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A B S T R A C T  
 

 

Non uniform rational b-splines (NURBs) have proved to be very promising for metamodeling in 

engineering problems, because they have unique properties such as local modification scheme, strong 

convex hull property, and infinitely differentiability, etc. Since NURBs are defined by control points, 
knot vector, and weights associated with control points, the precision of NURBs is influenced by all of 

the parameters. In order to improve the accuracy and calculation efficiency, an enhanced method of 

building NURBs metamodel is presented. Some improvements are made in certain aspects, such as: 
improving the date normalization method and the calculating method of weight coefficient. Compared 

with the existing methods, this method can calculate the weight coefficient of each control point more 

quickly, because it avoids the inverse operation of correlation matrix, which may cause singular. 
Several classic numerical examples show that the presented method is effective for building 

approximate model with higher accuracy than existing NURBs metamodel. 

 

doi: 10.5829/idosi.ije.2015.28.08b.15 
 

 
1. INTRODUCTION1 
 

Computationally-expensive problems are often found in 

engineering designs [1, 2]. For example, simulation and 

analysis processes are expensive to run and often 

considered black-box functions [3]. Metamodel is a 

widely used strategy to approximate expensive analyses 

or simulation processes. In the last two decades, 

metamodeling techniques have been successfully 

applied to engineering designs especially for modeling 

and optimization.  

Polynomial regression or interpolation based on 

classical design of experiments is called the initial 

response surface model or metamodel. Besides the 

commonly used polynomial functions, other types of 

models include radial basis functions (RBF) [4], Kriging 

[5] based on stochastic model, support vector regression 

(SVR) [6] model. Neural Networks [7] have also been 

applied in generating the response surfaces for system 

approximation. Each model has its adaptability. 

Therefore, there is no conclusion about which model is 

definitely superior to the others [8]. However, insights 

have been gained through a number of studies [9, 10]. In 
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general, the Kriging models are found more accurate for 

nonlinear problems, but it is difficult to obtain and use 

because a global optimization process should be applied 

to identify the maximum likelihood estimators. The 

RBF model seems to reach a tradeoff of accurate and 

efficiency between Kriging and polynomials. Tested 

SVR can achieve high accuracy over all other 

metamodeling techniques, but the reasons of theoretical 

foundation is not clear for why it can outperforms 

others. Recently, Wang [8] reviewed the applications of 

metamodeling techniques in the context of engineering 

design and optimization, and especially made surveys of 

metamodeling for high dimensional problems [3, 11]. It 

can be seen from the recent reviews that in order to 

reach acceptable accuracy, the metamodeling cost 

grows exponentially with the dimension of 

corresponding problems. Due to the computational 

challenge for modeling and optimization of high 

dimensional problems, these traditional approaches 

appear inadequate to model problems with large 

variables. Therefore, high dimensional model 

representation (HDMR) has drawn more and more 

attention in engineering. The theoretical foundation is 

an integrable function which can be decomposed into 

summands of different dimensions. Therefore, the 
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HDMRs have a characteristic which expands a d-

dimensional function into summands of different 

functions of less than d-dimensions. The details and 

research progress about HDMR are surveyed in [11]. 

Friedman [12] proposed the multivariate adaptive 

regression splines (MARS) [13] and fast MARS model, 

which take the tensor product of spline function as the 

basis function. Instead of truncated power basis 

functions, the multivariate adaptive regression B-spline 

(BMARS) [14] algorithm uses the B-splines as basis 

function, which will have superior numerical properties 

than truncated power basis functions. MARS and 

BMARS have shown their ability for high dimensional 

and lager data interpolation problems. Because B-spline 

basis functions have characteristics of local support and 

smooth connection, they are suitable for incremental 

construction of large data. Turner proposed a NURBS-

based metamodel and extended it to model N-dimension 

problems [15]. Non Uniform Rational B-splines 

(NURBs) are proved to be very promising for 

metamodeling in engineering problems, because they 

have unique properties such as local modification 

scheme, strong convex hull property, and infinitely 

differentiability, etc. Since NURBs are defined by 

control points, knot vector, and weights associated with 

control points, the precision of NURBs is influenced by 

all of the parameters. This paper illustrates an improved 

N-dimensional NURBs-based metamodel compared 

with [15]. This method can calculate the weight 

coefficient of each control point more quickly, because 

it adopts a new method of calculating the correlation 

vector and correlation matrix. It avoids the inverse 

operation of correlation matrix which may cause 

singular. 

The present paper is organized as follows. Section 2 

introduces foundation of NURBs approximation. 

Section 3 proposes the improved N-dimensional 

NURBs-based metamodel, which adopts a more 

reasonable method to calculate the weight of NURBs. 

Section 4 studies the behavior of the proposed method 

through several numerical tests. Conclusions are drawn 

in Section 5. 

 

 

2. NURBS MATHEMATICS 
 

The rational basis function of NURBs curve is: 
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The equation of NURBs curve can be defined as: 
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(2) 

where, k is the order. t is normalized parameter of 

design variable, [0,1]t . P is a vector defining the n 

control points, wi is a positive scalar defining the weight 

of the i
th

control point, and Ni,k(t) is the B-spline basis 

function given as a parametric function of t. The B-

spline basis function is defined by the following 

recursive function: 

where, 
0 1 1[ , , ]n kU u u u   is knot vector which is 

calculated by Cox-de Boor recursion formula. Based on 

the tensor product theory, the N-dimensional NURBs 

function can be define as: 

Research shows that models higher than quadratic 

produce little benefit, while diluting the local influence 

of control points [15]. Therefore, it can meet the 

precision requirement for k=2.  Based on formula (4), in 

order to build a NURBs-based metamodel based on a 

given dataset D(X) (X is n-dimension variable vector), 

the main tasks are estimating control point weights, 

establishing knot vectors, and determining dependent 

control point coordinates. 

 

 

3. IMPROVED N-DIMENSIONAL NURBS-BASED 
METAMODEL 
 

Turner [15] proposed an N-dimension NURBS-based 

metamodel called HyPer Model. The main aspects of 

constructing NURBs metamodel are discussed in detail, 

such as the data normalization, determining weights of 

control point, knot vectors and dependent control point 

coordinates. As we know, just as NURBs curve or 

surface, the modeling accuracy is largely depends on the 

weights of control points. One of the main contributions 

of [15] is establishing a method to estimating control 

point weights. The weights in [15] are determined by a 

correlation matrix and its inverse. However, the inverse 

operation of correlation matrix may cause calculating 

difficulties when it is singular. Based on HyPer Model, 

we studied a new method to estimate weights of control 

point and enhance the accuracy of NURBs metamodel. 
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3. 1. Estimating Control Point Weights       For a 

NURBs curve defined by (2), the most significant 

properties related to the weights are:  

(1) The curve will be pull toward (or push away 

from) control point Pi if increasing or decreasing) the 

value of weight wi. When the value of wi becomes 

infinity, the curve passes through control point Pi and 

when wi is zero, control point Pi has no impact on the 

curve. 

(2) Local approximation. If a control point Pi is 

moved or its weight wi is changed, it will affect only 

that portion of the curve on the interval 
1[ , )i i kt u u   .  

Therefore, the modeling accuracy is largely depends 

on the weights of control points. For control point Pi, 

the weight is determined by its neighborhood. The 

control point weights are estimated by [15] using a 

spatial correlation function with Equtions (5) to (7). 

T 1
min max min( )( )cpw w w w    r R r  (5) 

where, cpw  is the weight of the control point, 
minw (set 

0.1) is the minimum weight value, 
maxw  (set 1) max is 

the maximum weight value. r and R are correlation 

vector and matrix derived from the spatial correlation 

function (SCF) [16]. 
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where, t is the parametric coordinate of input variables. 

r is derived from the spatial correlation function of the 

parametric control point location (tcp) and the location of 

the i
th

 nearby neighbor data points (ti). R is derived from 

the spatial correlation function of the location of data 

point ti and the location of data point tj. In order to limit 

the computational cost of inversion, r and R are 

calculated based on the 10 nearest neighbors to each 

control point rather than the entire dataset [15].   

defines the range of influence of the data ( > 0), and p 

defines the smoothness of the model, which are 

discussed in detail in literature [15]. With the increase 

of samples, rows of the R matrix become very similar. 

Therefore, it becomes a nearly singular matrix and it is 

difficult to get its inverse. The SCF of Equation (6) 

referred to as the Gaussian model is known to result in 

unstable kriging systems due to the behavior of the 

covariance model for short separation distances. Sasena 

[16] and Turner [15] have improved the model, the 

parameter p is limited to [0, 1.99] and [0, 2], 

respectively.  

In fact, as Turner [15] presented, the more distance 

between a control point and its nearest neighboring data 

points, with the less confidence is in the location of the 

control point. Thus, the control point weight should be 

reduced. Therefore, we try to use a simple method to 

determine the weight like inverse distance weighted 

interpolation, where, weights are usual inverse 

proportion to a power of distance and direct proportion 

to its slope. So, we define the weight as Equation (8). 

Multiple dimensions can be handled through a tensor 

product of the single dimension weights. 

min max min( ) ( )
i
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 (8) 

where, m is the normalized current metamodel, and 

der(mcp) represents the normalized derivative of the 

current metamodel at the current control point location 

(tcp). 

 

3. 2. Procedure of Building Nurbs-Based 
Metamodel     The procedure of building NURBs-

based metamodel is described as following based on 

literature [15]. 

Step 1. Random sampling. Anyrandom sampling 

method is available, such as the Latin hypercube 

sampling method. 

Step 2. Data normalization. Chord length method is 

adopted to normalize the N dimensions data D(x
1
, x

2
, 

….  x
i
 …. x

n
). It is worth mentioning that, the 

normalization method given by Turner [15] can not 

guarantee the normalized value belong to the interval [0, 

1]. 

Step 3. Establishing initial model. Establish the 

initial model with control points at each corner and an 

open knot vector. Control point weights are calculated 

by the Equations (6) to (8). 

Step 4. Identifying the location of maximum error. 

Compare this error to the user tolerance, and check the 

unused data set’s correlation to the model data. Stop if 

the model has converged. 

Step 5. Increasing control points and updating knot 

vector by the method as Turner [15].  

Step 6. Calculating control point weights by the 

Equation (6) to (8). 

Step 7. Calculating control point locations by 

Equation (4). 

Step 8. Establishing the new NURBs metamodel, 

and go to Step 4. 

 

 

 

4. EXPERIMENTAL TRIALS 
 

Several classic numerical functions are selected for 

building their NURBs approximate models and 

compared with other methods by the following measure 

criteria.  
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4. 1. Measure Criteria       The coefficient of 

determination (R
2
) of regression model, relative average 

absolute error (RAAE), and the maximum error are 

evaluated and compared. 

(1) The coefficient of determination (R
2
).  
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where, m is the number of samples, and the 
if  and ˆ

if  

are the true function value and predicted value 

calculated from the approximation model at the i
th

 

testing point respectively, and if  is the average value of 

ˆ
if . R

2 
describes the proportion of variance of the 

dependent variable. The better of the approximation 

model, the values of R
2
 is closer to 1. 

(2) Relative average absolute error (RAAE) 

where, STD is standard deviation, and the smaller the 

value of RAAE, the approximation model has better 

accuracy. 

 

4. 2. Numerical Tests        Some well-known 

benchmark functions are used to test for accuracy. All 

these functions are approximated with the presented 

enhanced NURBs (Mark as ENURBs) model and HyPer  

Model. In order to facilitate comparison, the 

metamodels are constructed through with same 

sampling size and sampling strategy (equidistant 

sampling). 

 

Test (1): Tangent function 

tan ,   [ 4 9, 4 9]f x x      (11) 

The function is smooth and relatively easy to construct 

metamodel. Therefore, the accuracy of both HyPer 

Model and ENURBs are satisfactory. Figure 1 is the 

metamodel of Test (1) by ENURBs model. As shown 

from Table 1, although the Maximum error of HyPer 

Model is little than ENURBs, the values of RAAE  and 
2R of ENURBs are equal or better than the values of 

HyPer Model.  

 

Test (2): sinusoidal function 

x/100( ) 10 sin(x) e ,      0 10f x x      (12) 

As shown in Table 2. The accuracy of both HyPer 

Model and ENURBs for Test (2) are satisfactory.  In 

Figure 3, the horizontal axis represents the values of 

samples and the longitudinal axis represents the 

difference of absolute error between HyPer Model and 

ENURBs, which is the absolute errors of HyPer Model 

subtracted the absolute errors of ENURBs. Therefore, if 

the difference scatter above the Z=0, it represents that 

the absolute error of HyPer Model is greater than 

ENURBs, and contrariwise, if the difference scatter 

below the Z=0, it represents that the absolute error of 

ENURBs is greater than HyPer Model. 

 

Test (3): Six-hump camel-back (SC) function 

2 4 6 2 4

1 2 1 1 1 1 2 2 2

1
( , ) 4 2.1 4 4

3
f x x x x x x x x x       (13) 

It is shown from Table 3 that the values of  RAAE  and 

Maximum errors of ENURBs are less or equal to the 

values of HyPer Model. Therefore, the ENURBs has 

more accuracy than HyPer Model for this function. 

 

 
TABLE 1. Comparison of the NURBs models for tangent 

function. 

Sampling distance / 45  / 18  

2R  
HyPer Model 

ENURBs 

0.9993 

0.9993 

0.9869 

0.9871 

RAAE  
HyPer Model 

ENURBs 

0.0168 

0.0166 

0.0786 

0.0781 

Maximum 

error 

HyPer Model 

ENURBs 

0.1843 

0.1882 

0.5906 

0.6121 

 

 

 
x 

Figure 1. The metamodel of tanf x  built by ENURBs 

model. The blue solid line and the red dotted line are built by 

sampling distance of / 45 and /18 , respectively. 

 

 
TABLE 2. Comparison of the NURBs models forsinusoidal 

function. 

Sampling distance 0.1 0.5 

2R  
HyPer Model 

ENURBs 

0.9999983 

0.9999983 

0.9999732 

0.9999732 

RAAE  
HyPer Model 

ENURBs 

0.0011257 

0.0011268 

0.0045287 

0.0045239 

Maximum 

error 

HyPer Model 

ENURBs 

0.0012496 

0.0012496 

0.0049921 

0.0049831 

1

ˆ
n

i i

i

f f
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x 

Figure 2. The metamodel of sinusoidal function built by 

ENURBs model with sampling distance of 0.1. 

 

 

 
x 

Figure 3. The difference of absolute error between HyPer 

Model and ENURBs for sinusoidal function. 

 

 

 

Figure 4. The metamodel of SC function built by ENURBs 

model with sampling distance of 0.2. 

 
 

TABLE 3. Comparison of the NURBs models for SC 

function. 

Sampling distance 0.1 0.2 

2R  
HyPer Model 

ENURBs 

1.0000 

1.0000 

0.9995 

0.9996 

RAAE  
HyPer Model 

ENURBs 

0.0039 

0.0037 

0.0148 

0.0139 

Maximum error 
HyPer Model 

ENURBs 

0.2055 

0.2007 

0.7640 

0.7479 

Test (4): Rastrigin function 

2 2

1 2 1 2 1 2 1,2( , ) cos18 cos18 , [ 1,1]f x x x x x x x       (14) 

As shown in Table 4, the values of 2R , RAAE   and 

Maximum errors of ENURBs are better than the values 

of HyPer Model. In Figure 6, the x1, x2 represents the 

values of samples and the Z axis represents the 

difference of absolute error between HyPer Model and 

ENURBs. 

 

 
TABLE 4. Comparison of the NURBs models for Rastrigin 

function. 

Sampling distance 0.1 0.2 

2R  
HyPer Model 

ENURBs 

0.8937 

0.9316 

0.8945 

0.9268 

RAAE  
HyPer Model 

ENURBs 

0.2658 

0.2090 

0.7423 

0.7044 

Maximum 

error 

HyPer Model 

ENURBs 

1.1015 

1.0715 

2.6577 

2.4235 

 

 

 

Figure 5. The metamodel of Rastrigin function built by 

ENURBs model with sampling distance of 0.2. 
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(b) 

Figure 6. The difference of absolute error between HyPer 

Model and ENURBs for Rastrigin function. (a) and (b) are the 

Isometric view and X2OZ direction projection respectively 

about the difference of absolute error between HyPer Model 

and ENURBs. 

 

 

5. CONCLUSION 
 

NURBs have unique advantages which make it suitable 

for constructing metamodel. Turner [15] proposed an N-

dimension NURBS-based metamodel called HyPer 

Model, which is proved very effective. However, the 

accuracy of NURBs is influenced by many parameters. 

How to determine the reasonable parameter values is 

important. The accuracy of NURBs model largely 

depends on the weights of control points. The control 

point weights of HyPer Model are estimated based on 

spatial correlation function. However, with the increase 

of samples, rows of the correlation matrix, derived from 

the spatial correlation function, become very similar, 

resulting in a nearly singular matrix and making it 

difficult to get its inverse. We try to use a simple 

method to determine the weight like inverse distance 

weighted interpolation, where, weights are usually 

inversely proportional to a power of distance. Based on 

the modified weight calculation method and data 

normalization method, an improved N-dimension 

NURBS-based metamodel is studied. Compared with 

the existing method, this proposed method can calculate 

the weight coefficient of each control point more 

quickly, because it avoids the inverse operation of 

correlation matrix. Several classic numerical examples 

show that the presented method is effective for building 

approximate model with higher accuracy. In addition, 

the sampling method and sampling efficiency is not in 

the scope of this study, which is studied in-depth based 

on HyPer Model. 
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چكيده
 

( برای متامدل در مسائل مهندسی بسیار امیدوار کننده هستند، چرا که آنها دارای NURBSمنحنیهای غیر یکنواخت گویا )

خواص منحصر به فرد مانند طرح اصلاح شده محلی، خاصیت بدنه محدب قوی و مشتق پذیری بی نهایت و غیره می 

 NURBSتوسط نقاط کنترل، بردار گره، و وزن مرتبط با نقاط کنترل تعریف شده اند، دقت  NURBS باشند. از آنجا که

به منظور بهبود دقت و محاسبه بهره وری، یک روش بهبود یافته از  توسط تمام پارامترهای تحت تاثیر قرار می گیرد.

ی ساخته شده اند: از قبیل بهبود روش متامدل ارائه شده است. بعضی از اصلاحات در زمینه های خاص NURBSساخت 

با مقایسه روش های موجود با یکدیگر، این روش می تواند  نرمال سازی داده ها،  تاریخ و محاسبه روش ضریب وزن.

ضریب وزن هر نقطه کنترل را با سرعت بیشتری محاسبه کند، به دلیل آن که از عملیات معکوس ماتریس همبستگی که 

ر به فرد بودنش شود، جلوگیری می کند. چندین مثال عددی کلاسیک نشان می دهد که روش ممکن است باعث منحص

 موجود موثر است. NURBSارائه شده برای ساخت و ساز مدل تقریبی با دقت بالاتر از متامدل 

 

.doi: 10.5829/idosi.ije.2015.28.08b.15 

 

 

 

 

 

 

 

 


