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A B S T R A C T  
 

 

This paper presents the VHDL implementation of fault tolerant cellular genetic algorithm. The goal of 

paper is to harden the hardware implementation of the cGA against single error upset (SEU), when 

affecting the fitness registers in the target hardware. The proposed approach consists of two phases; 
Error monitoring and error recovery. Using innovative connectivity between processing elements and 

efficient correction policy, the PEs will prohibit spreading the faulty evaluated individual in the 

population. In the experiments, three metrics and four test functions are used to show the performance 
of the proposed structures. Two structures (2D and 3D) of proposed FT-cGAs are set to optimize 

various test functions. The experimental results illustrate the robustness of the proposed system. An 

outstanding outcome was that the implemented fault tolerant algorithm was able to reach the optimal 
solution when at least one processing element is healthy in population. 

 

doi: 10.5829/idosi.ije.2015.28.09c.04 
 

 
1. INTRODUCTION1 
 

EAs have been intensively studied in the last decades 

due to their worthy performance in solving extensive 

range of problems and especially the NP hard ones. EAs 

are intrinsically parallel and offer significant advantages 

in terms of hardware implementation. 

While serial EAs are applied, a single population is 

considered. On the other hand, parallel EAs use 

structured populations. The parallel EAs can be 

categorized into cellular and distributed ones [1].  

Distributed EAs divide the population into multiple 

subpopulations (islands). Each island is allocated to a 

processing element (PE). Processing element (PE) is a 

hardware element that executes a stream of instructions 

(in this paper the EA operations are considered). The 

islands evolve separately and the migration between 

them is possible.  

Instead, in cellular EAs, the PEs are located in an n-

dimensional grid that can interact with each other while 

evolving the assigned population. The interactions are 

usually performed among the neighboring PEs. 

                                                           

*Corresponding Author’s Email: y.baleghi@nit.ac.ir (Y. Baleghi)

In this paper, the cellular genetic algorithms (cGAs) are 

considered. The balance between exploration and 

exploitation in cGAs is discussed in recent works [2-6].  

The growing probability of single event upset 

(SEUs) in electronic circuits due to the wide reduction 

in size [2] increased the requirement to novel 

approaches to create systems that can be robust to this 

model of fault. 

The idea that cellular architecture can bring about 

fault tolerance is well discussed in [7]. Next, in [8] the 

idea of applying “parallel GA” in a real world 

application (GPS attitude determination problem) was 

presented; however still no fault tolerant feature was 

reported. In [9, 10], a 3D architecture of cGA was 

developed that resulted in overall improvements in the 

performance of the algorithm when compared with 

smaller grid dimensions. Another reason for using a 3D 

topology is its flexibility to be implemented with new 

advanced custom silicon chip technologies [11], while 

again the fault tolerance was not investigated. By 

Morales-Reyes et al. [12], the intrinsic capability of 

cGAs targeting fault tolerance has been considered. The 

goal of this reference is to approach fault tolerance over 

the appropriate exploitation of essential parameters and 

genetic operators in cGAs.  

RESEARCH 

NOTE
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TABLE 1. Summary of fault tolerant cellular genetic algorithms 

Name 
Fault 

Type 

Fault 

Location 
Diagnosed Fault Method Fault Recovery Method 

FT-cGA [12] SHE 
Fitness 

Register 
_ _ _ 

Using the appropriate exploitation of inherent parameters 

and genetic operators specific to cellular GAs 

Adaptive-cGA [13] SEU/SHE 
Chromosome 

Register 

The difference average of  

Hamming distance between two 
consecutive generations 

Changing  the square structure to rectangle structure and 

vice versa 

dcGA [14] SHE 
Fitness 

register 

The difference between the 

average fitness of two 

consecutive generations 

Migrating population from distributed to cellular 

structure 

FT-3D-cGA [6,15] SEU 
Fitness 

Register 
Computing the genotypic entropy 

Genetic diversity is used to identify and isolate faulty 

individuals, and then applies a new migration schema 
(replace faulty individual with first fault free 

neighborhood) for modifying error, and then another 

cGA is run without updating and communicating isolated 
individuals with their healthy neighborhood. 

D-FT-3D-cGA [16] SEU 
Fitness 

register 
Computing the genotypic entropy 

Computing genetic diversity and isolate faulty individual 

and replacement faulty individual with first fault free 

neighborhood and recalculate the maximum number of 

generations based on the ratio of fault, and then cGA is 
run without interfering faulty individual in 

neighborhoods  process 

 

 

The fault model contains occurrence of SHE at 

fitness score registers. It was shown that using 

migration operator and controlled selection intensity, 

the feature of fault tolerance emerges intrinsically. 

Morales-Reyes et al. [13], an adaptive method is 

discussed that is robust to SHEs when incurred at 

chromosome registers. In this reference, error 

discovering is performed via monitoring the decreasing 

genotype diversity of chromosome register that is 

caused by SHEs error. By Morales-Reyes et al. [14], 

cGA and dGA are fused to approach adaptive and fault 

tolerant GA that aims to solve the GPS altitude problem. 

The proposed dcGA of this reference is resistant to 

SHEs when affecting the fitness register. Experimental 

results have exhibited that the fusion of two structures 

can overtake cGA in faulty situations. Meanwhile, 

influence of migration policies and adaptive schemes is 

very important in dcGA structure. Al-Naqi et al. [6, 15], 

fault tolerant three dimensional design of cGA suitable 

to implement with recent advanced custom silicon chip 

technology is proposed.  

This structure is fault tolerant and alleviates SEUs 

that apply in phenotype registers. The experimental 

result of this reference illustrates that this algorithmic 

approach is able to persist up to 40% SEUs error. Al-

Naqi et al. [16] that is an improved version of previous 

work [6, 15], the stopping criterion is dynamically 

assigned and called “Dynamic Fault-Tolerant 3D-cGA”. 

Table 1 gives a brief summary of recent fault tolerant 

cGAs with different fault models and recovery methods. 

No hardware implementation or hardware simulation is 

reported in references of Table 1, while the present 

paper considers the VHDL implementations of fault 

tolerant cGAs.  

In the present paper two members of fault tolerant n-

dimensional cGA family [6] are implemented in VHDL 

that are tolerant to SEU faults targeting PE’s registers 

that correspond to fitness score registers. The overall 

results demonstrate the ability of our method to 

maintain system’s functionality despite an increasing 

number of faults, until one processing elements (PEs) be 

healthy, and clearly illustrate the importance of 

migration and connectivity of PEs in our structure. 

The remainder of this paper is divided into five 

sections. Section 2 presents the basic definitions of this 

paper. The proposed architecture is discussed in section 

3. Section 4 presents the simulation setup and results. 

The results are discussed in section 5. Finally, 

concluding notes are given in section 6. 

 

 

2. BASIC DEFINITIONs 
 

This section presents the basic characterizations, failure 

types and cellular genetic algorithm, considered in this 

study. 
 

2. 1. Fault Tolerance       Single Event Effect (SEEs) 

have been considered by researchers in recent years. 

SEEs can be categorized into Single Event Upsets 

(SEUs) and Single Hardware Errors (SHEs). SEUs 

occur when a single charged particle changes the state 

of one or more memory cells inside the device. If only a 

single memory cell changes state, the SEU is referred to 

as a single bit upset (SBU) else, if multiple cells change 

state, the SEU is called a multi-bit upset (MBU) [17]; 

however, this phenomenon has been recently observed 

at the ground level [18]. After data rewriting or a system 
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reset, the functionality of the system is recovered. SHEs 

are a subclass of SEEs, but these cause a stable 

alteration to the operation of the system, for example, 

when one-bit or several-bits of important data at 

registers or memory are changed due to stable stuck at 

zero or one logic. Previous works have used several 

techniques to add fault tolerance ability to systems. 

These methods are classified into hardware and 

software techniques or a combination of both. In 

hardware techniques detecting fault is faster than soft 

approaches, but it has more overhead, which increases 

the cost and complexity of systems and, cannot repel all 

types of random and multiple bit errors. Triple Modular 

Redundancy (TMR), DICE (Dual Interlocked Storage 

Cell), redundancy, and check pointing are main 

members of these techniques.  Since the energy from 

SEE causes functional effects by spreading possibly 

through all system modules, therefore developing SEE 

tolerant systems is nowadays supported from a 

functional rather than a physical perception. 

 

2. 2. Cellular Genetic Algorithm (cGA)     genetic
 

algorithms maintain a population of individuals (see 

Figure 1) that grow according to selection rules and 

other genetic operators, such as mutation and crossover. 

For each individual there is a measure of fitness. 

Selection focuses on high fitness individuals. General 

heuristics that are provided by mutation and crossover 

simulate reproduction process. These operators cause 

some changes in parent individuals in order to generate 

distinct offspring individuals [19]. 

 

 

 

 
Figure 1. Typical structure of individuals in EAs [20] 

 

 
Algorithm 1: Pseudo-code of a canonical cGA [20] 
1. proc Evolve (cga) // Parameters of the algorithm in ‘cga’ 

2. Generate Initial Population (cga.pop); 

3. Evaluation (cga.pop); 
4. While! Stop Condition () do 

5. for individual ← 1 to cga.pop Size do 

6. neighbors ← Calculate Neighborhood (cga, position (individual)); 
7. parents ← Selection (neighbors); 

8. off spring ← Recombination (cga.Pc, parents); 

9. off spring ← Mutation (cga. Pm, off spring); 
10. Evaluation (off spring); 

11. Replacement (position (individual), auxiliary pop, off spring); 

12. end for 
13. cga.pop ← auxiliary pop; 

14. end while 

15. end proc Evolve 

Algorithm 1 presents the pseudo-code of a canonical 

cGA. At the first step, this algorithm generates and 

evaluates an initial population. After that, the genetic 

operators such as selection, recombination, mutation 

and replacement are applied to each individual until the 

termination criteria is met. The cGA’s population can be 

arranged as an n-Dimensional lattice where each 

individual is allocated to a lattice’s position (cell). In 

this model each cell has internal genetic operators, and 

just can interact with its local neighbors [20]. 

 

 

3. PROPOSED ARCHITECTURE 
 

The proposed FT-nD-cGA (FT and nD respectively 

stand for Fault Tolerant and n dimensional) comprises 

of two main stages. First, the cellular genetic algorithm 

is started, and during the run applies rules to identify the 

faulty individuals. In addition, the first stage is carried 

out until the termination criterion is met. At the end of 

the first stage, if all individuals are healthy, the 

algorithm will finish. In contrast, if at least one 

individual is faulty in population, the second stage of 

algorithm will start. This algorithm is structured in two 

blocks as shown in Figure 2. 

The Error Monitoring Block in Figure 3 that runs the 

cGA is the first aforementioned stage. Whenever an 

error is monitored in this stage, the error monitoring 

block Enable signal stimulates the second stage that is 

performed by Error Recovery Block. In the second stage 

the isolation list, current population and fittest 

individual are transferred to Error Recovery Block via 

the corresponding signals. This time the cGA initializes 

with the current population after healing the faulty 

individuals by altering them with the fittest individual. 

Error Monitoring Block (Figure 3) is composed of five 

sub blocks that are described here. The Error Recovery 

Block has a very similar structure and contains the same 

sections. 

 

3. 1. Processing Element (PE)      The cellular 

topology consists of several processing elements (PEs). 

 

 

 
Figure 2. Fault tolerant 2D(/3D) cGA hardware architecture 
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Figure 3. Internal structural error monitoring block 

 

 

In cGA, the population is arranged as an n-

dimensional lattice (see Figure 4) where each network 

position (cell) is assigned to a PE. PEs operate genetic 

algorithm separately and have two important registers in 

their structure that store genotype and the fitness. Each 

PE has relations within its defined neighbours. This 

paper considers the 2D and 3D structures. In 3D 

topology (see Figure 4b) each PE has six neighborhoods 

-east, west, horizontal south and north, vertical south 

and north - but in 2D topology (see Figure 4a) each PE 

has four neighborhoods - North, east, west and south. 

Algorithm 1 runs in all PEs. First, each PE evaluates the 

fitness of neighborhoods’ genotypes; then, the fittest 

genotype is selected as the first parent. The second 

(internal) parent is the current individual (lines 6, 7 of 

algorithm 1). Then, crossover operator (in this paper 

one-point cross over) recombines the selected parent to 

produce 2 offspring’s (line 8) and the fittest offspring is 

selected to be mutated (line 9). The modified offspring 

is evaluated and the fittest individual between modified 

offspring and the internal parent stay in this PE for next 

generation. Since the fault model in this paper is SEU 

and occurs in fitness register, to prevent the error spread 

in population, the signal that contains the fitness of 

individual is not used in PEs’ connections. Therefore, 

before the PEs operation start, fitness values of 

neighborhood genotype is calculated in each PE.  

 

3. 2. Initialization Component     This block 

generates initial value in first generation for all PEs. 

 
(a) 2D topology (b) 3D topology 

Figure 4. Cellular 2 and 3 dimensional topologies  

 

 

In Figure 5, initialization block uses random number 

to generate initial value for PEs in Error Monitoring. 

However, in Error Recovery Block of Figure 2, the 

initialization block is somehow different. It uses three 

factors to generate initial value for second part of 

algorithm as mentioned in Section 3. The additional 

inputs of this sub-block are depicted in Figure 6. 

 

3. 3. Generation Controller          Basically, 

Generation controller (Figure 7) is a counter block that 

determines the generation number for all PEs. Also, the 

maximum generation number is saved in this block. 

This block is activated when the entire operation of PEs 

in previous generation in each part is finished. 

 

 

 
Figure 5. Initialization in Error Monitoring Block 

 

 

 
Figure 6. Initialization in Error Recovery Block 

 

 

 
Figure 7. Generation controller component 
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3. 4. Error Detection       In this component (see 

Figure 8), the faulty PEs of population are identified. 

Then a list of isolated PEs is created. Next, if all PEs 

were healthy the algorithm is finished. Otherwise, even 

if one PE was faulty, the second step of algorithm starts 

with activation of error recovery block. In addition, this 

block finds best fault free individual from current 

generation. The best fault free individual is used to 

transfer to Error Recovery Block.  

Since the fitness value signal is not used in PE 

bindings and the fitness is re-evaluated in each PE, the 

SEU errors in fitness score register cannot spread in 

new populations. Using this replacement policy in Error 

Recovery Block, the algorithm is very fast to reach the 

optimal answer. In fact, after repairing the population in 

recovery block, the initial population resumes with fitter 

individuals. A PE is recognized faulty: if a specific 

individual remains unaffected in the processing element 

during the total generations. 

 

3. 4. Comparator     At the end of each generation 

when the PEs task are finished, this block (Figure 9) 

selects the best individual of population, and therefore 

the optimized answer in each generation is chosen . 

 

3. 5. Design Methodology      The mission of the 

proposed structure is to prevent error propagation. The 

main idea to accomplish this mission is to use the 

healthy individuals to repair the faulty ones. 

The error detection block is responsible for 

identifying the faulty individuals. The replacement 

procedure is performed in Initialization component that 

is located in Error Recovery Block. This component 

uses the isolation list – that includes the faulty PEs – to 

replace the faulty PEs with the fittest individual of the 

last generation of Error Monitoring phase. 

 

 

 

 
Figure 8. Error detection block 

 

 

 
Figure 9. Comparator component 

4. SIMULATION AND RESULTS 
 
This section concentrates on considered fault model and 

benchmark problems that are used to assess the 

performance of proposed architecture.  

 

4. 1. Fault Model          In this paper we consider the 

SEU error that occurs at fitness score register and 

assume that this fault model has occurred in first 

generation. It means that the cellular genetic algorithm 

starts its operation with a mixed population of faulty 

and healthy individuals. SEUs happen on one or more 

bits of registers and flip their values to low or high 

fitness. The bit(s) flipping in fitness score register keep 

their fitness value stuck at ‘1’ or ‘0’. In our approach we 

consider only the worst case of fault model by forcing 

the fitness register of faulty individuals to ‘0’. This fault 

model (stuck at ‘0’) is the most hazardous situation in 

which the faulty individuals misguide the algorithm as 

they seem to be good solutions. The good solution in 

minimum optimization has the minimum fitness value 

(‘0’ in this paper). If the faulty individual has a 

minimum fitness value this individual is identified as a 

good solution in population and can hurt the algorithm 

convergence. 

 
4. 2. Benchmark Problems      In order to determine 

how well an optimization algorithm works, a variety of 

test functions have been used as benchmarks. There are 

several benchmarks which have been widely used in the 

literature to test the performance of optimization 

algorithms. Four functions as benchmarks have been 

used in this study. In each case we give a general form 

of the function, a plot of its values in one dimension and 

give the global optima in its one dimensional form. 

 

4. 2. 1. “Rastrigin” Function        Rastrigin function 

(fRas) is a multimodal, separable and symmetric 

function. The objective function shown in (1) has to be 

minimized [21]. 

    
n

2

RAS k

k 1

f x 10n x 10cos 2πx


    
(1) 

Equation (1) is plotted in one dimension in Figure 10. 

The variables range within the interval of [−5.12, 

+5.12], and the global minimum value is 0.0. This 

function is properly difficult due to its large search 

space and large number of local minima. 
 

4. 2. 2. “Griewank” Function      Griewangk’s 

function has many widespread local minima regularly 

distributed. The function has the following definition 

(2). 

 
n n

2 i
Gri i

i 1 i 1

x1
f x x cos 1

4000 i 

 
   

 
 

 

(2) 
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Figure 10. One dimensional Rastrigin function 

 

 

 

 
Figure 11. One dimensional Griewank function  

 

 

 

 
Figure 12. One dimensional Michalewicz function 

 

 

 

 

Test area is usually restricted to hypercube xiϵ[-

600,600], i = 1,...,n. Its minimum is obtainable in f(x) = 

0  for xi = 0 , i = 1,...,n. The general overview suggests 

convex function, medium-scale view suggests existence 

of local extremum, and finally, zoom on the details 

indicates complex structure of numerous local 

extremum [20]. This function is plotted in one 

dimension in Figure 11. 

 

4. 2. 3. “Michalewicz” Function     Michalewicz 

function is a multimodal and separable test function 

with n! Local minima. The objective function to 

minimize is shown in (3), and the variables range in the 

interval of [0, π]. One dimensional form of this function 

is shown in Figure 12, where m = 5 and defines the 

steepness of the valleys [20]. 

   

2.
2n

mich

i 1

.
f x sin . sin

m

i
i

i x
x



  
     

  
  (3) 

 

4. 2. 4. “Drop wave” Function      This is a 

multimodal test function [20]. The objective function to 

minimize is shown in (4), and test area is usually 

restricted to the square xiϵ [-600,600]. One dimensional 

Drop wave function plot is shown in Figure 8. 

 
 

 

2 2

1 2

drop 1 2
2 2

1 2

1 cos 12 x x
f x , x

1
x x 2

2

 
 

 

 

(4) 

The considered search space dimension is n=1 for all 

the above mentioned problems. 

 

4. 3. Simulation Setup      As mentioned in previous 

section, four functions have been used as benchmarks in 

this simulation. Equations (1), (2), (3) and (4)  represent 

Rastrigin’s, Griewank’s, Michalewicz’s and Drop 

wave’s function, respectively. Table 2 summarizes the 

details of our test functions. The proposed FT-cGA 

terminates when the average fitness-value of population 

is below a threshold value (average fitness-value ≤ 

threshold) that is shown in the last column of Table 2.  

 

 

 

 

 
Figure 13. One dimensional Drop wave function 
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TABLE 2. The properties of Benchmark functions including their dimensions, Global optima and stopping criteria 

Function Domain of x Global optima (x, y) Stopping criteria (threshold) 

F_Mich X ϵ [0,π] (2.18328,-0.806919) -0.806 

F_Ras X ϵ [-5.12,5.12] (0,0) 0.00005 

F_Gri X ϵ [-600,600] (0,0) 0.00005 

F_Drop X ϵ [-5.12,5.12] (0, -1) -0.99999 

 

 
TABLE 3. FT-nD-cGA parameters used in the simulation 

Parameters FT-2D-cGA FT-3D-cGA 

Neighborhood east, west, north, south east, west, vertical north and south, horizontal north and south 

Parent selection Best neighborhood Best neighborhood 

Recombination One point cross over One point cross over 

Mutation Bit flip Bit flip 

Max generation 300 300 

Chromosome length 32 32 

Replacement Replace if better Replace if better 

Termination condition Avg_fitness ≤ threshold value Avg_fitness ≤ threshold value 

 

 

The proposed FT-nD-cGA was simulated in 2D and 

3D structures. Several tests are considered in order to 

show the ability of the FT-nD-cGA to overcome SEUs 

at fitness score registers. Considering different 

population sizes, the algorithm’s parameters are 

summarized in Table 3. 

 
4. 4. Evaluation Metrics       The results are analyzed 

based on three metrics: the efficiency is measured as the 

average number of generations for successful runs out 

of 100 independent runs., The second one is the search 

success rate of successful experiments out of 100 

independent runs which represents the efficacy of the 

algorithm, and the third is the ratio of efficiency to 

efficacy (see Equation (5)).  

The best structure of optimization algorithm for each 

test function must have low efficiency and high efficacy 

which results in low γ. Equation (5) gives the formula of 

performance measure (γ). 

effciency

efficacy
 

 
 (5) 

 

 

5. RESULTS  
In Figures 14-16, the average number of generation, 

search success rate and γ are depicted respectively vs. 

population size. In these diagrams we can see if the 

population size increases, the average number of 

generation and ratio parameter decrease and search 

success rate increases. Furthermore, the algorithm 

converges faster. In addition these diagrams show the 

rank of our test functions in three metric parameters. 

Figures 17- 19, are similar to Figures 14- 16 

respectively, but the only difference is in the structure 

dimensions of FT-cGA.  

 

 

 

Figure 14. Efficiency parameter for 3D structure of FT-cGA. 

Efficiency is the average number of generations for successful 

runs. 

 

 

 

Figure 15. Efficacy parameter for 3D structure of FT-cGA. 

Efficacy is the search success rate of successful experiments. 
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Figure 16. ‘γ’ parameter for 3D structure of FT-cGA. 

 

 
Figure 17. Efficiency parameter for 2D structure of FT-cGA. 

Efficiency is the average number of generations for successful 

runs. 

 

 
Figure 18. Efficacy parameter for 2D structure of FT-cGA. 

Efficacy is the search success rate of successful experiments. 

 

 
Figure 19. ‘γ’ parameter for 2D structure of FT-cGA 

 
Figure 20. Impact of fault percentage in ratio parameter for all 

test function in 3D structure (population size = 343) 
 

 

0

20

40

60

80

100

0 200 400 600 800

A
ve

ra
ge

 n
u

m
b

er
 o

f 
ge

n
er

at
io

n
 

Population size 

mich ras Gri drop

0

20

40

60

80

100

120

0 100 200 300 400 500 600 700 800

Se
ar

ch
 s

u
cc

e
ss

 r
at

e
 

Population size 

mich ras Gri drop

0

50

100

150

200

250

300

350

0 20 40 60 80 100 120

R
at

io
 (
γ)

 

Fault percentage 

mich ras Gri Drop

In these diagrams we can see that the population size 

has a direct relation with efficacy and has inverse 

relation with efficiency and ratio parameter. Meanwhile, 

in this structure (2D), we can see an increase of 

convergences speed of algorithm when the population 

size increases. Figures 20 and 21 show the influence of 

fault percentage in ratio parameter when the population 

size is 343 PEs for 3D structure and 361 PEs for 2D 

structure (these diagrams are obtained for all test 

function). 

 

 

6. DISCUSSION  
 
In  all  diagrams  (Figures  14  -  19),  it  is  observed 

that when the population size increases, the efficiency

 and ratio (γ) parameter decrease and the efficacy 

parameter increases. This happens due to the increase of 

cGA computational capacity caused by the population 

size enlargement. Figures 14- 19 can be used to rank the 

test  functions  in  efficacy,  efficiency  and  γ  parameters. 

Considering Figures 20 and 21, it can be deduced that 

for fault percentage below 90%, the 2D is better than 

3D structure and for fault percentage more than 90% the 

3D structure has a better performance. This outcome 

can be used to minimize the hardware overhead while 

minimizing the benchmark functions in different faulty 

conditions. A more general conclusion from Figures 14-

19 can be about determining the best dimensions for the 

cGA architecture. Based on the aforementioned data, 

Table 4 gives the best dimension of cGA architecture 

for each benchmark as a function of the fault percentage 

and population size. The summarization is not as 

straightforward as the previous discussed parameters 

(efficiency,…). It may be expected that an increase in 

dimensions (2D to 3D) will result in better ratio 

(efficiency/efficacy); however, this is not the observed 

phenomenon. The experimental results support this fact 

that the performance highly depends on the type of 

benchmark function, population size and fault 

percentage.  
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TABLE 4. Comparison of two structures of FT-cGAs in ratio parameter for all test functions, different sizes of population and fault 

percentages. 
fault percentage 

\ function 
F_mich F_ras F_Gri F_drop 

0% 2D 

2D      ,          pop size < 68 3D      ,          pop size < 108 2D     ,           pop size < 44 

3D       , 68 < pop size < 115 2D      ,          pop size > 108 3D     ,    44 <pop size < 128 
2D       ,         pop size > 115  2D     ,           pop size > 128 

10% 

3D   ,          pop size < 57 3D       ,         pop size < 125 3D       ,         pop size < 76 3D     ,           pop size < 139 

2D   ,   57 <pop size < 341 2D       ,         pop size > 125 2D       ,         pop size > 76 2D     ,           pop size > 139 
3D   ,          pop size > 341    

50% 

3D   ,            pop size < 68 3D       ,         pop size < 248 

2D 

3D      ,          pop size < 265 

2D    ,     68 <pop size < 341 2D       ,         pop size > 248 2D      ,          pop size > 265 
3D    ,            pop size > 341   

90% 2D 
3D       ,        pop size < 119 

2D 
3D      ,          pop size < 133 

2D       ,        pop size > 119 2D      ,          pop size > 133 

1 PE healthy 
3D    ,            pop size < 133 

2D 
3D       ,         pop size < 251 3D      ,          pop size < 119 

2D    ,            pop size > 133 2D        ,        pop size > 251 2D       ,         pop size > 119 

 
 

 
Figure 21. Impact of fault percentage in ratio parameter for all 

test function in 2D structure (population size = 361) 

 

 

In this table we can see in low population size, to 

optimize all test functions, the three-dimensional 

structure of fault tolerant cGA, is superior to the two-

dimensional structure, since the count of neighborhood 

in three dimensional is bigger than two dimensional 

structure. 

 

 

7. CONCLUSION AND FUTURE WORK 
 

In this study, we proposed VHDL implementation of a 

family of fault tolerant cellular genetic algorithm that is 

robust to SEUs when applied to fitness score register. 

This approach is based on canonical cellular genetic 

algorithm that is explained in algorithm 1. The 

connectivity of PEs and migration policies are important 

tools used in our strategy to prevent spreading faulty 

answer and repair effects of faulty individuals. 

In the experiments, two topologies have been tested 

(3D and 2D) and their performance were analyzed and 

compared with three metrics: efficacy, efficiency and 

their ratio, and we consider the worst case of fault 

model (stuck at ‘0’ in minimum optimization) with 

different fault percentages. The experimental results 

show that the proposed method is very robust to 

recovering SEU error up to at least one PEs of 

population is healthy. In addition, using the efficient 

replacement rule in restoration step, the algorithm can 

use the correct answers that were produced in first 

stage; therefore, the algorithm does not have a lot of 

time overhead for reaching the optimal answer. Finally, 

the table was designed, that represents which topology 

of fault tolerant cGA is excellent in a variety of 

conditions (the conditions include; size of population 

and error percentage occurred for optimization of all test 

functions). In this paper the reliability of proposed 

structures are evaluated with some metrics; However, 

other metrics can be used to measure their reliability 

inspiring from literatures [21, 22]. Another task for 

future can be the study of behavior of emergence of 

fault tolerance while using this simulated evolution in 

genetic algorithms as in reported by Damavandi et al.
 

[22].
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هچكيد
 

را ارائه  پذیر خطا ای از الگوریتم ژنتیک سلولی تحمل ( خانواده VHDLافزاری )بر اساس کد این مقاله، شبیه سازی سخت
پذیر خطا  در زمانی است که خطای واژگونی رخداد  دهد. هدف این مقاله افزایش مقاومت الگوریتم ژنتیک سلولی تحمل می

ی  شود، مرحله ها را تغییر داده است. الگوریتم مورد نظر، از دو مرحله تشکیل می ( مقدار ثباّت برازندگی جوابSEU)یکتا 
های المانسازی  ی ترمیم جواب خطادار. استفاده از قوانین ابتکاری اتصال و قوانین کارآمد سالم تشخیص خطا و مرحله

ها، سه معیار و چهار تابع آزمون برای  باشند. در نتایج آزمایش ریتم مورد نظر میشده در الگو  ترین نکات استفاده پردازشی مهم
پذیر خطای  بعدی( از الگوریتم ژنتیک تحملسه نمایش عملکرد الگوریتم مورد نظر استفاده شده است. دو ساختار )دوبعدی و

ها، نیرومندی الگوریتم  استفاده شد. نتایج آزمایشی دو ساختار  سازی توابع آزمون جهت آنالیز و مقایسه مورد نظر، برای بهینه
دهد که الگوریتم مورد نظر حتی زمانی که فقط یک المان پردازشی سالم در جامعه باشد  کند و نشان می پیشنهادی را اثبات می

 تواند به جواب بهینه برسد.   می
 doi: 10.5829/idosi.ije.2015.28.09c.04 

 

 


