT-3D-cGA
Processing Element
Single Error Upset

A B S T R A C T

This paper presents the VHDL implementation of fault tolerant cellular genetic algorithm. The goal of

paper is to harden the hardware implementation of the cGA against single error upset (SEU), when

affecting the fitness registers in the target hardware. The proposed approach consists of two phases;
Error monitoring and error recovery. Using innovative connectivity between processing elements and

efficient correction policy, the PEs will prohibit spreading the faulty evaluated individual in the

population. In the experiments, three metrics and four test functions are used to show the performance
of the proposed structures. Two structures (2D and 3D) of proposed FT-cGAs are set to optimize

various test functions. The experimental results illustrate the robustness of the proposed system. An

outstanding outcome was that the implemented fault tolerant algorithm was able to reach the optimal
solution when at least one processing element is healthy in population.

doi: 10.5829/idosi.ije.2015.28.09c.04

1. INTRODUCTION1

EAs have been intensively studied in the last decades

due to their worthy performance in solving extensive

range of problems and especially the NP hard ones. EAs

are intrinsically parallel and offer significant advantages

in terms of hardware implementation.

While serial EAs are applied, a single population is

considered. On the other hand, parallel EAs use

structured populations. The parallel EAs can be

categorized into cellular and distributed ones [1].

Distributed EAs divide the population into multiple

subpopulations (islands). Each island is allocated to a

processing element (PE). Processing element (PE) is a

hardware element that executes a stream of instructions

(in this paper the EA operations are considered). The

islands evolve separately and the migration between

them is possible.

Instead, in cellular EAs, the PEs are located in an n-

dimensional grid that can interact with each other while

evolving the assigned population. The interactions are

usually performed among the neighboring PEs.

*Corresponding Author’s Email: y.baleghi@nit.ac.ir (Y. Baleghi)

In this paper, the cellular genetic algorithms (cGAs) are

considered. The balance between exploration and

exploitation in cGAs is discussed in recent works [2-6].

The growing probability of single event upset

(SEUs) in electronic circuits due to the wide reduction

in size [2] increased the requirement to novel

approaches to create systems that can be robust to this

model of fault.

The idea that cellular architecture can bring about

fault tolerance is well discussed in [7]. Next, in [8] the

idea of applying “parallel GA” in a real world

application (GPS attitude determination problem) was

presented; however still no fault tolerant feature was

reported. In [9, 10], a 3D architecture of cGA was

developed that resulted in overall improvements in the

performance of the algorithm when compared with

smaller grid dimensions. Another reason for using a 3D

topology is its flexibility to be implemented with new

advanced custom silicon chip technologies [11], while

again the fault tolerance was not investigated. By

Morales-Reyes et al. [12], the intrinsic capability of

cGAs targeting fault tolerance has been considered. The

goal of this reference is to approach fault tolerance over

the appropriate exploitation of essential parameters and

genetic operators in cGAs.

RESEARCH

NOTE

mailto:y.baleghi@nit.ac.ir

1277 P. Ashooriyan and Y. Baleghi / IJE TRANSACTIONS C: Aspects Vol. 28, No. 9, (September 2015) 1276-1285

TABLE 1. Summary of fault tolerant cellular genetic algorithms

Name
Fault

Type

Fault

Location
Diagnosed Fault Method Fault Recovery Method

FT-cGA [12] SHE
Fitness

Register
_ _ _

Using the appropriate exploitation of inherent parameters

and genetic operators specific to cellular GAs

Adaptive-cGA [13] SEU/SHE
Chromosome

Register

The difference average of

Hamming distance between two
consecutive generations

Changing the square structure to rectangle structure and

vice versa

dcGA [14] SHE
Fitness

register

The difference between the

average fitness of two

consecutive generations

Migrating population from distributed to cellular

structure

FT-3D-cGA [6,15] SEU
Fitness

Register
Computing the genotypic entropy

Genetic diversity is used to identify and isolate faulty

individuals, and then applies a new migration schema
(replace faulty individual with first fault free

neighborhood) for modifying error, and then another

cGA is run without updating and communicating isolated
individuals with their healthy neighborhood.

D-FT-3D-cGA [16] SEU
Fitness

register
Computing the genotypic entropy

Computing genetic diversity and isolate faulty individual

and replacement faulty individual with first fault free

neighborhood and recalculate the maximum number of

generations based on the ratio of fault, and then cGA is
run without interfering faulty individual in

neighborhoods process

The fault model contains occurrence of SHE at

fitness score registers. It was shown that using

migration operator and controlled selection intensity,

the feature of fault tolerance emerges intrinsically.

Morales-Reyes et al. [13], an adaptive method is

discussed that is robust to SHEs when incurred at

chromosome registers. In this reference, error

discovering is performed via monitoring the decreasing

genotype diversity of chromosome register that is

caused by SHEs error. By Morales-Reyes et al. [14],

cGA and dGA are fused to approach adaptive and fault

tolerant GA that aims to solve the GPS altitude problem.

The proposed dcGA of this reference is resistant to

SHEs when affecting the fitness register. Experimental

results have exhibited that the fusion of two structures

can overtake cGA in faulty situations. Meanwhile,

influence of migration policies and adaptive schemes is

very important in dcGA structure. Al-Naqi et al. [6, 15],

fault tolerant three dimensional design of cGA suitable

to implement with recent advanced custom silicon chip

technology is proposed.

This structure is fault tolerant and alleviates SEUs

that apply in phenotype registers. The experimental

result of this reference illustrates that this algorithmic

approach is able to persist up to 40% SEUs error. Al-

Naqi et al. [16] that is an improved version of previous

work [6, 15], the stopping criterion is dynamically

assigned and called “Dynamic Fault-Tolerant 3D-cGA”.

Table 1 gives a brief summary of recent fault tolerant

cGAs with different fault models and recovery methods.

No hardware implementation or hardware simulation is

reported in references of Table 1, while the present

paper considers the VHDL implementations of fault

tolerant cGAs.

In the present paper two members of fault tolerant n-

dimensional cGA family [6] are implemented in VHDL

that are tolerant to SEU faults targeting PE’s registers

that correspond to fitness score registers. The overall

results demonstrate the ability of our method to

maintain system’s functionality despite an increasing

number of faults, until one processing elements (PEs) be

healthy, and clearly illustrate the importance of

migration and connectivity of PEs in our structure.

The remainder of this paper is divided into five

sections. Section 2 presents the basic definitions of this

paper. The proposed architecture is discussed in section

3. Section 4 presents the simulation setup and results.

The results are discussed in section 5. Finally,

concluding notes are given in section 6.

2. BASIC DEFINITIONs

This section presents the basic characterizations, failure

types and cellular genetic algorithm, considered in this

study.

2. 1. Fault Tolerance Single Event Effect (SEEs)

have been considered by researchers in recent years.

SEEs can be categorized into Single Event Upsets

(SEUs) and Single Hardware Errors (SHEs). SEUs

occur when a single charged particle changes the state

of one or more memory cells inside the device. If only a

single memory cell changes state, the SEU is referred to

as a single bit upset (SBU) else, if multiple cells change

state, the SEU is called a multi-bit upset (MBU) [17];

however, this phenomenon has been recently observed

at the ground level [18]. After data rewriting or a system

P. Ashooriyan and Y. Baleghi / IJE TRANSACTIONS C: Aspects Vol. 28, No. 9, (September 2015) 1276-1285 1278

reset, the functionality of the system is recovered. SHEs

are a subclass of SEEs, but these cause a stable

alteration to the operation of the system, for example,

when one-bit or several-bits of important data at

registers or memory are changed due to stable stuck at

zero or one logic. Previous works have used several

techniques to add fault tolerance ability to systems.

These methods are classified into hardware and

software techniques or a combination of both. In

hardware techniques detecting fault is faster than soft

approaches, but it has more overhead, which increases

the cost and complexity of systems and, cannot repel all

types of random and multiple bit errors. Triple Modular

Redundancy (TMR), DICE (Dual Interlocked Storage

Cell), redundancy, and check pointing are main

members of these techniques. Since the energy from

SEE causes functional effects by spreading possibly

through all system modules, therefore developing SEE

tolerant systems is nowadays supported from a

functional rather than a physical perception.

2. 2. Cellular Genetic Algorithm (cGA) genetic

algorithms maintain a population of individuals (see

Figure 1) that grow according to selection rules and

other genetic operators, such as mutation and crossover.

For each individual there is a measure of fitness.

Selection focuses on high fitness individuals. General

heuristics that are provided by mutation and crossover

simulate reproduction process. These operators cause

some changes in parent individuals in order to generate

distinct offspring individuals [19].

Figure 1. Typical structure of individuals in EAs [20]

Algorithm 1: Pseudo-code of a canonical cGA [20]
1. proc Evolve (cga) // Parameters of the algorithm in ‘cga’

2. Generate Initial Population (cga.pop);

3. Evaluation (cga.pop);
4. While! Stop Condition () do

5. for individual ← 1 to cga.pop Size do

6. neighbors ← Calculate Neighborhood (cga, position (individual));
7. parents ← Selection (neighbors);

8. off spring ← Recombination (cga.Pc, parents);

9. off spring ← Mutation (cga. Pm, off spring);
10. Evaluation (off spring);

11. Replacement (position (individual), auxiliary pop, off spring);

12. end for
13. cga.pop ← auxiliary pop;

14. end while

15. end proc Evolve

Algorithm 1 presents the pseudo-code of a canonical

cGA. At the first step, this algorithm generates and

evaluates an initial population. After that, the genetic

operators such as selection, recombination, mutation

and replacement are applied to each individual until the

termination criteria is met. The cGA’s population can be

arranged as an n-Dimensional lattice where each

individual is allocated to a lattice’s position (cell). In

this model each cell has internal genetic operators, and

just can interact with its local neighbors [20].

3. PROPOSED ARCHITECTURE

The proposed FT-nD-cGA (FT and nD respectively

stand for Fault Tolerant and n dimensional) comprises

of two main stages. First, the cellular genetic algorithm

is started, and during the run applies rules to identify the

faulty individuals. In addition, the first stage is carried

out until the termination criterion is met. At the end of

the first stage, if all individuals are healthy, the

algorithm will finish. In contrast, if at least one

individual is faulty in population, the second stage of

algorithm will start. This algorithm is structured in two

blocks as shown in Figure 2.

The Error Monitoring Block in Figure 3 that runs the

cGA is the first aforementioned stage. Whenever an

error is monitored in this stage, the error monitoring

block Enable signal stimulates the second stage that is

performed by Error Recovery Block. In the second stage

the isolation list, current population and fittest

individual are transferred to Error Recovery Block via

the corresponding signals. This time the cGA initializes

with the current population after healing the faulty

individuals by altering them with the fittest individual.

Error Monitoring Block (Figure 3) is composed of five

sub blocks that are described here. The Error Recovery

Block has a very similar structure and contains the same

sections.

3. 1. Processing Element (PE) The cellular

topology consists of several processing elements (PEs).

Figure 2. Fault tolerant 2D(/3D) cGA hardware architecture

1279 P. Ashooriyan and Y. Baleghi / IJE TRANSACTIONS C: Aspects Vol. 28, No. 9, (September 2015) 1276-1285

Figure 3. Internal structural error monitoring block

In cGA, the population is arranged as an n-

dimensional lattice (see Figure 4) where each network

position (cell) is assigned to a PE. PEs operate genetic

algorithm separately and have two important registers in

their structure that store genotype and the fitness. Each

PE has relations within its defined neighbours. This

paper considers the 2D and 3D structures. In 3D

topology (see Figure 4b) each PE has six neighborhoods

-east, west, horizontal south and north, vertical south

and north - but in 2D topology (see Figure 4a) each PE

has four neighborhoods - North, east, west and south.

Algorithm 1 runs in all PEs. First, each PE evaluates the

fitness of neighborhoods’ genotypes; then, the fittest

genotype is selected as the first parent. The second

(internal) parent is the current individual (lines 6, 7 of

algorithm 1). Then, crossover operator (in this paper

one-point cross over) recombines the selected parent to

produce 2 offspring’s (line 8) and the fittest offspring is

selected to be mutated (line 9). The modified offspring

is evaluated and the fittest individual between modified

offspring and the internal parent stay in this PE for next

generation. Since the fault model in this paper is SEU

and occurs in fitness register, to prevent the error spread

in population, the signal that contains the fitness of

individual is not used in PEs’ connections. Therefore,

before the PEs operation start, fitness values of

neighborhood genotype is calculated in each PE.

3. 2. Initialization Component This block

generates initial value in first generation for all PEs.

(a) 2D topology (b) 3D topology

Figure 4. Cellular 2 and 3 dimensional topologies

In Figure 5, initialization block uses random number

to generate initial value for PEs in Error Monitoring.

However, in Error Recovery Block of Figure 2, the

initialization block is somehow different. It uses three

factors to generate initial value for second part of

algorithm as mentioned in Section 3. The additional

inputs of this sub-block are depicted in Figure 6.

3. 3. Generation Controller Basically,

Generation controller (Figure 7) is a counter block that

determines the generation number for all PEs. Also, the

maximum generation number is saved in this block.

This block is activated when the entire operation of PEs

in previous generation in each part is finished.

Figure 5. Initialization in Error Monitoring Block

Figure 6. Initialization in Error Recovery Block

Figure 7. Generation controller component

P. Ashooriyan and Y. Baleghi / IJE TRANSACTIONS C: Aspects Vol. 28, No. 9, (September 2015) 1276-1285 1280

3. 4. Error Detection In this component (see

Figure 8), the faulty PEs of population are identified.

Then a list of isolated PEs is created. Next, if all PEs

were healthy the algorithm is finished. Otherwise, even

if one PE was faulty, the second step of algorithm starts

with activation of error recovery block. In addition, this

block finds best fault free individual from current

generation. The best fault free individual is used to

transfer to Error Recovery Block.

Since the fitness value signal is not used in PE

bindings and the fitness is re-evaluated in each PE, the

SEU errors in fitness score register cannot spread in

new populations. Using this replacement policy in Error

Recovery Block, the algorithm is very fast to reach the

optimal answer. In fact, after repairing the population in

recovery block, the initial population resumes with fitter

individuals. A PE is recognized faulty: if a specific

individual remains unaffected in the processing element

during the total generations.

3. 4. Comparator At the end of each generation

when the PEs task are finished, this block (Figure 9)

selects the best individual of population, and therefore

the optimized answer in each generation is chosen .

3. 5. Design Methodology The mission of the

proposed structure is to prevent error propagation. The

main idea to accomplish this mission is to use the

healthy individuals to repair the faulty ones.

The error detection block is responsible for

identifying the faulty individuals. The replacement

procedure is performed in Initialization component that

is located in Error Recovery Block. This component

uses the isolation list – that includes the faulty PEs – to

replace the faulty PEs with the fittest individual of the

last generation of Error Monitoring phase.

Figure 8. Error detection block

Figure 9. Comparator component

4. SIMULATION AND RESULTS

This section concentrates on considered fault model and

benchmark problems that are used to assess the

performance of proposed architecture.

4. 1. Fault Model In this paper we consider the

SEU error that occurs at fitness score register and

assume that this fault model has occurred in first

generation. It means that the cellular genetic algorithm

starts its operation with a mixed population of faulty

and healthy individuals. SEUs happen on one or more

bits of registers and flip their values to low or high

fitness. The bit(s) flipping in fitness score register keep

their fitness value stuck at ‘1’ or ‘0’. In our approach we

consider only the worst case of fault model by forcing

the fitness register of faulty individuals to ‘0’. This fault

model (stuck at ‘0’) is the most hazardous situation in

which the faulty individuals misguide the algorithm as

they seem to be good solutions. The good solution in

minimum optimization has the minimum fitness value

(‘0’ in this paper). If the faulty individual has a

minimum fitness value this individual is identified as a

good solution in population and can hurt the algorithm

convergence.

4. 2. Benchmark Problems In order to determine

how well an optimization algorithm works, a variety of

test functions have been used as benchmarks. There are

several benchmarks which have been widely used in the

literature to test the performance of optimization

algorithms. Four functions as benchmarks have been

used in this study. In each case we give a general form

of the function, a plot of its values in one dimension and

give the global optima in its one dimensional form.

4. 2. 1. “Rastrigin” Function Rastrigin function

(fRas) is a multimodal, separable and symmetric

function. The objective function shown in (1) has to be

minimized [21].

n

2

RAS k

k 1

f x 10n x 10cos 2πx

(1)

Equation (1) is plotted in one dimension in Figure 10.

The variables range within the interval of [−5.12,

+5.12], and the global minimum value is 0.0. This

function is properly difficult due to its large search

space and large number of local minima.

4. 2. 2. “Griewank” Function Griewangk’s

function has many widespread local minima regularly

distributed. The function has the following definition

(2).

n n

2 i
Gri i

i 1 i 1

x1
f x x cos 1

4000 i

(2)

1281 P. Ashooriyan and Y. Baleghi / IJE TRANSACTIONS C: Aspects Vol. 28, No. 9, (September 2015) 1276-1285

Figure 10. One dimensional Rastrigin function

Figure 11. One dimensional Griewank function

Figure 12. One dimensional Michalewicz function

Test area is usually restricted to hypercube xiϵ[-

600,600], i = 1,...,n. Its minimum is obtainable in f(x) =

0 for xi = 0 , i = 1,...,n. The general overview suggests

convex function, medium-scale view suggests existence

of local extremum, and finally, zoom on the details

indicates complex structure of numerous local

extremum [20]. This function is plotted in one

dimension in Figure 11.

4. 2. 3. “Michalewicz” Function Michalewicz

function is a multimodal and separable test function

with n! Local minima. The objective function to

minimize is shown in (3), and the variables range in the

interval of [0, π]. One dimensional form of this function

is shown in Figure 12, where m = 5 and defines the

steepness of the valleys [20].

2.
2n

mich

i 1

.
f x sin . sin

m

i
i

i x
x

 (3)

4. 2. 4. “Drop wave” Function This is a

multimodal test function [20]. The objective function to

minimize is shown in (4), and test area is usually

restricted to the square xiϵ [-600,600]. One dimensional

Drop wave function plot is shown in Figure 8.

2 2

1 2

drop 1 2
2 2

1 2

1 cos 12 x x
f x , x

1
x x 2

2

(4)

The considered search space dimension is n=1 for all

the above mentioned problems.

4. 3. Simulation Setup As mentioned in previous

section, four functions have been used as benchmarks in

this simulation. Equations (1), (2), (3) and (4) represent

Rastrigin’s, Griewank’s, Michalewicz’s and Drop

wave’s function, respectively. Table 2 summarizes the

details of our test functions. The proposed FT-cGA

terminates when the average fitness-value of population

is below a threshold value (average fitness-value ≤

threshold) that is shown in the last column of Table 2.

Figure 13. One dimensional Drop wave function

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

5

10

15

20

25

30

35

40

45
rastrigin

-100 -80 -60 -40 -20 0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
 criewangsk

-4 -3 -2 -1 0 1 2 3 4
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
michalwicz

-6 -4 -2 0 2 4 6
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0
drop

P. Ashooriyan and Y. Baleghi / IJE TRANSACTIONS C: Aspects Vol. 28, No. 9, (September 2015) 1276-1285 1282

TABLE 2. The properties of Benchmark functions including their dimensions, Global optima and stopping criteria

Function Domain of x Global optima (x, y) Stopping criteria (threshold)

F_Mich X ϵ [0,π] (2.18328,-0.806919) -0.806

F_Ras X ϵ [-5.12,5.12] (0,0) 0.00005

F_Gri X ϵ [-600,600] (0,0) 0.00005

F_Drop X ϵ [-5.12,5.12] (0, -1) -0.99999

TABLE 3. FT-nD-cGA parameters used in the simulation

Parameters FT-2D-cGA FT-3D-cGA

Neighborhood east, west, north, south east, west, vertical north and south, horizontal north and south

Parent selection Best neighborhood Best neighborhood

Recombination One point cross over One point cross over

Mutation Bit flip Bit flip

Max generation 300 300

Chromosome length 32 32

Replacement Replace if better Replace if better

Termination condition Avg_fitness ≤ threshold value Avg_fitness ≤ threshold value

The proposed FT-nD-cGA was simulated in 2D and

3D structures. Several tests are considered in order to

show the ability of the FT-nD-cGA to overcome SEUs

at fitness score registers. Considering different

population sizes, the algorithm’s parameters are

summarized in Table 3.

4. 4. Evaluation Metrics The results are analyzed

based on three metrics: the efficiency is measured as the

average number of generations for successful runs out

of 100 independent runs., The second one is the search

success rate of successful experiments out of 100

independent runs which represents the efficacy of the

algorithm, and the third is the ratio of efficiency to

efficacy (see Equation (5)).

The best structure of optimization algorithm for each

test function must have low efficiency and high efficacy

which results in low γ. Equation (5) gives the formula of

performance measure (γ).

effciency

efficacy

 (5)

5. RESULTS
In Figures 14-16, the average number of generation,

search success rate and γ are depicted respectively vs.

population size. In these diagrams we can see if the

population size increases, the average number of

generation and ratio parameter decrease and search

success rate increases. Furthermore, the algorithm

converges faster. In addition these diagrams show the

rank of our test functions in three metric parameters.

Figures 17- 19, are similar to Figures 14- 16

respectively, but the only difference is in the structure

dimensions of FT-cGA.

Figure 14. Efficiency parameter for 3D structure of FT-cGA.

Efficiency is the average number of generations for successful

runs.

Figure 15. Efficacy parameter for 3D structure of FT-cGA.

Efficacy is the search success rate of successful experiments.

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000

A
ve

ra
ge

 n
u

m
 o

f
ge

n
er

at
io

n

Population size

mich ras Gri drop

0

20

40

60

80

100

120

0 200 400 600 800 1000 1200

Se
ar

ch
 s

u
cc

e
ss

 r
at

e

Population size

mich ras Gri drop

1283 P. Ashooriyan and Y. Baleghi / IJE TRANSACTIONS C: Aspects Vol. 28, No. 9, (September 2015) 1276-1285

Figure 16. ‘γ’ parameter for 3D structure of FT-cGA.

Figure 17. Efficiency parameter for 2D structure of FT-cGA.

Efficiency is the average number of generations for successful

runs.

Figure 18. Efficacy parameter for 2D structure of FT-cGA.

Efficacy is the search success rate of successful experiments.

Figure 19. ‘γ’ parameter for 2D structure of FT-cGA

Figure 20. Impact of fault percentage in ratio parameter for all

test function in 3D structure (population size = 343)

0

20

40

60

80

100

0 200 400 600 800

A
ve

ra
ge

 n
u

m
b

er
 o

f
ge

n
er

at
io

n

Population size

mich ras Gri drop

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700 800

Se
ar

ch
 s

u
cc

e
ss

 r
at

e

Population size

mich ras Gri drop

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120

R
at

io
 (
γ)

Fault percentage

mich ras Gri Drop

In these diagrams we can see that the population size

has a direct relation with efficacy and has inverse

relation with efficiency and ratio parameter. Meanwhile,

in this structure (2D), we can see an increase of

convergences speed of algorithm when the population

size increases. Figures 20 and 21 show the influence of

fault percentage in ratio parameter when the population

size is 343 PEs for 3D structure and 361 PEs for 2D

structure (these diagrams are obtained for all test

function).

6. DISCUSSION

In all diagrams (Figures 14 - 19), it is observed

that when the population size increases, the efficiency

 and ratio (γ) parameter decrease and the efficacy

parameter increases. This happens due to the increase of

cGA computational capacity caused by the population

size enlargement. Figures 14- 19 can be used to rank the

test functions in efficacy, efficiency and γ parameters.

Considering Figures 20 and 21, it can be deduced that

for fault percentage below 90%, the 2D is better than

3D structure and for fault percentage more than 90% the

3D structure has a better performance. This outcome

can be used to minimize the hardware overhead while

minimizing the benchmark functions in different faulty

conditions. A more general conclusion from Figures 14-

19 can be about determining the best dimensions for the

cGA architecture. Based on the aforementioned data,

Table 4 gives the best dimension of cGA architecture

for each benchmark as a function of the fault percentage

and population size. The summarization is not as

straightforward as the previous discussed parameters

(efficiency,…). It may be expected that an increase in

dimensions (2D to 3D) will result in better ratio

(efficiency/efficacy); however, this is not the observed

phenomenon. The experimental results support this fact

that the performance highly depends on the type of

benchmark function, population size and fault

percentage.

P. Ashooriyan and Y. Baleghi / IJE TRANSACTIONS C: Aspects Vol. 28, No. 9, (September 2015) 1276-1285 1284

TABLE 4. Comparison of two structures of FT-cGAs in ratio parameter for all test functions, different sizes of population and fault

percentages.
fault percentage

\ function
F_mich F_ras F_Gri F_drop

0% 2D

2D , pop size < 68 3D , pop size < 108 2D , pop size < 44

3D , 68 < pop size < 115 2D , pop size > 108 3D , 44 <pop size < 128
2D , pop size > 115 2D , pop size > 128

10%

3D , pop size < 57 3D , pop size < 125 3D , pop size < 76 3D , pop size < 139

2D , 57 <pop size < 341 2D , pop size > 125 2D , pop size > 76 2D , pop size > 139
3D , pop size > 341

50%

3D , pop size < 68 3D , pop size < 248

2D

3D , pop size < 265

2D , 68 <pop size < 341 2D , pop size > 248 2D , pop size > 265
3D , pop size > 341

90% 2D
3D , pop size < 119

2D
3D , pop size < 133

2D , pop size > 119 2D , pop size > 133

1 PE healthy
3D , pop size < 133

2D
3D , pop size < 251 3D , pop size < 119

2D , pop size > 133 2D , pop size > 251 2D , pop size > 119

Figure 21. Impact of fault percentage in ratio parameter for all

test function in 2D structure (population size = 361)

In this table we can see in low population size, to

optimize all test functions, the three-dimensional

structure of fault tolerant cGA, is superior to the two-

dimensional structure, since the count of neighborhood

in three dimensional is bigger than two dimensional

structure.

7. CONCLUSION AND FUTURE WORK

In this study, we proposed VHDL implementation of a

family of fault tolerant cellular genetic algorithm that is

robust to SEUs when applied to fitness score register.

This approach is based on canonical cellular genetic

algorithm that is explained in algorithm 1. The

connectivity of PEs and migration policies are important

tools used in our strategy to prevent spreading faulty

answer and repair effects of faulty individuals.

In the experiments, two topologies have been tested

(3D and 2D) and their performance were analyzed and

compared with three metrics: efficacy, efficiency and

their ratio, and we consider the worst case of fault

model (stuck at ‘0’ in minimum optimization) with

different fault percentages. The experimental results

show that the proposed method is very robust to

recovering SEU error up to at least one PEs of

population is healthy. In addition, using the efficient

replacement rule in restoration step, the algorithm can

use the correct answers that were produced in first

stage; therefore, the algorithm does not have a lot of

time overhead for reaching the optimal answer. Finally,

the table was designed, that represents which topology

of fault tolerant cGA is excellent in a variety of

conditions (the conditions include; size of population

and error percentage occurred for optimization of all test

functions). In this paper the reliability of proposed

structures are evaluated with some metrics; However,

other metrics can be used to measure their reliability

inspiring from literatures [21, 22]. Another task for

future can be the study of behavior of emergence of

fault tolerance while using this simulated evolution in

genetic algorithms as in reported by Damavandi et al.

[22].

8. ACKNOWLEDGEMENT

The authors wish to thank the anonymous reviewers
and editors for the useful and constructive
comments which have improved the article.

9. REFERENCES

1. Giacobini, M., Tomassini, M., Tettamanzi, A.G. and Alba, E.,

"Selection intensity in cellular evolutionary algorithms for

regular lattices", Evolutionary Computation, IEEE

Transactions on, Vol. 9, No. 5, (2005), 489-505.

2. Tomasini, M., Spatially structured evolutionary algorithms.,
Springer, Berlin/Heidelberg. (2005)

3. Alba, E. and Troya, J.M., "Cellular evolutionary algorithms:

Evaluating the influence of ratio", in Parallel Problem Solving
from Nature PPSN VI, Springer. (2000), 29-38.

4. Alba, E. and Dorronsoro, B., "The exploration/exploitation

tradeoff in dynamic cellular genetic algorithms", Evolutionary

Computation, IEEE Transactions on, Vol. 9, No. 2, (2005),

126-142.

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120

R
at

io
 (
γ

)

Fault percentage

mich ras Gri Drop

1285 P. Ashooriyan and Y. Baleghi / IJE TRANSACTIONS C: Aspects Vol. 28, No. 9, (September 2015) 1276-1285

5. Al-Naqi, A., Erdogan, A.T., Arslan, T. and Mathieu, Y.,

"Balancing exploration and exploitation in an adaptive three-
dimensional cellular genetic algorithm via a probabilistic

selection operator", in Adaptive Hardware and Systems (AHS),

NASA/ESA Conference on, IEEE. (2010), 258-264.
6. Al-Naqi, A., Erdogan, A.T. and Arslan, T., "Fault tolerant three-

dimensional cellular genetic algorithms with adaptive migration

schemes", in Adaptive Hardware and Systems (AHS),
NASA/ESA Conference on, IEEE. (2011), 352-359.

7. Ortega-Sanchez, C., Mange, D., Smith, S. and Tyrrell, A.,

"Embryonics: A bio-inspired cellular architecture with fault-
tolerant properties", Genetic Programming and Evolvable

Machines, Vol. 1, No. 3, (2000), 187-215.
8. Xu, J., Arslan, T., Wang, Q. and Wan, D., "An ehw architecture

for real-time gps attitude determination based on parallel genetic

algorithm", in Evolvable Hardware,. Proceedings. NASA/DoD
Conference on, IEEE. (2002), 133-141.

9. Breukelaar, R. and Bäck, T., "Using a genetic algorithm to

evolve behavior in multi dimensional cellular automata:
Emergence of behavior", in Proceedings of the 7th annual

conference on Genetic and evolutionary computation, ACM.

(2005), 107-114.
10. Morales-Reyes, A., Al-Naqi, A., Erdogan, A.T. and Arslan, T.,

"Towards 3d architectures: A comparative study on cellular gas

dimensionality", in Adaptive Hardware and Systems,. AHS.
NASA/ESA Conference on, IEEE. (2009), 223-229.

11. Das, S., Chandrakasan, A. and Reif, R., "Three-dimensional

integrated circuits: Performance, design methodology, and cad
tools", in VLSI,. Proceedings. IEEE Computer Society Annual

Symposium on, IEEE. (2003), 13-18.

12. Morales-Reyes, A., Stefatos, E.F., Erdogan, A.T. and Arslan, T.,

"Fault tolerant cellular genetic algorithm", in Evolutionary

Computation,. CEC.(IEEE World Congress on Computational

Intelligence). IEEE Congress on, (2008), 2671-2677.

13. Morales-Reyes, A., Erdogan, A.T., Arslan, T. and Stefatos, E.F.,

"Towards fault-tolerant systems based on adaptive cellular
genetic algorithms", in Adaptive Hardware and Systems,.

AHS'08. NASA/ESA Conference on, IEEE. (2008), 398-405.

14. Morales-Reyes, A., Haridas, N., Erdogan, A.T. and Arslan, T.,
"Fault tolerant and adaptive gps attitude determination system",

in Aerospace conference, IEEE , (2009), 1-8.

15. Al-Naqi, A., Erdogan, A.T. and Arslan, T., "Fault tolerance
through automatic cell isolation using three-dimensional cellular

genetic algorithms", in Evolutionary Computation (CEC), IEEE

Congress on. (2010), 1-8.
16. Al-Naqi, A., Erdogan, A.T. and Arslan, T., "Dynamic fault-

tolerant three-dimensional cellular genetic algorithms", Journal

of Parallel and Distributed Computing, Vol. 73, No. 2, (2013),

122-136.

17. Schmidt Jr, F.H., "Fault tolerant design implementation on
radiation hardened by design sram-based fpgas", Massachusetts

Institute of Technology, (2013),

18. Normand, E., "Single event upset at ground level", IEEE

Transactions on Nuclear Science, Vol. 43, No. 6, (1996),

2742-2750.

19. Nedjah, N. and de Macedo Mourelle, L., "An efficient problem-
independent hardware implementation of genetic algorithms",

Neurocomputing, Vol. 71, No. 1, (2007), 88-94.

20. Molga, M. and Smutnicki, C., "Test functions for optimization
needs", Test Functions for Optimization Needs, (2005).

21. Nailwal, B. and Singh, S., "Reliability measures and sensitivity

analysis of a complex matrix system including power failure",
International Journal of Engineering-Transactions A: Basics,

Vol. 25, No. 2, (2012), 115-123.

22. Damavandi, Y.B., Mohammadi, K., Upegi, A. and Thoma, Y.,

"On feasibility of adaptive level hardware evolution for

emergent fault tolerant communication", International Journal

of Engineering-Transactions A: Basics, Vol. 27, No. 1, (2013),
101-112.

A Comparative Study of VHDL Implementation of FT-2D-cGA and

FT-3D-cGA on Different Benchmarks

RESEARCH

NOTE

P. Ashooriyan, Y. Baleghi

Department of Electrical & Computer Engineering,Babol Noshirvani University of Technology, Babol, Iran

P A P E R I N F O

Paper history:
Received 18 September 2014
Received in revised form 30 June 2015
Accepted 30 July 2015

Keywords:
Fault Tolerance
Cellular Genetic Algorithm
FT-2D-cGA
FT-3D-cGA
Processing Element
Single Error Upset

هچكيد

را ارائه پذیر خطا ای از الگوریتم ژنتیک سلولی تحمل (خانواده VHDLافزاری)بر اساس کد این مقاله، شبیه سازی سخت
پذیر خطا در زمانی است که خطای واژگونی رخداد دهد. هدف این مقاله افزایش مقاومت الگوریتم ژنتیک سلولی تحمل می

ی شود، مرحله ها را تغییر داده است. الگوریتم مورد نظر، از دو مرحله تشکیل می (مقدار ثباّت برازندگی جوابSEU)یکتا
های المانسازی ی ترمیم جواب خطادار. استفاده از قوانین ابتکاری اتصال و قوانین کارآمد سالم تشخیص خطا و مرحله

ها، سه معیار و چهار تابع آزمون برای باشند. در نتایج آزمایش ریتم مورد نظر میشده در الگو ترین نکات استفاده پردازشی مهم
پذیر خطای بعدی(از الگوریتم ژنتیک تحملسه نمایش عملکرد الگوریتم مورد نظر استفاده شده است. دو ساختار)دوبعدی و

ها، نیرومندی الگوریتم استفاده شد. نتایج آزمایشی دو ساختار سازی توابع آزمون جهت آنالیز و مقایسه مورد نظر، برای بهینه
دهد که الگوریتم مورد نظر حتی زمانی که فقط یک المان پردازشی سالم در جامعه باشد کند و نشان می پیشنهادی را اثبات می

 تواند به جواب بهینه برسد. می
 doi: 10.5829/idosi.ije.2015.28.09c.04

