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Numerous problems in engineering and science can be transformed into optimization problems.
Artificial bee colony (ABC) algorithm is a newly developed stochastic optimization algorithm and has
been successfully used in many areas. However, due to the stochastic characteristics of the solution
search equation, the traditional ABC algorithm often suffers from poor exploitation. Aiming at this
weakness of the traditional ABC algorithm, in this paper, we propose an enhanced ABC algorithm with
elite opposition-based learning strategy (EOABC). In the proposed EOABC, it executes the elite
opposition-based learning strategy with a preset learning probability to enhance the exploitation
capacity. In the experiments, EOABC is tested on a set of numerical benchmark test functions, and is
compared with some other ABC algorithms. The comparisons indicate that EOABC can obtain
competitive results on the majority of the test functions.
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1. INTRODUCTION

Optimization problems widely exist in engineering
applications [1]. Therefore, it is of significance to
develop effective and efficient optimization algorithms
for practical problems [2-4]. Evolutionary algorithm
(EA) is a very promising approach for optimization
algorithms, which has been successfully applied to
many practical applications [5-8]. Artificial bee colony
algorithm (ABC), recently developed by Karaboga and
Basturk [9], is a kind of EA that mimics the foraging
behavior of the honey bee swarm in nature. Like other
EAs [10, 11], ABC has a very simple structure. As ABC
is easy to implement and has exhibited encouraging
performance in many problems from various fields, it
has been quickly developed in recent years and has been
successfully applied in solving diverse real-world
optimization problems [12]. In practice, ABC has been
compared with many other optimization techniques such
as Genetic Algorithm (GA) [13], Particle Swarm
Optimization (PSO) [14, 15] and Differential Evolution
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(DE) [16]. The comparison results reveal that the
performance of ABC can outperform other optimization
techniques in many optimization problems [12].
Although ABC has successfully solved a wide
variety of optimization problems from various areas, it
has several weaknesses when solving complex
optimization problems. One of the weaknesses of the
traditional ABC is that it may suffer from poor
exploitation when solving complex optimization
problems [12]. As known, both exploration and
exploitation are very critical for EAs [17]. Therefore, in
some cases, the traditional ABC cannot find satisfactory
results. Accordingly, various ABC variations have been
proposed to promote the search capability of the
traditional ABC. In order to enhance the exploitation
ability, Zhu et al. [18] proposed a gbest-guided ABC
(GABC), which combines the information of the global
best solution into the solution search equation. Gao and
Liu [19] presented an improved ABC with two
improved solution search equations which are inherited
from DE. El-Abd [20] introduced an opposition-based
ABC (OABC), which incorporates the opposition-based
learning strategy. Banharnsakun et al. [21] proposed an
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improved ABC with best-so-far selection. In the best-
so-far ABC, all the solutions in the current population
share the best feasible solutions found so far. Akay and
Karaboga [22] presented a modification on ABC by
introducing the perturbation frequency and the
magnitude of the perturbation. To improve the
exploitation ability, Gao and Liu [23] introduced an
improved ABC, which utilizes the best solution of the
previous iteration.

Karaboga et al. [24] presented a symbolic regression
approach using ABC programming (ABCP). By
incorporating the generalized opposition-based learning
strategy, EI-Abd [25] proposed an enhance ABC
(GOABC) for global optimization. To improve the
exploration power, Chen et al. [26] introduced the
simulated annealing (SA) algorithm into ABC. Luo et
al. [27] enhanced the solution search equation in the
onlooker phase using the best solution of the previous
generation to direct the search process. Gao et al. [28]
proposed a modified ABC with improved search
equation and the orthogonal learning (OL) strategy.
Xiang and An [29] introduced an efficient and robust
ABC (ERABC), which uses a combinatorial solution
search equation to accelerate the convergence speed.
Kang et al. [30] proposed a hybridized ABC, which
embeds the pattern search scheme. Bansal et al. [31]
presented a modified ABC with memetic search
strategy. Karaboga and Gorkemli [32] proposed a quick
ABC, which introduces the neighborhood radius into the
search step of the onlooker bees. Gao et al. [33]
presented an enhanced ABC utilizing more information-
based search equations. Xiang et al. [34] introduced a
hybrid ABC embedding the search operation of DE.
Kiran and Findik [35] proposed a directional ABC
(dABC) which employs the directional information to
improve the search ability of ABC.

In our previous work [36], we proposed an elite
opposition-based learning (EOBL) strategy and
employed it to enhance the exploitation ability of the
traditional DE. Our previous experimental results [36]
indicated that EOBL can significantly promote the
exploitation ability of the traditional DE. Therefore, it is
expected that the exploitation capability of the
traditional ABC can also be enhanced by EOBL.
Motivated by these considerations, we propose an
enhanced ABC (EOABC) through the utilization of
EOBL. In the proposed EOABC, at each generation, the
EOBL strategy is performed with a preset learning
probability to enhance the exploitation ability. In
addition, EOABC has a very simple framework and thus
is easy to implement.

The rest of the paper is structured as follows.
Section 2 describes the traditional ABC algorithm. The
elite opposition-based ABC is presented in section 3.
Numerical results and comparisons are reported in
section 4. Finally, section 5 concludes the paper.

2. ARTIFICIAL BEE COLONY

ABC is a newly developed meta-heuristic algorithm,
which simulates the intelligent foraging behavior of the
honey bee swarm in nature [9, 12]. In ABC, three kinds
of bees, namely employed bees, onlooker bees and scout
bees, are used to seek the global optimal solutions for a
optimization problem at hand [12]. Moreover, each
employed bee is associated with a solution, and the
employed bees aim to exploit its associated solution and
gather the information of the exploited regions to the
onlooker bees. The onlooker bees focus on selecting the
excellent solutions to be further exploited through the
information provided by the employed bees. In the
search process, if the quality of a solution has not been
enhanced through a preset number of cycles, this
solution is assumed to be abandoned by its employed
bee, and then the associated employed bee becomes a
scout bee that starts to generate a new solution by
randomly sampling from the feasible search space.
Without loss of generality, we suppose in this study
that ABC is for solving the minimization problem Min
f(X), where X=[x4, X», ..., Xp], and the search space is:

Q:]j[l_Bj,UBj] )

where D is the dimension of the minimization problem,
LB;and UB; are the lower and upper boundaries of the
search space, respectively.

Like other EAs, ABC also consists of a very simple
procedure. At the initialization stage, an initial
population P(t)={X'i} is randomly generated from the
domain of the minimization problem:

x'i; = LB; + rand(0,1)x(UB; - LB;) )
where Xtiz[Xtiyl, Xtiyz, . Xti’j ceey Xtin], i=1, 2, ..., SN; j=1,
2, ..., D; t represents the generation, and SN is the

number of solutions in the population, which is also
equal to the size of the employed bees or onlooker bees
[9], and rand(0,1) is a random real number in the range
[0, 1].

Following the initialization stage, ABC executes a
loop of search operations until the termination condition
is satisfied. In loop of the search operations, each
employed bee creates a neighborhood solution of its
associated solution according to the following equation

[9]:

t t t t
Vi =Xt |,j'(Xi,j_Xi,j) (3)
where j is an integer randomly selected from the set {1,
2, ..., D}, index k is an integer randomly selected from
the set {1, 2, ..., SN}\{i}, and ., is a random real

number uniformly distributed within [-1, 1] [12]. After
creating the neighborhood solution VY, its fitness value
Fit!, is evaluated by [9]:
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Fit; =11+ f (V") T rvo=0 (4)
1+abs(f(V\)  if F(V)<0

where f(.) is the objective function of the minimization
problem. Then, each employed bee selects the better one
between its associated solution and the corresponding
created neighborhood solution to enter the next
generation [12]. Once all employed bees have finished
their search operations, they will provide the
information of the exploited solutions to the onlooker
bees. After that, each onlooker bee randomly selects a
solution for further exploitation according to the
selection probability of each solution. Moreover, the
selection probability of each solution is calculated by
[91:
Fit!

pi = ZIS:Nl Fitit (5)

Subsequently, each selected solution is further exploited
by the corresponding onlooker bee using Equation (3).
Each onlooker bee also utilizes the greedy selection
scheme to select the better one between its selected
solution and exploited solution to enter the next
generation.

After all onlooker bees complete their search
procedure, ABC finds the solution whose quality cannot
be improved through a preset number of cycles, called
limit, then the corresponding employed bee associated
with the found solution becomes a scout bee which will
reinitialize its associated solution by randomly sampling
from the feasible search space.

3. PROPOSED ALGORITHM

In this section, we propose an enhanced ABC algorithm
with elite opposition-based learning strategy (EOABC).
First, we introduce the notations of the traditional
opposition-based learning strategy. Then, the elite
opposition-based learning strategy is presented. Finally,
the detailed computation steps of EOABC are
elaborated at the end of this section.

3. 1. Opposition-based Learning Opposition-
based learning (OBL) strategy is a relatively new
intelligent computation technique, which is firstly
proposed by Tizhoosh [37]. Since its introduction, OBL
has attracted many researchers in recent years and has
been successfully incorporated in several EAs [38].
According to extensively reported theoretical and
experimental studies, OBL is an effective approach for
enhancing the performance of EAs [39]. As known, the
opposition concept can be widely observed in real-life,
such as opposite particles in physics, and opposition
parties in politics [40]. Inspired by the opposition

concept in real-life, the opposition idea is introduced
into the evolutionary computation fields. The definition
of opposite solution is described as follows.

Let X'=[x1, X2 ..., Xip] represent the ith solution
in the current population at generation t. Its
corresponding opposite solution 0'=[0;, 0%, ..., 0'ip]
is calculated by [38]:

o/, =A +B] —xj,

A} =min(x;;), Bj = max(x; ;)

o/, =rand(A},B)), if o/, <LB|o;; >UB,
i=12,...,SN,j=12,....D

(6)

where x; is the jth component of the ith solution in the
current population, of; is the opposite value of X', A
and BY; are the minimum and maximum values of the jth
dimension of the current population at generation t,
respectively.

As known, due to lack of priori information about
the optimum solution, many EAs utilize random guess
strategies to generate solutions. However, random guess
strategies are often time-consuming and inefficient. In
fact, it is a potential scheme to increase the chance of
finding a better solution by simultaneously considering
the opposite solution. In terms of the probability theory,
50% of the time, a guess is further from the solution
than its opposite guess [38]. Therefore, simultaneously
considering each solution and its corresponding
opposite solution can accelerate the convergence speed
[38]. Based on the fundamental idea of OBL, Wang et
al. have presented a generalized opposition-based
learning strategy (GOBL), which introduces a random
generalized coefficient to enhance the search capability
of OBL [39]. Accordingly, many researchers have
employed GOBL to enhance the performance of EAs
[39]. The concept of GOBL is expressed as follows.

For solution X', its generalized opposition-based
solution GO'=[g0";1, go'i, ..., g0 o] is defined by [39]:

gof, =k (Al +BY) - X!,

A =min(x;;), B =max(x{ ;)

go;; =rand(A!,B!), if go; <LB,| go!; >UB
i=12,...,5N; j=12...., D;k =rand(0,])

O]

where go‘i_,- is the generalized opposition-based value of
x‘i,j, and k is the random generalized opposition-based
coefficient, which is newly generated for each i.

3. 2. Elite Opposition-based Learning Based on
the idea of GOBL, in our previous work [36], we have
extended the generalized opposition-based strategy, and
proposed an elite opposition-based learning (EOBL)
strategy. In EOBL, EN elite solutions are firstly selected
from the current population, and then the beneficial
information is extracted from these selected elite
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solutions. The elite opposition-based solutions can be
obtained by taking advantage of the extracted beneficial
information. By using this manner, EOBL can further
enhance the search ability of GOBL.

For solution XY, its elite opposition-based solution
EO'=[e0';,, €0'i, ..., €0'i p] is defined by [36]:
eo;; =k-(Aj+Bj)-Xx;

EA] =min(ex,, ;), EB} = max(ex; ;)

eo; ; =rand(EA], EB}), if eo/; <LB,|leo;; >UB,
i=12,...,SN;j=12,...,D;

m=12,..EN;k =rand(0,1)

®)

where EX',=[ex\n1, €X'z, ..., eX'npl, m=1, 2, ..., EN are
the selected elite solutions used to extract the beneficial
information, eoti,j is the elite opposition-based value of
xti,j, EN is the size of the selected elite solutions, which
is set to SN X 0.1, as recommended in our previous work
[36] and EA|j and EBY; are the minimum and maximum
values of the jth dimension of the selected elite
solutions, respectively.
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TABLE 1. The 15 benchmark test functions

Function  Name Initial Range  fin
f1 Sphere Problem [-100, 100]° 0
2 Schwefel’s Problem 2.22 [-10, 10]° 0
3 Schwefel’s Problem 1.2 [-100, 100]° 0
f4 Schwefel’s Problem 2.21 [-100, 100]° 0
5 Rosenbrock’s Function [-30, 30]° 0
6 Step Function [-100, 100]° 0
f7 Quartic Function with Noise [-1.28,1.28]° 0
8 Schwefel’s Problem 2.26 [-500, 500]° 0
f9 Rastrigin’s Function [-5.12,5.12]° 0
10 Ackley’s Function [-32,32]° 0
f11 Griewank Function [-600, 600]° 0
12 Penalized Function 1 [-50, 50]° 0
f13 Penalized Function 2 [-50, 501° 0
f14 Eﬁ;\’&‘i’;‘r‘]‘““o‘*s Rastrigin’s [5.12,512]° 0
f15 Alpine Function [-10, 101° 0

TABLE 2. Experimental results of ABC, OABC, GOABC, dABC and EOABC over 30 independent runs for the 15 benchmark test

functions.
. Mean+SD
Function
ABC OABC GOABC dABC EOABC

fl 1.60E-46+9.13E-47+ 2.02E-38+1.28E-38+ 2.65E-61+2.79E-61+ 6.14E-69+4.63E-69+ 3.95E-110+5.59E-110
f2 5.35E-25+3.33E-25+ 5.43E-21+2.40E-21+ 1.31E-33+£9.19E-34+ 9.22E-36+6.73E-36+ 1.06E-58+1.49E-58
3 3.30E+03+8.26E+02+  4.10E+03+8.38E+02+  2.43E+03+5.45E+02+ 2.96E+03+5.03E+02+ 1.64E-82+2.32E-82
f4 6.93E+00+1.19E+00+ 5.54E+00+4.84E-01+ 6.10E-04+3.44E-04+ 6.75E+00+6.15E-01+ 1.33E-48+9.62E-49
5 1.35E-02+8.26E-03+ 9.21E-01+8.51E-01+ 2.64E+01+9.18E-02+ 1.28E-01+8.72E-02+ 8.43E-03+4.99E-03
6 0.00E+00+0.00E+00~  0.00E+00+0.00E+00=  0.00E+00+0.00E+00=  0.00E+00+0.00E+00= 0.00E+00+0.00E+00
f7 1.09E-01+1.28E-02+ 3.34E-02+4.14E-03+ 1.11E-02+3.11E-03+ 1.01E-01+£2.11E-02+ 4.85E-04+2.20E-04
8 1.82E-12+0.00E+00+ 1.82E-12+0.00E+00+ 1.82E-12+0.00E+00+ 1.82E-12+0.00E+00+ 1.21E-12+8.57E-13
9 0.00E+00+0.00E+00~  0.00E+00+0.00E+00=  0.00E+00+0.00E+00=  0.00E+00+0.00E+00= 0.00E+00+0.00E+00
f10 3.72E-14+3.35E-15+ 2.65E-14+3.35E-15+ 2.77E-14+1.67E-15+ 3.83E-14+4.43E-15+ 4.44E-16+0.00E+00
f11 1.48E-1645.23E-17+ 4.44E-16+6.28E-16+ 4.92E-03+6.96E-03+ 0.00E+00+0.00E+00~ 0.00E+00+0.00E+00
f12 1.57E-32+0.00E+00~ 1.57E-32+0.00E+00~ 1.57E-32+0.00E+00~ 1.57E-324+0.00E+00~ 1.57E-32+0.00E+00
13 1.35E-32+0.00E+00~ 1.35E-32+0.00E+00~ 1.35E-32+0.00E+00~ 1.35E-32+0.00E+00~ 1.35E-32+0.00E+00
f14 0.00E+00+0.00E+00~  0.00E+00+0.00E+00=  0.00E+00+0.00E+00=  0.00E+00+0.00E+00= 0.00E+00+0.00E+00
f15 157E-11+41.93E-11+ 3.64E-12+4.37E-12+ 7.73E-12+7.72E-12+ 1.45E-12+8.58E-13+ 3.28E-13£3.70E-13

- 0 0 0 0

+ 10 10 10 9

= 5 5 5 6
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Algorithm 1. The algorithmic description of EOABC

1 t=0;
2: FEs=0;
3: Initialize the population;
4: while FEs < MAX_FEs do
5: Pr =rand(0, 1);
6: if Pr<Pe then
7: Choose EN elite solutions from the current
8: population;
9: Calculate the lower and upper boundaries of the
10: chosen elite solutions;
) EOP = {};
11 _ &
for i=1 toSN do
12:
13: k =rand(0, 1);
' Create the elite opposition-based solution

14: EO! for the ith solution X} ;
15: Evaluate solution EOY;
16: EOP = EOP u{EOit}:
17f FEs=FEs+1;
18: end for

% Choose the top best SN solutions from {P,
20:  EOP} for the next generation population;
21 else
22: Execute the computation procedure of the

traditional ABC;
end if
t=t+1;
end while
3. 3. EOABC The basic ABC is good at exploration

but poor at exploitation, which often results in slow
convergence when solving complicated practical
problems [12]. Aiming at this weakness of the basic
ABC, the EOBL strategy is utilized to improve the
exploitation ability. In the search process, the
distribution information of the elite solutions in the
current population is used to create the opposition-based
solution of each solution. Therefore, the EOBL strategy
can guide the search towards the promising area and
thus improve the exploitation ability.

Like EOBL embedded in DE [36], EOABC has the
similar framework. EOABC starts with a random initial
population. After initialization, it executes a loop of
search process. In the loop of search process, a random
real number Pr is generated. If Pr is less than the EOBL
probability Pe, EOABC performs the steps of EOBL,;
Otherwise, it executes the computation procedure of the
traditional ABC. In the steps of EOBL, EN elite
solutions are firstly chosen from the current population.
Then, the lower and upper boundaries of these chosen
elite solutions are calculated. Subsequently, the elite
opposition-based solution of each solution in the current
population is created to constitute an elite opposition-

based population. Finally, the elite opposition-based
population is competed with the current population to
choose the top best SN solutions for the next generation.
The algorithmic description of EOABC is shown in
Algorithm 1, where FEs is the number of fitness
evaluations, Max _FEs is the maximum number of
evaluations, Pe denotes the EOBL probability,
Pt)={Xi} is the current population, and
EOP(t)={EQ'} is the elite opposition-based population.

4. NUMERICAL EXPERIMENTS

4. 1. Experimental Settings In order to evaluate
the effectiveness of the proposed EOABC, 15 classical
benchmark test functions widely wused in the
evolutionary computation community are employed in
the experiments [41, 42], which are described in Table
1. The dimension of these 15 benchmark test functions
are set to D=30. In the experiments, the proposed
EOABC is compared with ABC [9], OABC [20],
GOABC [25], and dABC [35]. For a fair comparison,
the parameter settings related to ABC are set as the
same as reported values [25], and the learning
probabilities of OBL, GOBL and EOBL are set to 0.3,
as recommended [25]. Due to the stochastic
characteristics of EAs, 30 independent runs for each
algorithm and each test function are executed with
300,000 function evaluations (FEs) as the stopping
criterion. Moreover, the average and standard deviation
of the function error values are recorded for measuring
the performance of the ABC algorithms. In order to
obtain statistically sound conclusions, two-tailed t-test
at a significance level of 0.05 is done on the
experimental results [39].

4. 2. Results and Discussions The mean and
standard deviation of the function error values achieved
by each algorithm for f1-f15 are presented in Table 2.
For convenient analysis, the best results among the
algorithms are shown in bold. The summary of the
comparison results are shown in the last three rows of
Table 2. "Mean" and "SD" indicate the mean and
standard deviation of the function error values obtained
by 30 independent runs, respectively.

TABLE 3. Average rankings of the five ABC algorithms for
the 15 benchmark test functions obtained by the Friedman test

Algorithm Ranking
EOABC 1.70
dABC 3.00
GOABC 3.17
OABC 3.50
ABC 3.63
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The symbols "+", "-", and "=" denote that EOABC
obtains better, worse, and similar results than the
corresponding algorithms in terms of the two-tailed t-
test, respectively.

From Table 2, it can be known that EOABC exhibits
better performance than all the other four ABC
algorithms on the majority of the 15 benchmark test
functions. Specifically, EOABC is significantly better
than ABC, OABC, GOABC, and dABC on test
functions f1, f2, f 3, f4, 5, 17, 18, 10, and f15 according
to the two-tailed t-test. In contrast, ABC, OABC,
GOABC, and dABC can not outperform EOABC on
any test function. In addition, on test functions 6, 9,
f12, f13, f14, ABC, OABC, GOABC, dABC, and
EOABC all exhibit the similar performance. On test
functions f11, both EOABC and dABC yield similar
results, while they are significantly better than ABC,
OABC, and GOABC on this test function. Overall,
EOABC performs better than ABC, OABC, GOABC,
and dABC on 10, 10, 10, and 9 out of 15 test functions,
respectively.

In order to compare the total performance of the five
ABC algorithms on the all 15 benchmark test functions,
the average ranking of Friedman test is performed on
the experimental results following the suggestions in
[39, 43]. Table 3 presents the average ranking of the
five ABC algorithms on the all 15 benchmark test
functions. These five ABC algorithms can be sorted by
the average ranking into the following order: EOABC,
dABC, GOABC, OABC, and ABC. Therefore, EOABC
achieves the best average ranking, which indicates that
the total performance of EOABC is better than that of
the other four ABC algorithms on the all 15 benchmark
test functions. This can be because the EOBL strategy
can significantly enhance the exploitation capacity of
the basic ABC, and EOBL is more efficient than OBL
and GOBL for improving the performance of the basic
ABC.

5. CONCLUSIONS

EOBL is an effective strategy to enhance the
performance of EAs. In this study, we employ the
EOBL strategy to promote the performance of the
traditional ABC, and thus propose a modified ABC,
called EOABC. In the experiments, EOABC is
compared with ABC, OABC, GOABC, and dABc on 15
benchmark test functions. The experimental results
show that EOABC can significantly surpass ABC,
OABC, GOABC, and dABC on the majority of the
benchmark test functions. The comparison results also
reveal that EOBL is more efficient than OBL and
GOBL for promoting the search ability of the traditional
ABC. In the future, we will apply EOABC to other
complex optimization problems, such as multi-objective
and dynamic optimization problems.
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