

International Journal of Engineering

Journal Homepage: www.ije.ir

Catalytic Effect of Metal Species on Enhancement of CO₂ Gasification Reactivity of Biomass Char

P. Lahijani^a, M. Mohammadi^{b*}

^a Biomass and Bioenergy Laboratory, School of Mechanical Engineering, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia ^b Faculty of Chemical Engineering, Babol Noushirvani University of Technology, Babol, Iran

PAPER INFO

Paper history: Received 15 June 2015 Received in revised form 30July 2015 Accepted 03 September 2015

Keywords: CO₂ gasification Biomass Char Catalyst Boudouard Reaction

ABSTRACT

In the Boudouard reaction, where CO_2 is reacted with carbon (char) to produce CO, very high temperatures are required to shift the equilibrium towards CO production. This endothermic reaction is inherently slow and catalytic species are effective to speed up the reaction rate at temperatures below 900 °C. In this study, the catalytic effect of some alkali (K, Na), alkaline earth (Ca) and transition (Fe) metals on enhancing the CO₂ gasification reactivity of pistachio shell (PS) char was investigated. The CO₂ gasification studies were performed in a Thermogravimetric analyzer (TGA). Among the examined potassium species, K₂CO₃ showed the highest catalytic effect; wherein, complete carbon conversion was achieved 48.1% faster as compared to un-catalyzed PS char. The highest catalytic effect among the sodium salts was devoted to NaNO₃ which showed 57.7% enhancement in the reactivity of char. CaCl₂ and Fe(NO₃)₂ also showed the best catalytic performance among the examined calcium and iron species and improved the reaction rate by 64.6 and 46.1%, respectively.

doi: 10.5829/idosi.ije.2015.28.09c.01

1. INTRODUCTION

Carbon dioxide (CO_2) , as one of the major greenhouse gases, has significant contribution to the global warming. The global emission of CO_2 , mostly emanating from consumption of fossil fuels, reached a total of 34.5 billion tones in 2012 [1]. This most serious human provoked environmental issue might have a chilling perspective, if it could not be alleviated through rational strategies.

Among the schemes proposed for reduction of CO_2 emission, CO_2 gasification which is the thermochemical conversion of this greenhouse gas in the presence of char to other useful products looks to be a promising solution. A straightforward reaction to activate CO_2 and split its constituent atoms is the "Boudouard reaction" also known as "char gasification" in which CO_2 is reacted with carbon to produce carbon monoxide [2]:

$$CO_2 + C \leftrightarrow 2CO \quad \Delta H = 172 \text{ kJ/mol}$$
(1)

The CO produced via the Boudouard reaction can be utilized for production of methanol and Fischer-Tropsch hydrocarbons in combination with H₂ as well as synthesis of a number of chemicals [3, 4]. However, since the Boudouard reaction is highly endothermic and the natural surface chemistry of char is not potent enough to promote the heterogeneous gas-solid reaction, high temperatures, typically >700 °C, are required to shift the equilibrium of the reaction towards CO production.

Addition of catalyst to the carbon material is considered as an attractive option to accelerate the reaction rate at a lower reaction temperature [5-9]. Use of catalyst contributes to the higher gasification reactivity, reduce the capital costs and severity of the reactor condition [10-12].

A number of researches have been performed utilizing alkali, alkaline earth and transition metal salts and oxides as catalyst to enhance the gasification reaction of a range of carbonaceous materials. Huang et al. [13] investigated the influence of some alkali (K and Na), alkaline earth (Ca and Mg) and transition (Fe)

Please cite this article as:P. Lahijaniand M. Mohammadi, Catalytic effect of metal species on enhancement of CO₂ gasification reactivity of biomass char,International Journal of Engineering (IJE), TRANSACTIONS C: Aspects Vol. 28, No. 9, (September2015) 1251-1256

Corresponding Author's Email: m.mohammadi@nit.ac.ir (Maedeh Mohammadi)

metals on the CO₂ gasification reactivity of fir char and reported the catalytic effect of the metals in the order K> Na> Ca> Fe> Mg. In another study, Lahijani et al. [14] investigated the CO₂ gasification reactivity of pistachio shell char in the presence of nitrate catalysts. The catalytic effect of the catalysts were found to be in the order of NaNO₃> Ca(NO₃)₂> Fe(NO₃)₃> KNO₃> Mg(NO₃)₂. Similarly, Sun et al. [15] studied the effect of nitrate salts on CO2 gasification reactivity of marcel chars and found the catalytic effect in the sequence of NaNO₃> Ca(NO₃)₂> Fe(NO₃)₃> KNO₃. Karimi and Gray [11] studied the catalytic effect of some alkali and alkaline earth compounds including Na2CO3, KCl, K₂CO₃, CaCO₃, CaO and MgO on steam gasification of bitumen coke. The results showed that the highest catalytic effect was devoted to Na₂CO₃ and K₂CO₃ and to a lower extent to KCl, while Mg and Ca did not promote the catalytic activity.

Although in many catalyzed CO_2 gasification studies, alkali metals presented higher reactivity than alkaline earth and transition metals [13, 16, 17], however, this might not be considered as a general pattern and the type of carbon char and its physicochemical properties also play an important role in the rate of the reaction. Based on this background, catalytic CO_2 gasification of pistachio shell (PS) char as a locally available lignocellulosic waste was studied. Several species of alkali, alkaline earth and transition metals were utilized and their catalytic influence on the CO_2 gasification reactivity of PS char was investigated.

2. MATERIALS AND METHODS

2. 1. Raw Material Pistachio shell (PS) was obtained from local market. The shells were thoroughly washed to remove the adhered salt and dried at 105 °C in an oven. The fixed carbon, volatile mater, moisture and ash content of the PS was determined using thermogravimetric analyzer (TGA, SDTQ-600), based on standard method [18]. The biomass sample was heated in TGA at 105 °C for 180 min to remove the moisture. The sample was then heated to 900 °C under N₂ to prevent oxidation. The weight loss calculated at this stage was referred to as volatile matter. The remaining sample (char) was then heated at 750 °C under air, so that the sample was completely combusted. The weight loss subsequent to combustion was considered as the fixed carbon, while the residual was ash.

The elemental composition of the biomass residue was determined using an elemental analyzer (Perkin-Elmer 2400 Series II CHNS/O). The analytical range for the elements was as follows: C (0.001-3.6 mg), H (0.001-1.0 mg), N (0.001-6.0 mg), S (0.001-2.0 mg) and O (0.001-2.0 mg). The results of ultimate and proximate analyses are presented in Table 1.

TABLE 1. Ultimate and proximate analyses of pistachio shell

Ultimate analysis (wt %)				Proximate analysis (wt %)			
С	Н	N	0	Moisture	Fixed carbon	Volatile	Ash
58.2	4.1	1.0	36.7	2.8	16.3	79.8	1.1

2. 2. Pistachio Shell Char Preparation A labscale carbonization system was used to prepare PS char. The carbonization unit consisted of a stainless steel tube reactor with 4 cm diameter and 80 cm length, surrounded by a vertical tubular furnace. In each pyrolysis experiment, 100 g PS was loaded in the reactor and heated under a nitrogen flow of 400 ml/min at a heating rate of 15 °C/min to 900 °C. This temperature was maintained constant for 90 min. Selection of this temperature for carbonization was based on the degradation profile obtained for PS in Thermogravimetric analyzer (TGA) under N₂ as presented in Figure 1. As could be inferred from the weight loss profile, the carbonization temperature of 900 °C was high enough to ensure that complete decomposition of cellulose, hemicelluloses and lignin took place and carbonaceous char remained after devolatilization [19]. The derivative thermogravimetric analysis (DTG) profile of PS, which corresponds to the region where the slope of TG curve is almost constant, showed three peaks. The first small peak around 100 °C corresponds to the removal of moisture. The two sharp devolatilization peaks correspond to the decomposition of lignocellulosic compounds. After carbonization, the char sample was cooled down to room temperature under nitrogen. The carbonized sample was then crushed and ground to a particle size of <75 µm. The prepared char was stored in desiccator for further experiments.

2.3. Loading of Catalyst on PS Char In order to prepare metal catalyzed PS char, several metal compounds were introduced into the char framework by wet impregnation method.

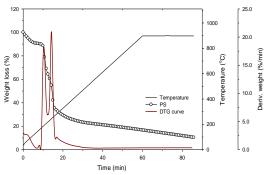


Figure 1. Weight loss, DTG and temperature profile for pyrolysis of PS in TGA under the atmosphere of N_2

For this purpose, several aqueous solutions of alkali (K and Na), alkaline earth (Ca) and transition (Fe) metals were prepared by dissolving or mixing quantitative amounts of various metal species in deionized water. Then, 1g of PS char powder was impregnated in 80 ml of the metal contained solution and stirred for 12 h. The solution concentration was adjusted to attain 3 wt% metal (Na, K, Ca and Fe) loading in the char. The mixtures were then oven dried at 105 °C for 48 h. The metal loaded PS chars were stored for CO₂ gasification experiments. Table 2 summarizes the chemicals used in this study to prepare metal catalyzed char.

2. 3. CO₂ Gasification Experiments CO_2 gasification reactivity of PS char, either pure or catalyzed, was studied under iso-thermal temperature condition in a Thermogravimetric analyzer (TGA, SDTQ-600). In each experiment, 7-8 mg of PS char was loaded in a ceramic pan and heated at a rate of 40 °C/min under N₂ atmosphere to the pre-set gasification temperature (875 °C). Selection of this temperature for gasification was based on our previous investigations [14]. At the onset of gasification, N_2 was switched to CO₂ (100 ml/min) for isothermal gasification. The weight loss of the char sample as a function of gasification time was recorded continuously. The gasification conversion (X) was calculated using the following Equation:

TABLE 2. Metal catalyzed PS chars used in CO₂ gasification experiments

Chemicals used	Sample name				
-	PS char (pristine)				
Potassium species					
$K_2S_2O_8$	PS char + Potassium persulfate				
KNO ₃	PS char + Potassium nitrate				
K_2CO_3	PS char + Potassium carbonate				
KCl	PS char + Potassium chloride				
КОН	PS char + Potassium hydroxide				
Calcium species					
CaCl ₂	PS char + Calcium chloride				
Ca(NO ₃) ₂	PS char + Calcium nitrate				
CaO	PS char + Calcium oxide				
Sodium species					
NaCl	PS char + Sodium chloride				
Na ₂ CO ₃	PS char + Sodium carbonate				
NaNO ₃	PS char + Sodium nitrate				
NaHCO ₃	PS char + Sodium bicarbonate				
Iron species					
FeCl ₃ .6H ₂ O	PS char + Iron(III) chloride				
Fe(NO ₃) ₃ .9H ₂ O	PS char + Iron(III) nitrate				
$Fe_2(SO_4)_3.H_2O$	PS char + Iron(III) sulfate				

$$X = \frac{m_0 - m_t}{(m_0 - m_c - m_{Ash})} \times 100\%$$
(2)

where, m_0 represents the weight of the char at the gasification onset, m_t is the real time mass of the sample at time t, m_c is the mass of catalyst and m_{Ash} is the remaining mass of ash after completion of gasification. The weight loss and temperature profile in a typical gasification test in TGA are shown in Figure 2.

3. RESULTS AND DISCUSSION

The influence of metal catalysts on the gasification reactivity of PS char was studied by loading 3 wt% of various salts of alkali, alkaline and transition metal species, as listed in Table 2, into the char skeleton; the achieved results are presented and discussed as follows.

3. 1. Effect of Potassium Species Figure 3 illustrates the catalytic effect of potassium species on the carbon conversion of the PS char. It can be observed that the rate of carbon conversion of catalyzed char was higher than that of non-catalyzed (pristine) char for all potassium species. The char reactivity in the presence of K₂CO₃ was considerably high and complete carbon conversion was achieved in 27.1 min, while this time was 51.7 min for pure PS char. The CO₂ gasification reactivity of char followed the sequence of K₂CO₃char>K2SO4-char> KNO3-char> KOH-char> KCl-char> raw-char. Such enhancement in the reactivity of catalyzed char was confidently attributed to the significant effect of potassium on increasing the reaction centers which play an important role in chemisorption of CO₂ on the char. It is also most probable that these potassium sites catalyze the breakage and transfer of oxygen from CO₂ to the char surface and subsequent release of CO, based on the Boudouard reaction [13].

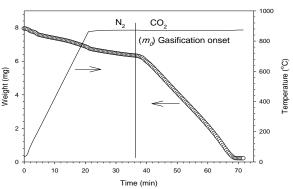


Figure 2. Temperature profile and weight loss in a typical CO_2 gasification experiment in TGA

1253

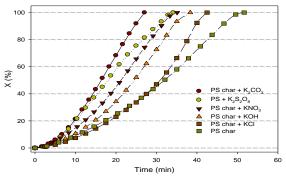
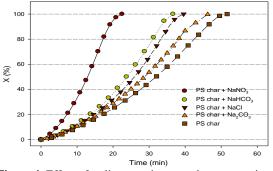



Figure 3. Effect of potassium species on carbon conversion of PS char in CO_2 gasification at 875 °C

Figure 4. Effect of sodium species on carbon conversion of PS char in CO_2 gasification at 875 °C

3. 2. Effect of Sodium Species The carbon conversions of 3% sodium salt loaded char compared to the raw char are shown in Figure 4. The gasification reactivity of all sodium loaded PS chars improved in comparison to the raw PS char in the order of NaNO₃char> NaHCO₃-char> NaCl-char> Na₂CO₃-char> raw-PS char which indicates the encouraging effect of this alkali metal on improving the reactivity of biomass char during the CO_2 gasification. The char conversion in the presence of NaNO₃ was considerably higher than that of the raw char. The time required for complete conversion of raw PS char was almost 2.3 as that of NaNO₃ loaded char. The complete carbon conversion for NaNO₃, NaHCO₃, NaCl and Na₂CO₃ catalyzed chars was achieved in 22.4, 36.7, 39.6 and 44.5 min, respectively, which was considerably shorter than the corresponding time required for pristine char (51.7 min). These results signify the catalytic effect offered by sodium as alkali metal and the contribution of Na species to increase the number of active sites for the Boudouard reaction on the char surface. It has been suggested that the mechanism through which alkali metals catalyze the Boudouard reaction involves gaseous intermediate compounds M (g), CO (g) and CO₂ (g), where M (g) represents K and Na [20]. The suggested mechanism involves the

reduction, oxidation and carbonation reactions as described below:

Reduction: M_2CO_3 (s, l) + 2C (s) \leftrightarrow 2M (g) + 3CO (g) (3)

Oxidation: 2M (g) + CO₂ (g) \leftrightarrow M₂O (s, l) + CO (g) (4)

Carbonation: $M_2O(s, l) + CO_2(g) \leftrightarrow M_2CO_3(s, l)$ (5)

Overall:
$$2C(s) + 2CO_2(g) \leftrightarrow 4CO(g)$$
 (6)

Reaction (3) was assumed to be the rate controlling step, whereas, reactions (4) and (5) were expected to proceed rapidly. Since Na (g) is highly active, it is unlikely that reaction (4) control the overall reaction rate [21].

3. 3. Effect of Calcium Species Calcium is known as a potential catalyst for enhancing the char reaction rate during gasification. Generally, the catalytic activity of calcium might be inferior to that of alkali metals. However, its agglomeration tendency and volatilization during gasification is low [22, 23]. These properties are considered as the superior advantages of calcium over potassium and sodium. The influence of some calcium compounds (3 wt%) on enhancing the gasification reactivity of PS char was investigated; the results are illustrated in Figure 5. As observed in the figure, not all of the calcium specious improved the conversion rate of char during gasification. The reactivity of PS char profoundly enhanced in the presence of CaCl₂ and Ca(NO₃)₂ by 64.6 and 48.7% as compared to the pristine PS char. However, CaO was not efficient in enhancing the char reactivity. The gasification reactivity of the CaO loaded char was even less than that of raw PS char. Such behavior might be attributed to the uneven or deficient dispersion of CaO on the char surface. It has been reported that the catalytic activity of calcium is significant only when it is well dispersed in the carbon matrix [24, 25]. Considering the very low solubility of CaO in water, it can be speculated that the wet impregnation method, which was used in the current work, was not efficient for homogeneous dispersion of CaO on the char surface.

3. 4. Effect of Iron Species Iron species which are unlimitedly available have been used as promising catalysts for improving the rate of the Boudouard reaction. Figure 6 depicts the catalytic effect of iron species (3 wt%) on the carbon conversion of the PS char. As expected, the carbon conversion rate of the catalytic gasification was higher than that of non-catalytic gasification and the catalytic activity of the iron species followed the sequence of Fe(NO₃)₃-char>FeCl₃-char> Fe₂(SO₄)₃-char> raw-char. The carbon conversion rate of Fe(NO₃)₃, FeCl₃ and Fe₂(SO₄)₃ catalyzed char was 46.2, 32 and 17.4% faster than that of pristine PS char, respectively.

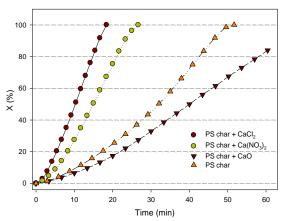


Figure 5. Effect of calcium species on carbon conversion of PS char in CO_2 gasification at 875 °C

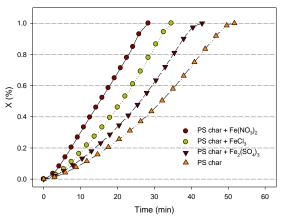


Figure 6. Effect of iron species on carbon conversion of PS char in CO_2 gasification at 875 °C

4. CONCLUSION

The influence of several metal species on the CO_2 gasification reactivity of PS char was investigated. The following results were concluded:

The investigated potassium salts enhanced the CO_2 gasification reactivity of char in the order of K_2CO_3 -char > K_2SO_4 -char > KNO_3 -char > KOH-char > KCl-char > raw-char.

Sodium species were also very effective in promoting the char reaction rate in the sequence of $NaNO_3$ -char > $NaHCO_3$ -char > NaCl-char > Na_2CO_3 -char > raw-PS char.

Among the investigated calcium species, $CaCl_2$ and $Ca(NO_3)_2$ profoundly enhanced the char reactivity. However, the reaction rate in the presence of CaO became worsen as compared to pristine char. This was hypothesized to be due to the inefficiency of impregnation method for homogeneous dispersion of catalyst on the char surface.

The catalytic effect of iron salts on promotion of the char reactivity was noticeable, following the order of $Fe(NO_3)_3$ -char > $FeCl_3$ -char > Fe_2 (SO_4)_3-char > raw-char.

5. REFERENCES

- Olivier, J.G.I., Greet, J.-M., Marilena, M., and Jeroen, A.H.W.P., *Trends in global CO₂ emissions 2013 report*. 2013: PBL Netherlands Environmental Assessment Agency.
- Calo, J.M. and Perkins, M.T., "A heterogeneous surface model for the "steady-state" kinetics of the Boudouard reaction", *Carbon*, Vol. 25,(1987), 395-407.
- Hunt, J., Ferrari, A., Lita, A., Crosswhite, M., Ashley, B., and Stiegman, A.E., "Microwave-Specific Enhancement of the Carbon- Carbon Dioxide (Boudouard) Reaction",*Journal of Physical Chemistry C*, Vol. 117,(2013), 26871–26880.
- 4. Weissermel, K. and Arpe, H.-J., *Industrial organic chemistry*. 2008: Wiley.
- Zhou, Z., Hu, Q., Liu, X., Yu, G., and Wang, F., "Effect of iron species and calcium hydroxide on high-sulfur petroleum coke-CO₂ gasification",*Energy & Fuels*, Vol. 26,(2012), 1489-1495.
- Asami, K., Sears, P., Furimsky, E., and Ohtsuka, Y., "Gasification of brown coal and char with carbon dioxide in the presence of finely dispersed iron catalysts",*Fuel Processing Technology*, Vol. 47,(1996), 139-151.
- Karimi, A. and Gray, M.R., "Effectiveness and mobility of catalysts for gasification of bitumen coke", *Fuel*, Vol. 90,(2011), 120-125.
- Ohme, H. and Suzuki, T., "Mechanisms of CO₂ gasification of carbon catalyzed with group VIII metals. 1. Iron-catalyzed CO₂ gasification",*Energy & Fuels*, Vol. 10,(1996), 980-987.
- Lahijani, P., Zainal, Z.A., Mohamed, A.R., and Mohammadi, M., "Ash of palm empty fruit bunch as a natural catalyst for promoting the CO₂ gasification reactivity of biomass char",*Bioresource Technology*, Vol. 132,(2013), 351-355.
- Zhang, Y., Ashizawa, M., Kajitani, S., and Hara, S., "A new approach to catalytic coal gasification: The recovery and reuse of calcium using biomass derived crude vinegars",*Fuel*, Vol. 89,(2010), 417-422.
- Karimi, A. and Gray, M.R., "Effectiveness and mobility of catalysts for gasification of bitumen coke", *Fuel*, Vol. 90, (2010), 120-125.
- Lahijani, P., Zainal, Z.A., Mohamed, A.R., and Mohammadi, M., "Co-gasification of tire and biomass for enhancement of tire-char reactivity in CO₂ gasification process",*Bioresource Technology*, Vol. 138,(2013), 124–130.
- Huang, Y., Yin, X., Wu, C., Wang, C., Xie, J., Zhou, Z., Ma, L., and Li, H., "Effects of metal catalysts on CO₂ gasification reactivity of biomass char",*Biotechnology advances*, Vol. 27,(2009), 568-572.
- Lahijani, P., Zainal, Z.A., Mohamed, A.R., and Mohammadi, M., "CO₂ gasification reactivity of biomass char: Catalytic influence of alkali, alkaline earth and transition metal salts",*Bioresource Technology*, Vol. 144,(2013), 288-295.
- Sun, Q., Li, W., Chen, H., and Li, B., "The CO₂-gasification and kinetics of Shenmu maceral chars with and without catalyst",*Fuel*, Vol. 83,(2004), 1787-1793.

- Karimi, A., Semagina, N., and Gray, M.R., "Kinetics of catalytic steam gasification of bitumen coke", *Fuel*, Vol. 90,(2011), 1285-1291.
- Kim, S.K., Park, C.Y., Park, J.Y., Lee, S., Rhu, J.H., Han, M.H., Yoon, S.K., and Rhee, Y.W., "The kinetic study of catalytic low-rank coal gasification under CO₂ atmosphere using MVRM", *Journal of Industrial and Engineering Chemistry*, Vol. 20, (2014), 356-361.
- 18. D5142–04, Standard test method for proximate analysis of the analysis sample of coal and coke by instrumental procedures. ASTM Standards, vol. 05.06. 2008.
- Mohammadi, M., Hassani, A.J., Mohamed, A.R., and Najafpour, G.D., "Removal of rhodamine B from aqueous solution using palm shell-based activated carbon: adsorption and kinetic studies", *Journal of Chemical & Engineering Data*, Vol. 55,(2010), 5777-5785.
- Rao, Y.K., Adjorlolo, A., and Haberman, J.H., "On the mechanism of catalysis of the Boudouard reaction by alkalimetal compounds", *Carbon*, Vol. 20,(1982), 207-212.

- Alam, M. and Debroy, T., "The effects of CO and CO₂ on the rate of Na₂CO₃ catalyzed boudouard reaction",*Metallurgical* and Materials Transactions B, Vol. 15,(1984), 400-403.
- Risnes, H., Fjellerup, J., Henriksen, U., Moilanen, A., Norby, P., Papadakis, K., Posselt, D., and Sorensen, L.H., "Calcium addition in straw gasification[☆]",*Fuel*, Vol. 82,(2003), 641-651.
- Quyn, D.M., Hayashi, J.-i., and Li, C.-Z., "Volatilisation of alkali and alkaline earth metallic species during the gasification of a Victorian brown coal in CO₂",*Fuel Processing Technology*, Vol. 86,(2005), 1241-1251.
- Zhang, Y., Ashizawa, M., and Kajitani, S., "Calcium loading during the dewatering of wet biomass in kerosene and catalytic activity for subsequent char gasification",*Fuel*, Vol. 87,(2008), 3024-3030.
- Lahijani, P., Zainal, Z.A., Mohammadi, M., and Mohamed, A.R., "Conversion of the greenhouse gas CO 2 to the fuel gas CO via the Boudouard reaction: A review",*Renewable and Sustainable Energy Reviews*, Vol. 41,(2015), 615-632.

Catalytic Effect of Metal Species on Enhancement of CO₂ Gasification Reactivity of Biomass Char

P. Lahijani^a, M. Mohammadi^b

^a Biomass and Bioenergy Laboratory, School of Mechanical Engineering, Universiti Sains Malaysia, Nibong Tebal, Pulau Pinang, Malaysia ^b Faculty of Chemical Engineering, Babol Noushirvani University of Technology, Babol, Iran

PAPER INFO

Paper history: Received 15 June 2015 Received in revised form 30 July 2015 Accepted 03 September 2015

Keywords: CO₂ gasification Biomass Char Catalyst Boudouard Reaction در واکنش بودوارد که در آن CO2 با کربن (ذغال) واکنش داده می شود تا CO تولید کند به دماهای بسیار بالا نیاز است تا تعادل واکنش را به سمت تولید CO سوق دهد. این واکنش گرماگیر ذاتا کند است و ترکیبات کاتالیستی می توانند سرعت واکنش را در دماهای کمتر از 20°00 افزایش دهند. در این تحقیق، اثر کاتالیستی برخی از فلزات قلیائی (K, Na، قلیائی خاکی (Ca) و واسطه (Fe) روی افزایش سرعت واکنش گازی سازی ذغال پوست پسته (PS) با CO2 مورد بررسی قرار گرفت. مطالعه مربوط به گازی سازی در دستگاه TGA انجام شد. از بین ترکیبات پتاسیمی مورد بررسی، K2C03 بیشترین اثر کاتالیستی را داشت به طوری که در حضور آن زمان مورد نیاز برای رسیدن به میزان تبدیل کامل به اندازه (Na2N0 سریعتر از زمان مشابه برای ذغال بدون کاتالیست بود. بیشترین تاثیر کاتالیستی در بین نمکهای سدیم متعلق به Ra2O3 بود که موجب بهبودی به میزان (S7.7% در سرعت واکنش شد. 2012 و 2(Ca) و PC) و PC) مورد را می در میان ترکیبات کلسیم و آهن را داشتند که به ترتیب به میزان شد. 2013 و 20(Ca) و 2(Ca)

doi: 10.5829/idosi.ije.2015.28.09c.01

1256

چکیدہ