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ABSTRACT

Change point estimation in the area of statistical process control has received considerable attentions.
The assumption of uncorrelated observations is unrealistic in many cases. However, less attention has
been given to change point estimation in autocorrelated processes. Among the autocorrelated
processes, count data are most widely used in real-world. Different applications of count data are
discussed by many researchers such as syndromic surveillance data in healthcare, accident monitoring
systems and multi-item pricing models in management science. Poisson distribution for count
processes and the first-order integer-valued autoregressive (INAR (1)) model are considered in this
paper. We use a combined EWMA and C control chart to monitor the process. We propose change
point estimators for the rate and dependence parameters with linear trend under different magnitudes of
shifts. For this purpose, Newton’s method is used to estimate the paramaters of the process after the
change. Then, we develop the maximum likelihood estimators to estimate the real time of change in
the parameters. The accuracy and prescision of the proposed MLE estimators are evaluated through
simulation studies. In addition, the performance of the proposed estimators is compared with the ones
proposed for step change under linear drift. The simulation results confirm that the change point
estimators are effective in identifying linear trend in the process parameters. Finally, application of the
proposed change point estimators is illustrated through an IP counts data real case.

doi: 10.5829/idosi.ije.2015.28.07a.08

1. INTRODUCTION

and Pinatiello [5] extended an MLE to estimate the time
of a step change in the mean of stationary and invertible

Statistical process control uses seven tools to reduce
variation leading to improvement in the performance of
processes. Improving in measurement systems and data
storage leads to taking observations very close to each
other in time and as a result increasing autocorrelation
between observations [1]. Nishina and Wang [2]
investigated the performance of cumulative sum
(CUSUM) control charts from the view point of the
change point estimation considering the autocorrelation.
Timmer and Pignatiello [3] develped an MLE approach
to determine the change point in the autoregressive
parameter, the variance of the white noise and the mean
of a first-order autoregressive process. Maximum
likelihood change point estimation for the pth-order
autoregressive model was proposed by Picard [4]. Perry
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ARMA processes. Perry [6] developed an MLE for the
time of polynomial drift in the mean of covariance-
stationary autocorrelated processes. Sometimes the
process is described by a count data. For instance, the
number of customers waiting in a line to be served [7],
number of failures in a unit of a product [8] and number
of complaints of customers in a service system [9] are
examples of count data processes. These cases are
usually modeled by the INAR (1) process which is
investigated by some researchers such as Al-Osh and
Alzaid [10] and Li [11]. Due to several applications of
INAR (1) processes in the recent years, this issue is
investigated by some researchers. Yontay et al. [12]
proposed a Two-sided CUSUM control chart for INAR
(1) processes to monitor this process with application to
hospital data. Andersson and Karlis [13] evaluated
INAR (1) model in the presence of missing data with an
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application to syndromic surveillance data. Yahav and
Shmueli [14] proposed a remedial solution for NORTA
method to generate Poisson count data with application
in management science. Morina et al. [15] used INAR
(2) model in order to investigate the number of hospital
emergency service arrivals caused by diseases. Also,
Weill [16] proposed confidence regions for both
parameters of an INAR (1) model with real application
to IP counts data.

Torkamani et al. [17] proposed an MLE approach to
estimate the time of a step change in the autocorrelated
Poisson count processes modeled by first-order integer-
valued autoregressive (INAR(1)). Often deterioration in
a machine is shown by a linear change in the
parameters. Numerous applications of the autocorrelated
count data and Poisson processes were our motivation to
investigate this type of the processes. Hence, in this
paper we proposed an MLE approach to estimate the
time of a linear trend in the autocorrelated Poisson
count processes. To monitor the process, we apply the
C-EWMA control chart proposed by Weill [8]. We
evaluate the proposed estimator compared to estimator
proposed by Torkamani et al. [17] under linear trend
disturbance. The results confirm the superiority of the
proposed estimator under linear trend. The structure of
the paper is as follows: Section 2 provides a description
of the INAR (1) model for autocorrelated Poisson count
processes. Also, the probability distribution function of
the INAR (1) process is introduced. In the next section,
maximum likelihood estimators of the change time for
the rate and dependence parameters are presented. The
performance of the proposed estimators is evaluated in
section 4. A real case study related to IP counts data is
presented in section 5. Our concluding remarks are
given in the final section.

2. THE INAR(1) MODEL AND DISTRIBUTION OF
AUTOCORRELATED POISSON COUNT PROCESSES

Common models for stationary real-valued processes
are the autoregressive moving average models.
However, this model is not usable for integer-valued
processes, because multiplication of a real number by an
integer value leads to a non-integer value [18]. To
overcome this problem, a thinning operation introduced
by Steutel and Harn [19] is applied to define integer-
valued ARMA models.

Consider x a discrete random variable with range
N, ={0,L,...} ande €[0,1].
The thinning operation is defined as:

aoX:;Y/, 1)

where, Y, is a sequence of independent identically

distributed (i.i.d). Bernoulli random variables and

independent of x. ao X arises from X by binomial
thinning and © is the binomial thinning operator.

Then, the INAR (1) process was introduced by
McKenzie [20], and Al-Osh and Alzaid [10]. The INAR
(1) model arises from M /M /oo queuing system [21].
The recursion of the INAR (1) process is defined by the
equation

X, =ao X, +¢g, 2

where, X, is the number of population at a times, ¢, is
the number of new population, 4. x_ is the number of

population of previous period which are still in the
queuing system. For instance, Brannas et al. [22]
applied this model for modeling and forecasting guest
nights in hotels. The stationary Poisson INAR (1) model
assumes that g follows an 1iid. Poisson (A)

distribution and X, ~ Poisson (1/(1-¢«))- Then, X is a

Markov chain with marginal distribution of Poisson (
Al(l-a)) [18]. Yo = iy/’ follows binomial (x, ).
The probability distribution function of Z=y+¢ is a
convolution of a Poisson and a binomial distribution
[23]. Therefore, the probability density function for the
INAR (1) process is

x -k

o K| e NGk _ /17
[, \x,,.)—g( . j“ (=) expCA T 3)

m=min(x,,x,_ )

Function of an INAR (1) model, derived [24] by
multiplication of the probability generating function of
all taken samples, should be written based on its
conditional distribution as:

Fo o Gonnxrla )= £, (o) [T S, (x1x0) 4)

The probability density function of first observation is
defined as follows:

1., () = exp[~(A /(1 — ) A/1 - )" /x,! )

3. PROPOSED CHANGE POINT ESTIMATOR
UNDER LINEAR TREND

In this section, we derive a maximum likelihood
estimator to find the real time of the drift change point
in the rate (1) and the dependence (& ) parameters,
where we consider a linear trend model for the
mentioned parameters.

3. 1 Change-point Estimator for the Rate
Parameter It is assumed that an INAR (1) process
initially is in-control status with known rate parameters
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A = A, After an unknown point in time a change in the
process occurs and the value of ;= A changes to an
where A=Ay +Bi(i—7) for
T and T is the time when a control chart

unknown value

i=rt+1,..,
signals an out-of-control status.

We propose a MLE approach to estimate the change
point when a linear trend occurs in the rate parameter of
an autocorrelated Poisson process. The log-likelihood
function for this process can be written as:

f(ﬂ.ll,r\x)— 2'0 “I:(%/(l a))m:|+iln(,l')—

l— gy K
T%”;I’[ZZ(( “Zm,,,f”_ it ,;lln(x”)_ ©

2 . Lt (1-a)" (g A=)
2h+h ‘(’71)”,;”1“[; B, R, R

Because the slope parameter g, is unknown, by taking
the partial derivative of Equation (6) with respect to 3,
we obtain
0l(A,,7 | x)
op,
Sat(l-a) T = o)A + fili- )
ZT: (& K(x, — k= D!(x,_, — k)

i=r+1 i a'k(l_Ol)x"]?k(ﬂ'o"’ﬂl(i_z')))xH
s l(x, =) (x,_, — k)!

= {—%(T—r)(T+1—z')+

0

I

-1

As it is obvious in the above equation, there is no
closed-form solution for the slope parameter (/5,).
Hence, to overcome this problem, we apply Newton's
method to approximate the slope parameter. For more
details; see [25] and [26]. Newton's method is a
derivative based algorithm that uses the linear
approximation in order to search and find the root of an
equation in the given model.

£t A = £7() + %f’(x)Ax ®)

where Ax=x,  —x, . If set f'(x+Ax) equal to zero,
the following equation is obtained:

A
Xir1 = X f”(xk)' )

Note that the initial point X, and an appropriate stopping
scheme lead the algorithm to converge at the root of
f'. Since 7T is unknown, for each potential 7 the
algorithm is repeated and the value of ﬁA‘IT is obtained
through the following equation:
S'()

S'(x)

ﬁlz,kn :lélr.k - (10)

The computations of f'(x) and f"(x) are given in
Appendix A. Finally, substituting g, for g, in Equation
(11), we obtain the estimated change point as follows:

[ =arg max{i In(x, ) —7(4,) +

i=1

ak(lia)x,_[,ﬂx,_,fk N
,;lln(x’ B3 [zkl( e (1)

4 - ' (1-a)" " (G + BlG-1)" "
PHERZL ’)“,;.1“[; K, 0, 0

3. 2. Change-point Estimator for the Dependence
Parameter It is assumed that an INAR (1) process
starts with value of the known dependence parameter
a=a, for the first 7 observations. A change in the

process occurs and the value of 4=, changes to an
a, =a,+p,i-1) for
i=7+1,.,T where T is the time when a control chart

unknown  value  where

signals an out-of-control state. Note that the dependence
paramater is between zero and one. Derivation of the
log-likelihood function for the mentioned process is as
follows:

et 9= l) {WO “"”ﬂ i‘n(x,n)f

-l A//
T(ﬂ)+zlln(zzo((lj€0)—'(]).)+ len(x, D-AT-D+  (12)

(0 + B, (i — ) (1= (e + B i —D)) " ()"
Zl Z K(x, —0)l(x,,, —k)! ]

The slope parameter S, is unknown. Hence, the partial

derivative of Equation (12) with respect to /3, leads to

Do k=)@ + By i =) (1= (e + By (i = 7)) ™ y
S (a+Byi-1)
—(a, + B, (i—1) (i—7)(x,, , —k) N
(= (ay+ By i-0)) ™"
(I=(ay+ B G—DN"" [K(x, . — k)N x,, —k)!
A IR, =N, — k)

(13)

In Equation (13), there is no closed-form solution for
the slope parameter ( g,). To approximate for the slope

parameter, we use Newton's method according to
Equation (14) and estimate ﬁzT as:

A S C))
Bociir = Pock (%)

See Appendix B for calculations of f'(x) and f/"(x).
We obtained the change point estimate of 7 by

(14)

Substituting ﬁz in the following equation:
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T T
7 =argmax Eln(xl_l N+ ZIn(xt_] N+
i=1

i=r+l

@ -0 (= + B, (o) A

;m% K(x,, —0)(x;,, —k)! I+ (15)
L (@ +By(—0) (1~ + By - 2
> Yin K(x,, —k)\x,, , —k)!

I

3. 3. Monitoring Scheme Weil} [10] proposed a
control chart based on a combination of the C and a
EWMA control chart to monitor the INAR (1) process.
Due to the suitable performance of the combined C-
EWMA charts, it is used in this paper to monitor the
rate (A1) and dependent (¢ ) parameters. The EWMA
statistic is defined as

O, =round (Agyy, - X, + (1= Ay ) O,y) (16)

where, O, = round(A/(1-a)) and A, € (0,1] is the
smoothing parameter. We considered (X,,0,) as

statistics that are plotted simultaneously on a C-chart
and a EWMA chart.

4. PERFORMANCES OF THE PROPOSED CHANGE
POINT ESTIMATORS

In this section, the performance of the proposed
estimators for rate and dependence parameters is
investigated by a Monte Carlo simulation when a linear
trend change is occurred. MATLAB software® is used
for comparison study through 5000 simulation runs. At
first, we indicate a diagnostic plot to illustrate the use of
the change point estimator for the rate and the
dependence parameters. Then, we use a Monte Carlo
simulation to make performance comparisons between
the proposed estimatorsand received signal from the C-
EWMA control charts. Also, we consider a comparison
study between estimator of linear trend and step change
when a linear trend occurs in the process.

4. 1. Evaluating the Change Point Estimator of the
Rate Parameter We present a diagnostic plot
shown in Figure 1. The time is indicated by horizontal
axis and vertical axis represents the value of statistic
X (¢). We assume there is an INAR (1) process and

generate 50 observations with 3 =10 and a=0.7.

Then, the rate parameter changes to an out-of-control
status as 3, = A, + B,(i— 1) where the slope parameter is

equal to B, =02. The control chart signals at
observation 75. As shown in Figure 1, the maximum

MATLAB and Statistics Toolbox Release 2009b, The MathWorks,
Inc.

log-likelihood value is obtained at /=54. The result
shows that the change point estimator performs well in
estimating the real time of the change and estimates the
change point closer to real change point respect to the
signal time. To evaluate the performance of the
proposed estimators, we consider an INAR (1)
processes with parameters ¢ =0.1,0.4 and 0.7, 1=6,4
and 10. Table 1 shows the control limits used for
monitoring autocorrelated Poisson count processes
proposed by Weill [8]. The averages of change point
estimator for the linear trend and step change under
different values of dependence parameter and various
shifts of the rate parameter are indicated in Figure 2. As
shown in this figure when the shift size is small, the C-
EWMA control chart indicates a poor performance to
distinguish the signal. Furthermore, when the value of
the slope parameter increases, the estimator will provide
a more accurate and precise estimate of 7. Also, we
obtain that when a linear trend disturbance is occurred,
£, is more accurate than the 7.

The precision of the proposed estimators is
investigated by standard deviation and mean square
errors (MSE), when a linear trend disturbance occurs in
the process. The results in Table 2 show that in most
cases under linear trend disturbance, the mean square
errors of the linear trend estimator are less than the ones
for the step change point estimator. Also, the accuracy
of the two change point estimators significantly
improves by increasing the value of the slope parameter.

55m
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35

30

25
20| Change point estimate
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(2)

Q)

) N S — S
o 10 20 30 40 50 60 70 80
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Figure 1. (a) C control chart (b) EWMA control chart and the
change point estimator of the rate parameter ¢ =0.7,

B, =02, 2,=10



1025 A. Ashuri and A. Amiri / IJE TRANSACTIONS A: Basics Vol. 28, No. 7, (July 2015) 1021-1030

TABLE 1. Control limits of the C and EWMA control charts
(WeiB[8])

A=10
(24 AEWMA Ic uc le ue
0.1 0.1 2 21 9 14
0.4 0.1 5 29 14 21
0.7 0.05 18 50 30 39
A=6
0.1 0.75 0 15 4 13
0.4 0.1 1 19 8 14
0.7 0.1 8 34 14 25
A=4
0.1 0.25 0 11 3 8
0.4 0.75 0 15 1 13
0.7 0.1 4 24 10 18

-—- Signal
- Step change
—— Linear trend

B=25

change point

L 1 1
0.1 04 07 01 04 0.7
alpha
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45 |
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45 L :
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alpha

(©)
Figure 2. Average change point estimates for the rate
parameter (a) L =10, (b)A=6 ,and (c)1=4

4. 2. Evaluating the Change Point Estimator of the
Dependence Parameter = We generate observations
from the INAR (1) process with parameters & = 0.1, 0.4
and 0.7, and 2 =10, 6 and 4. To monitor the process, the
C-EWMA control chart is used. As shown in Table 1,
the control limits proposed by Weifl [8] is used for
monitoring autocorrelated Poisson count processes. The
results of simulation runs for the average of change
point estimates for the linear trend and step change
under different values of dependence parameter and
various shifts of the rate parameter are illustrated in
Figure 3. We conclude from this figure that under small
magnitudes of shift, the performance of the C-EWMA
control chart in detecting signal decreases significantly.
However, by increasing the value of slope parameter,
the proposed estimator estimates the real change point

A

more accurately and precisely. Also, the 7, outperforms

the 7 under different linear trend disturbances.

85 | S Signal
£ =001 Step change
80 | —— Linear trend
= THL
= B =003
E, 70 |-
Fae > B =005

60 -

55

@) |
45
10 4 6 10
4 s 10 4 larsbda
(a)
85
i '
80> ,8:001: 1 e Signal
T D Step change
==1h ! 1+ —— Linear trend
= ] —0.03 :
g 7ot i £ ’ i
= : i =005
S esp N H :
R o — H
60| et e
' '
55 : :
e i :
50 \\://’,\/_‘\
i '
v
®,, i HE— :
3 10 4 6 o 4 s 19
lambaa
8OF
. '
80l ‘pzo.ol: 8 e Signal
: 0 == Step change
75: : £ —0.03 E = Linear trend
! H
‘g 70} % H
% ol 1 ; S5 = 0.05
g A H
S ' -
6ot 1 B
: '
ssf ' :
—  d I H i
sot e T~ T e
(C)Aﬁ H :
+ & 10 10 4 ° e

Figure 3. Average of change point estimates for the
dependence parameter (a) ¢ =0.1, (b)a=04 and , (c)
a=0.7
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TABLE 2. Precision criteria including standard error and
MSE of the proposed rate parameter estimator in comparison
with the step estimator with & =0.1,0.4,0.7 under different
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TABLE 3. Precision criteria including standard error and
MSE of the proposed rate parameter estimator in comparison
with the step estimator with ¢ =0.1, @ = 0.4 and 0.7 under

shifts different shifts
a A=10 a A=10
7. o1 oa s 55 By 0.01 0.03 0.05
se(z) 0.250 011 0.06 0.05 se(7,) 0.2517 0.1622 0.1291
0.1 se(7.) 0197 010 006 005 0.1 sz, 01338~ 0.0518 — 0.0396
MSE(, ) 3406 65.6 17.1 10.8 MSE (7,,) 11.71 8.13 3.4830
MSE(; ) 3479 61.6 172 116 MSE (7 ) 36.00 13.83 3.8800
se(z, ) 0274 0155 0069 0054 se( ;) 0.1652 0.0921 0.0737
o se(7.) 0214 0123 0.068 0056 04 se(7,) 0.0674 0.0285 0.0197
: MSE(, ) 1231 53.02 11.05 7177 MSE (7,) 139.095 42.461 27911
MSEG;) 1502 4811 1228 8222 MSE(Z,) 39581 80.099 36045
se(7,) 0.245 0.11 0.05 0.03 se(7,) 0.1336 0.0896 0.0722
se(7,) 0.191 0.09 0.04 0.03 se(7,,) 0.0373 0.0168 0.0125
07 MSE ;) 305.8 66.4 13.4 9.5 07 MSE (7,) 92.167 43.680 31.086
MSE(; ) 4073 61.5 115 8.8 MSE(7 ) 161.831 32.114 15.034
a 1=6 A=6
se( ) 023 012 0.07 0.05 se(7,) 0.3143 0.2084 0.1789
se(7.) 0.18 0.10 0.07 0.06 o1 se(7,,) 0.1841 0.0706 0.0443
01 MSE(, ) 243.6 63.9 20.9 127 ' MSE (7,) 304.204 130.27 96.103
MSE( ;) 2445 57.6 20.1 17.4 MSE (7, ) 1080 199.64 83.537
se(7) 0.235 0.111 0.067 0.044 se(7,) 0.2649 0.1245 0.0696
se(7,) 0.179 0.090 0.05 0.048 se(7,) 0.1148 0.0448 0.0304
04 MSE(, ) 28.90 8.76 262 1.459 04 MSE (7,) 35.45 5.562 2.879
MSE(; ) 35.72 9.37 2.14 1.838 MSE (7 ) 108.6 12.808 9.596
se(z,) 0.212 0.11 0.06 0.050 se(7,) 0.1922 0.1726 0.1536
se(z) 0.168 0.09 0.05 0.043 se(7,,) 0.0487 0.0322 0.0248
0.7 0.7
MSE(; ) 219.6 53.7 10.3 10.1 MSE (7,) 158.84 65.8315 32.49
MSE(; ) 2529 51.2 12.1 7.9 MSE(7 ) 189.17 44.1650 20.67
a A=4 A=4
se(z,) 01243 01223 00808  0.0366 se(),) 0.360 0.238 0.1683
o se(7,) 01225 01137 00890  0.0829 ol se(z,,) 0.188 0.068 0.0461
‘ MSE(, ) 11.960 12,745 41117  2.8653 MSE (7,) 98.534 29.341 7.625
MSE(; ) 12869 12658 4911  5.5490 MSE(7 ) 333.901 41.444 8.413
se(z,) 02233 0.1049  0.050  0.0493 se(7,,) 0.249 0.138 0.121
04 se(£,) 0.1610  0.0939 0.061 0.0514 04 se(7,) 0.138 0.051 0.035
' MSE(,) 38517 11999 13523 13367 ' MSE(z,)  49.622 114.673 13.624
MSE(; ) 42253 12879 21303 1.5950 MSE(7 ) 178.097 31.92 15.956
se(z,) 0.2362  0.1318 0.061 0.0511 se(7,) 0.266 0.153 0.143
o se(z ) 0.1950  0.1015  0.0526  0.0510 o7 se(7,) 0.066 0.029 0.023
MSE(; ) 33409 10766  6.8707  4.1113 ' MSE (7,) 76.867 51.028 21.508
MSE(; ) 36.527 8.461 57630  4.1923 MSE(7, ) 125.838 36.709 7.858
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Finally, we use Monte Carlo simulation to evaluate
the precision of the proposed estimators through their
standard deviation and their mean square errors (MSE),
when a linear trend change occurs in the process. The
results are summarized in Table 3. We can conclude
from this table that the values of mean square errors
related to linear trend change point estimator are less
than the MSEs of the step change point estimator in
most cases. Also, the accuracy of two change point
estimators significantly improves by increasing the
value of the slope parameters.

Table 4 indicates percentage of the time, the
difference between the real and the estimated change
points falls within various intervals. Note that the first
and second rows in each cell show the precision of the
proposed and step estimators, respectively. The results
show that as the magnitude of the linear shift in the
process mean increases, the percentage of falling the
change point estimate in the specific interval from the
real change point decreases. It shows the proposed
estimator has more acceptable precision rather than the
step estimator. The same results are obtained for the rate
parameter and other values of dependence parameter
(not reported here).

5. A REAL CASE: IP COUNTS DATA

We use a real IP counts data that collected by the server
of the statistic Department University of Wurzburg [9].
This data collected on time interval of November and
December 2005, between 10 o'clock in the morning and
6 o'clock in the evening with 240 time series
observations. In this case, count data is defined as the
number of different users or IP addresses access the
server within period of length 2 min. If an INAR (1)
model is fitted on the data set, the parameters of the
model are estimated equal to oz =0.29 and 1 =091[11].
We adjusted ALR, equal to 273.67 by setting the
control limits of C and EWMA control charts equal to
lc=0, uc=5, le=1, and ue=4 through 10000 simulation
runs.

Finally, the proposed change point estimators are
used to find the real time of linear trend changes in the
parameters of the INAR(1) process. A linear trend
change occurs in the process at observation 241 with the
slope parameter B =03. EWMA control chart signals at

250th observation. The maximum log-likelihood value
is obtained at /=244 by using the rata parameter change
point estimator. Also, the step change point estimator
find the real time of a change at =248.

We also evaluate the performance of the change
point estimator under linear trend in dependence
parameter. A linear trend occurs in the process with the
slope parameter 3, = 0.05. As illustrated in Figure 5, the

EWMA control chart signals at 248th observation. The

maximum log-likelihood value is obtained at =242.
This value for the step change estimator is obtained at
t=247. The results show that the proposed estimators
estimate the real change points accurately and it confirm
that the model is applicable for real world applications
as well.

TABLE 4. Precision of the change point estimator for the
dependent parameter

a A=10
2
0.01 0.03 0.05
Au
~ 0.0023 0.0083 0.0063
pli-1|=

(0.0003)  (0.0003)  0.0007)
0.005 00183  0.0163

pﬁ—ﬂ<
(0.0004)  (0.0007)  (0.0017)
0.1 p‘f _ T‘ <2 0.009 0.0317 0.0260
0.0007  (0.001)  (0.0027)
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Figure 4. (a) C control chart (b) EWMA control chart and the
change point estimator for the rate parameter for I[P counts
data
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Figure 5. (a) C control chart (b) EWMA control chart and the
change point estimator for the dependence parameters for IP
counts data

6. CONCLUDING REMARKS

In this paper, a first-order integer-valued autoregressive
(INAR (1)) model was considered. We compared the
proposed estimators of linear trend with the
corresponding step change point estimators when a
linear trend occurs in the process. The results confirmed
the superiority of the proposed estimators to estimate
the real time of linear trend changes in the process
parameters rather than the step change point estimators.
We also investigated the effect of autocorrelation
coefficient, the smoothing parameter of the EWMA
control chart and the rate parameter of the Poisson
distribution on the accuracy and precision of change
point estimators. The results showed that the proposed
estimators outperform the corresponding step change
point estimators under all situations. As future
researches, we suggest developing change point
estimators for autocorrelated geometric, and binomial
distributions under different shifts. Also, investigating
the effect of missing data on the performance change
point estimators developed in this research as well as
the other researches in the area of change point
estimation such as Keramatpour et al. [27] and
Fallahnezhad et al. [28] and proposing some remedial
methods based on Ashuri and Amiri [29] can be a
fruitful area for future research.

7. REFERENCES

1. Box, G.E. and Paniagua-Quinones, C., "Two charts: Not one:
“No process, except in artificial demonstrations by use of
random numbers, is steady and unwavering.” w. Edward deming
(1986)", Quality Engineering, Vol. 19, No. 2, (2007), 93-100.

2. Nishina, K. and Peng-Hsiung, W., "Performance of cusum
charts from the viewpoint of change-point estimation in the
presence of autocorrelation", Quality and Reliability
Engineering International, Vol. 12, No. 1, (1996), 3-8.

3. Timmer, D.H. and Pignatiello, J.J., "Change point estimates for
the parameters of an ar (1) process", Quality and Reliability
Engineering International, Vol. 19, No. 4, (2003), 355-369.

4. Picard, D., "Testing and estimating change-points in time
series", Advances in Applied Probability, (1985), 841-867.

5. Perry, M.B. and Pignatiello Jr, J.J., "Identifying the time of step
change in the mean of autocorrelated processes", Journal of
Applied Statistics, Vol. 37, No. 1, (2010), 119-136.

6.  Perry, M.B., "Identifying the time of polynomial drift in the
mean of autocorrelated processes", Quality and Reliability
Engineering International, Vol. 26, No. 5, (2010), 399-415.

7. Weil, C.H., "Fully observed inar (1) processes", Journal of
Applied Statistics, Vol. 39, No. 3, (2012), 581-598.

8. Weill, C.H., "Ewma monitoring of correlated processes of
poisson counts", Quality Technology & Quantitative
Management, Vol. 6, No. 2, (2009), 137-153.

9.  Wei, C.H., "Controlling correlated processes of poisson
counts", Quality and Reliability Engineering International,
Vol. 23, No. 6, (2007), 741-754.



1029

20.

21.

22.

23.

24.

25.

26.

27.

28.

A. Ashuri and A. Amiri / IJE TRANSACTIONS A: Basics Vol. 28, No. 7, (July 2015) 1021-1030

Al-Osh, M.A. and Alzaid, A.A., "First-order integer-valued
autoregressive (inar (1)) process", Journal of Time Series
Analysis, Vol. 8, No. 3, (1987), 261-275.

Jin-Guan, D. and Yuan, L., "The integer-valued autoregressive
(inar (p)) model", Journal of Time Series Analysis, Vol. 12,
No. 2, (1991), 129-142.

Yontay, P., Weif}, C.H., Testik, M.C. and Pelin Bayindir, Z., "A
two-sided cumulative sum chart for first-order integer-valued
autoregressive processes of poisson counts", Quality and
Reliability Engineering International, Vol. 29, No. 1, (2013),
33-42.

Andersson, J. and Karlis, D., "Treating missing values in inar (1)
models: An application to syndromic surveillance data", Journal
of Time Series Analysis, Vol. 31, No. 1, (2010), 12-19.

Yahav, 1. and Shmueli, G., "On generating multivariate poisson
data in management science applications", Applied Stochastic
Models in Business and Industry, Vol. 28, No. 1, (2012), 91-
102.

Morina, D., Puig, P., Rios, J., Vilella, A. and Trilla, A., "A
statistical model for hospital admissions caused by seasonal
diseases", Statistics in medicine, Vol. 30, No. 26, (2011), 3125-
3136.

Weifl, C.H., "Simultaneous confidence regions for the
parameters of a poisson inar (1) model", Statistical
Methodology, Vol. 8, No. 6, (2011), 517-527.

Asghari Torkamani, E., Niaki, S.T.A., Aminnayeri, M. and
Davoodi, M., "Estimating the change point of correlated poisson
count processes", Quality Engineering, Vol. 26, No. 2, (2014),
182-195.

Weil}, C.H., "Thinning operations for modeling time series of
counts—a survey", AStA Advances in Statistical Analysis, Vol.
92, No. 3, (2008), 319-341.

Steutel, F. and Van Harn, K., "Discrete analogues of self-
decomposability and stability", The Annals of Probability,
Vol., No., (1979), 893-899.

McKenzie, E., Some simple models for discrete variate time
series]. 1985, Wiley Online Library.

McKenzie, E., "Some arma models for dependent sequences of
poisson counts", Advances in Applied Probability, Vol., No.,
(1988), 822-835.

Brannas, K., Hellstrom, J. and Nordstrom, J., "A new approach
to modelling and forecasting monthly guest nights in hotels",
International Journal of Forecasting, Vol. 18, No. 1, (2002),
19-30.

Sprott, D.A., "Estimating the parameters of a convolution by
maximum likelihood", Journal of the American Statistical
Association, Vol. 78, No. 382, (1983), 457-460.

Jung, R.C., Ronning, G. and Tremayne, A.R., "Estimation in
conditional first order autoregression with discrete support”,
Statistical Papers, Vol. 46, No. 2, (2005), 195-224.

Rardin, R.L., "Optimization in operations research, Prentice Hall
New Jersey, Vol. 166, (1998).

Perry, M.B., Pignatiello, J.J. and Simpson, J.R., "Estimating the
change point of a poisson rate parameter with a linear trend
disturbance",  Quality = and  Reliability = Engineering
International, Vol. 22, No. 4, (2006), 371-384.

Keramatpour, M., Niaki, S., Khedmati, M. and Soleymanian,
M., "Monitoring and change point estimation of ar (1)
autocorrelated polynomial profiles", International Journal of
Engineering-Transactions C: Aspects, Vol. 26, No. 9, (2013),
933-942.

Fallahnezhad, M., Rasti, B. and Abooie, M., "Improving the
performance of bayesian estimation methods in estimations of
shift point and comparison with maximum likelihood estimation
approach", a a, Vol. 1, No. 2, (2013), 1-1.

29. A., A. and Amiri A., "Evaluating estimation methods of missing
data on a multivariate process capability index", International
Journal of Engineering-Transactions C: Aspects, Vol. 28, No.
1, (2014), 88-96.

APPENDIX A

DERIVATIONS RELATED TO NEWTONS METHOD
FOR THE RATE PARAMETER

For the rate parameter, we assume

S S A R € k1)l
=~ Ki(x,, —0)(x;,, —k)!

Jit-1

(A1)

then, the first derivative of the log likelihood function
with respect to the rate parameter is calculated as

oA, X) _
op

Also, the second derivative of the log likelihood
function is equal to

1 ST
ST =T +1-0)+ 2[7”‘]}. (A)

i=r+1

o4, |x) _URU-U}’

op; U? (A3)

Where

L o (ma) =D, + B- )
Y _Z;‘ K(x, —k—1l(x,_, —k)! (As)
and

p o a(=a)" =) (A + i)
Yn= kZO: K~k —2)l(x_, —)! : (As)
APPENDIX B

DERIVATIONS RELATED TO NEWTONS METHOD
FOR THE DEPENDENCE PARAMETER

The appendix presents computations of f'(x), f"(x) in

order to estimate the slope parameter in the newton's
method.
For the dependence parameter, we assume

P ) A i) P k)
k=0 K(x;, —k)(x,, =)

By

Jit-1

The first derivative of thelog likelihood function is
calculated as follows:
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Also, the second derivative of the log likelihood

function is

ey, t)x) ViV Vi
oB; v?

Where

(By)
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