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A B S T R A C T  
 

 

Resource constrained project scheduling problem (RCPSP) is mainly investigated with the objective of 
either minimizing project makespan or maximizing project net present value. However, when material 
planning plays a key role in a project, the existing models cannot help determining material ordering 
plans to minimize material costs. In this paper, the RCPSP incorporated with the material ordering 
problem is first formulated into a NP-hard optimization model. Then, two hybridized meta-heuristic 
algorithms are proposed to solve the integrated problem. In addition, statistical methods are employed 
to tune the parameters of both algorithms. Finally, computational results for a set of test problems 
taken from the project scheduling problem library (PSPLIB) are presented. 
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1. INTRODUCTION1 
 
Project scheduling plays a major part in project 
management. Indeed, the scheduling process amounts to 
deciding when the project activities will start and how 
they will use the available resources. Traditionally, 
project scheduling problem (PSP) and material ordering 
(MO) are considered independently, i.e., at first the 
resource profile of a project is obtained by finding a 
schedule for that project, and then the material ordering 
approaches are called to find an ordering plan. Trade-
offs between cost elements such as material ordering 
and holding, which are usually too complicated to be 
analytically derived, are not taken into account in this 
strategy. Therefore, it is not optimal in terms of project 
total cost. 

Aquilano and Smith-Daniels [1] and Smith-Daniels 
and Aquilano [2] firstly integrated the PSP and MO. 
Later, Smith-Daniels and Smith-Daniels [3], Dodin and 
Elimam [4], and Sajadieh et al. [5] considered the 
integrated model. Recently, Najafi et al. [6] introduced a 
                                                        
1*Corresponding Author’s Email: Niaki@Sharif.edu (S.T.A. Niaki) 

new mixed integer programming for PSMO model with 
no renewable resource based on the research of Sajadieh 
[5]. They proposed a hybrid meta-heuristic algorithm to 
solve the problem. The algorithm consists of two 
outside and inside searches where in one hand the 
outside search is a simulated annealing to determine the 
project schedule. On the other hand, the inside search, 
which is a genetic algorithm, recognizes the demand 
profiles of all nonrenewable resources produced from 
the outside search.  

In general, project scheduling aims to determine the 
demand for renewable resources and materials, which 
corresponds to activity duration as well. Thus, the order 
size can be recognized to adhere to the requirement at 
present. Hence, a schedule composed of available 
resource profiles and durations of all the activities, 
meantime, an ordering plan, which in turn contains 
order timing and order size, can be achieved as well. 
This shows that project scheduling and material 
ordering is actually performed simultaneously. While no 
resources of renewable type have been involved in the 
available project scheduling with material ordering 
(PSMO) models of literature so far, in this paper, we 
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extend the PSMO model to include problems in which 
the resources are constrained. The resource constrained 
PSMO integrates renewable resource constrained 
project scheduling (RCPS) and material ordering (MO) 
which has been investigated infrequently in the 
literature. Although this consideration certainly causes 
more complexities to the model, a closer to reality 
situation is investigated. Furthermore, two powerful 
hybridized meta-heuristics with two novel optimization 
loops are proposed to solve the problem. 

 
 

2. PROBLEM FORMULATION 
 
The objective considered in this paper involves 
scheduling of project activities such that not only the 
makespan of the project does not exceed a given due 
date, but also the total material holding and ordering 
cost is minimized, while the resource constraints and the 
precedence relation of activities are satisfied. Each 
activity is assumed to be carried out without 
interruption, zero-lag finish-to-start precedence 
constraints are imposed on the sequencing of the 
activities, and that the network is of the activity on node 
type with no loop. Furthermore, activities have one 
mode of executions. The renewable resource and non-
renewable resource (material) usage over an activity is 
taken to be uniform. No material is available at the 
starting point of the project.Therefore,at the beginning 
of a typical period the model must determine the order 
quantity of the material. The lead-time is assumed 
inappreciable and the capacity of the warehouse is 
considered unlimited. However, it is assumed that any 
order quantity replenishment is instantaneous. Activity 

0 1 1( , , ..., )i n∈ + has duration id and uses ilr units of 
renewable resource 1( , ..., )l L∈ and ifu units of 
nonrenewable resource (material) 1( , ..., )f F∈ per 
period. For each renewable resource type l , the 
availability lR is constant throughout the project 
horizon. fA and fH  are the ordering and holding costs 
of material f , respectively, and DD stands forthe 
deadline of the project. iS is the starting time of activity 
i , where iES and iLS are earliest starting time and 
latest starting time of activity i , respectively. 
Meanwhile *M  denote a relatively large positive 
number. To formulate the problem, the decision 
variables are defined as: 

itX : A binary variable where it is one if activity i is 
started in per period t and zero otherwise 

ftλ :  A binary variable where it is one if material type 
1( , ..., )f F∈  is ordered in per period t and zero 

otherwise 

ftQ : The ordered quantity of material type f in period 
t  

ftI : The inventory level of material type f  in period t  
Then, the problem at hand is formulated as follows: 

1

1 1 1 0

 
F DD F DD

f ft f ft
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Min Z H I A λ
−

= = = =

= × + ×∑ ∑ ∑∑  (1) 

Subject to: 

1 2i j jS S d ; j P ( i ) , i , ,..., n− ≥ ∀ ∈ =  (2) 

1 1
012 12

i

i i

Min(t ,LS )n

il iw l
i w Max(t d ,ES )

r X R ; t , , ,...,DD , l , ,...,L
= = − +

≤ = =∑ ∑  (3) 

{ }

{ }

1
1 1

1 2 1 2

i

i i

min t ,LSn

ft f ( t ) ft if iw
i w max t d ,ES

I I Q u X

for   f , ,..., F  ,    t , ,...,DD

−
= = − +

= + − ×

= =

∑ ∑  (4) 

0 0;fI = 1 2, , ...,f F=  (5) 

1 1 2
i

i

LS

it
t ES

X  ;    i , ...., n
=

= =∑  (6) 

1 2;   
n

n

LS

nt
t ES

t X DD  i , ,...,n
=

× ≤ =∑  (7) 

1 2
i

i

LS

i it
t ES

S t X  ;    i , , ...,n
=

= × =∑  (8) 

1 2 1 2* ; , , ...,  ;  , , ...,ft ftQ M f F t DDλ≤ × = =  (9) 

{ }0 1 1, ; , ..., ;  , ...,it i iX i n t ES LS∈ = =  (10) 

{ }0 1 1 2 1 2, ; , , ..., ;  , , ...,ft f F t DDλ ∈ = =  (11) 

0 1 2 1 2  ;   , , ...,   ;  , , ...,ftQ f F t DD≥ = =  (12) 

0 1 2 1 2  ;   , , ...,   ;  , , ...,ftI f F t DD≥ = =  (13) 

The objective function (1) minimizes the total 
material holding and ordering costs. Constraint (2) 
enforces the precedence relations between activities. 
Inequality (3) enforces sufficiency to the provided 
resource units to implement the schedule. Constraints 
(4) and (5) are balance equations to monitor the 
inventory level of the resources over the project 
duration. Equation (6) states that every activity must be 
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started only once. Constraint (7) ensures that the project 
ends by the latest allowable completion time. Equation 
(8) states how the starting time of activities is defined. 
SinceInequality (9) states the ordering time of any 
material 0>ftQ , then 1=ftλ  can be used to prevent it 
to become unbounded. Sets of constraints (10)-(13) 
show the domain of the variables. 

According to Blazewicz et al. [7], the RCPSP is an 
NP-hard problem. Consequently, the resource 
constrained project scheduling integrated with material 
ordering (RCPSMO) is also NP-hard. Therefore, in the 
next section two hybrid meta-heuristics including 
genetic algorithm (GA) and simulated annealing (SA) 
are proposed to solve it. 

 
 

3. HYBRID META-HEURISTICS 
 

The problem at hand consists of two parts; project 
scheduling (PS) and material ordering (MO). Here, two 
different meta-heuristic algorithms are first proposed for 
PS part and one meta-heuristic for MO part. Then, these 
algorithms are combined to solve the integrated 
problem. The hybrid algorithms include an approach to 
find schedules of activities and another approach to find 
the best ordering plan for materials whose demand 
profiles have been determined by the schedule. To 
search the PS, a genetic algorithm (GA) and a simulated 
annealing (SA) are designed and for ordering materials, 
a genetic algorithm (GA) is developed. The details of 
these methods are defined in the following sections. 
 
3. 1. Revealing the Project Schedule        The 
structure of a solution in both algorithms is similar. An 
initial n dimensional solution vectors X are randomly 
generated on the interval [0,1] based on the random key 
representation introduced by Kolisch and Hartmann [8], 
where the position of each place in the vector X  
corresponds to the non-dummy activity

1 2;  ( , , ..., )iX i n∈ . Then, the activity sequence 
representation method is used to make an activity 
sequence list (AL) from the vector X [8]. The 
precedence-feasible activity list contains ALs that are 
feasible. To transform an activity list into a feasible 
project scheduling 1 2( , , ..., )i nS S S S∈ , the serial 
schedule generation scheme (SGS) investigated by 
Kolisch and Hartmann [8] is employed in this research 
to obtain precedence and resource feasible schedule for 
activity lists. For example, a small project with 6 non 
dummy activities and two renewable and non-renewable 
resources is shown in Figure 1.  

To create an initial solution for the network above (a 
project schedule), the previously mentioned steps are 
employed. Figure 2 depicts these steps. 
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Figure 1. Activity network with eight activities 
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Figure 2. Create a project schedule as an initial solution 

 
 

When the starting and finishing time of the activities 
are revealed as a project schedule, resource usage for 
both renewable and nonrenewable resources are 
calculated. In order to evaluate the objective function of 
each solution, the order quantities of the materials ( ftQ ) 
are needed. For this purpose, a genetic algorithm as an 
inside searcher is applied to determine the best ordering 
policy. In each period, iX and ftQ are produced and the 
procedure iterates until the algorithm is unable to find a 
better solution. As a result, the schedule with the best 
ordering policy is obtained.  
 
3. 1. 1. Simulated Annealing          Simulated 
annealing (SA) basically starts with a generation of an 
initial solution (one point). In the proposed hybrid SA of 
this research, the algorithm starts with generation of 
several initial solutions (multiple points) in an attempt 
to find a better solution. For this purpose, solution X is 
randomly generated on the interval [0,1] according to 
steps mentioned above. In order to reduce the 
probability of getting trapped in local optima, SA 
accepts moves to inferior neighboring solution under the 
control of randomized scheme on iX . Two 
neighborhood search structures (NS) are employed in 
this research. In the first type of NS, one cell of a current 
vector solution is chosen randomly and is exchanged 
with the value of a randomly generated number between 
[0,1]. The second mechanism deletes a value of a cell 
selected randomly from a position and inserts it in a new 
randomly selected position. Note that, the proposed SA 
algorithm uses the above two NS with an equal 
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probability of 0.5. The cooling scheme is one of the 
most important parameter in SA algorithms. In this 
research, a linear cooling scheme is applied to decrease 
the temperature. To stop SA, we use a fixed number of 
iterations. The NS's are illustrated in Figure 3. 
 
3. 1. 2. Genetic Algorithm        In the developed GA of 
this research, the chromosomes of a population are 
generated using uniformly distributed random numbers 
in the interval [0,1]. The coded chromosome is 
deciphered to the vector 1 2( , , ..., )i nS S S S∈ . Prior to the 
crossover operation, pairs of individuals (parents) must 
be first selected. The tournament selection strategy is 
used for this action. For combining the parents, the 
arithmetic crossover operator is employed on X  to 
create feasible offspring. To demonstrate this type of 
crossover operation, consider two individuals selected 
for a crossover operation. Then, each gene of the two 
created children is obtained as:  

( ) ( )
( )

1 1 2

2 1 2

1
1 ( )

t t

t t

CH P P
CH P P

α α

α α

 = + −
 = − +

 (14) 

Note that this type of crossover operator assures feasible 
solution. The mutation operator of the GA works similar 
to the first neighborhood structure mentioned in the SA 
algorithm. The process of generating new chromosome 
and searching for better solutions continues until a fixed 
number of generations are made. 
 
3. 2. Determining the Material Ordering       Until 
recently, determining the time-varying material ordering 
lot sizing problem has been solved using the well 
known dynamic programming, Wagner and Whitin, and 
Silver-Meal algorithms. In general, finding an optimal 
solution or even sub-optimal solutions is not an easy 
task when the size of problem is relatively large. 
Consequently, meta-heuristic algorithms especially 
genetic algorithm is used to solve the intractable time-
varying material ordering lot sizing problems in a 
reasonable time in this research. This GA is combined 
with both outer SA and GA to incorporate two hybrid 
algorithms. In order to determine the objective function, 
order quantities of the materials in each period must be 
depicted. In inside GA, a binary representation based on 
the order quantities of the materials in each period is 
employed to generate a chromosome (Shittu [9]).  

Each individual chromosome considered as a 
matrix, Q, which represents the order quantity ( ftQ ) of 
material type f in period t . Obviously, the length of a 
matrix is equal to time periods 1, ...,t DD= .To create the 
chromosome, each row of matrix Q is generated 
randomly based on ‘0’ and ‘1’. Thus, the chromosome 
representation is illustrated in Figure 4. 
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Figure 3. The schematic neighborhood structures 
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Figure 4. Chromosome representation 
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Figure 5. Two point crossover operator 

 
 

In this figure, ‘0’ indicates no order in the 
corresponding period and ‘1’ shows an order in the 
corresponding period for its demand, where the 
demands of all subsequent periods are ‘0’s. Meanwhile 
we assume that the first gene in all rows of a 
chromosome is ‘1’. Afterward, the coded chromosome 
must be transformed to the order quantity of material in 
each period based on the value of the gene in the 
demand profile. It should be noted that the total order 
quantity of each row in the chromosome (materials) 
must be equal to the total demand profile of 
corresponding material type f during the project. 
Thereafter, the initial population is generated randomly 
according to this chromosome structure. In order to 
evaluate a chromosome, the fitness value obtained by 
the objective function given in (1) is calculated. Then, 
the roulette wheel approach is utilized to select parents. 
Next, the two-point crossover operation is performed on 
the selected parents with probability of crP  to produce 
two new feasible individuals (children). With these 
crossovers, the value of each gene in the offspring 
coincides with the value of this gene in one of the 
parents.  
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Figure 6. The mutation representation 

 
 
 
To do this, two points of the parent are randomly 

selected { }1 2 2 3 1, , , ...,r r DD∈ −  where 1 2r r< . The 
parent, defined by them, is exchanged to generate two 
off-springs according to Figure 5.  

Likewise, for increasing diversification of 
chromosome, mutation operator is introduced with the 
probability of mutP . For this purpose, two integer 
random numbers are generated in the intervals[1, ]F  to 
select a material ( )R  and 2[ , ]DD  to mutate the genes 
of the child ( )r  respectively. Consequently, if the value 
of gene( )r is equal to ‘0’, it is changed into ‘1’, 
otherwise, it remains "0". Figure 6 depicts this process. 
The best individual of the last generation is the best 
ordering policy of the GA for a given activity schedule. 
This process continues until a certain number of 
iterations is performed. 
 
 
4. EXPERIMENTAL RESULTS 
 
4. 1. Comparison with an Exact Solver       A set of 
360 instances including 10, 20 and 30 non-dummy 
activities with three renewable and nonrenewable 
resources are generated by PROGEN generator 
software. The instances are solved by the well-known 
CPLEX software as well by the hybrid algorithms of 
this research. During CPLEX execution, the time is 
limited to 900 seconds, i.e. if CPLEX cannot find the 
optimal solution in 900 seconds, the algorithm is 
stopped. The proposed hybrid algorithms are first 
compared with the CPLEX software in number of 
instances in which the algorithms or CPLEX could find 
a solution (#S). Thereafter, the relative deviation (GAP) 
from the optimal solution extracted from CPLEX is used 
as a criterion for comparison. GAP is defined as: 

sult

sult

CPLEX
CPLEXGAP

Re

ReResultAlgorithm −
=  (15) 

Table 1 illustrates the outcomes of the comparison. 
As observed, the CPLEX solver is unable to find the 
global optimum solution when the problem dimension 
increases. This confirms the NP-hardness of the 
problem. Moreover, the average GAP reveals that, when 

the number of activities, resources, and materials 
increases, both the proposed SA-GA and GA-GA are 
able to find solutions that are close to the one obtained 
by the CPLEX solver. It can be inferred that the GAP 
index increases gradually when the number of activities 
and resources (renewable and material) increases. As 
seen, the average GAP given by GA-GA is smaller than 
the one obtained by SA-GA where there are more 
activities and resources. This indicates that GA-GA 
finds better and closer solutions to the optimal one. In 
terms of maximum GAP, similar outcomes are 
observed.  

 
4. 2. Performance Analysis        To evaluate the 
performance of each algorithm, 600 large-size problems 
are generated by the PROGEN software. The problems 
vary in the number of activities (N) within 30 to 120, in 
the number of renewable resources (R) including 1 to 3, 
and in the number of non-renewable resources (NR) 
ranging from 1 to 3. The duration of activity varies 
between [1, 10]. Moreover, to convert the problems to 
RCPSMO instances, holding and ordering costs are 
randomly generated from the interval [10; 200] and 
(500; 5000], respectively. To assess the efficiency of 
both algorithms in large-size problems, two criteria are 
applied as: 

100% Improve * BI BA

BI

Fitness Fitness
( )

Fitness
−

=  (16) 

2

2

2
1 1

11

( )
n n

i i n
i i

i
i

CV

Fitness Fitness n
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n
= =

=

=

 
−    

 −  

∑ ∑
∑

 
(17) 

In the first criterion, the best solution of the initial 
implementation ( BIfitness ) is compared with the best 
solution found by the algorithm ( BAfitness ) in a limited 
available computational time. The algorithm 
convergence variation is the second criterion, based on 
which the small values are preferred since they are 
indicative of better convergences after normalization of 
the objective functions. In this criterion, n shows the 
number of replications for each problem. Results in 
Table 2 indicate that the proposed GA-GA has better 
improvement percentages compared to the ones of SA-
GA. According to the results in this table, when the 
problem size and the number of materials are increased, 
the average and minimum percentage improvement of 
both algorithms increase. It is witnessed that the average 
improvement resulted from GA-GA, 24.92%, is a bit 
greater than that of SA-GA, 22.42%. In addition, the 
minimum improvement of SA-GA, 4.12%, is smaller 
than GA-GA. It means that the proposed GA-GA 
outperforms SA-GA.  
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TABLE 1. The results obtained to compare the algorithms 

N R NR 
 #S  Average of (GAP)  Maximum of (GAP) 
 SA-GA GA-GA CPLEX  SA-GA GA-GA  SA-GA GA-GA 

10 1 1  30 30 30  0.05 0.04  0.09 0.08 
1 2  30 30 28  0.06 0.05  0.10 0.10 
2 2  30 30 24  0.07 0.07  0.14 0.13 
2 3  30 30 20  0.09 0.09  0.16 0.15 

20 1 1  30 30 22  0.13 0.13  0.26 0.23 
1 2  30 30 19  0.15 0.14  0.28 0.26 
2 2  30 30 16  0.17 0.15  0.33 0.30 
2 3  30 30 12  0.19 0.18  0.36 0.32 

30 1 1  30 30 15  0.23 0.21  0.41 0.36 
1 2  30 30 13  0.26 0.24  0.45 0.39 
2 2  30 30 7  0.28 0.26  0.49 0.42 
2 3  30 30 3  0.30 0.27  0.58 0.48 

 
 

TABLE 2. The computational results of the large-sized problems 

N R NR No. of Instance Time Limit (s) 
 Average Improvement (%)   Min Improvement (%)  (CV)2 

 GA-GA SA-GA  GA-GA SA-GA  GA-GA SA-GA 
30 3 1 50 90  16.97 12.91  3.21 3.18  0.116 0.121 

2 2 50 90  19.70 17.41  7.09 7.09  0.042 0.044 
1 3 50 90  34.67 23.30  10.46 8.78  0.029 0.033 

60 3 1 50 120  16.94 15.89  3.88 3.08  0.042 0.048 
2 2 50 120  20.95 20.83  4.19 3.86  0.028 0.030 
1 3 50 120  27.97 21.11  6.15 4.91  0.020 0.023 

90 3 1 50 150  24.02 23.88  3.60 2.91  0.037 0.043 
2 2 50 150  26.78 25.46  4.68 3.54  0.030 0.031 
1 3 50 150  30.77 28.11  5.58 4.54  0.021 0.025 

120 3 1 50 180  23.90 25.85  2.12 1.42  0.040 0.044 
2 2 50 180  27.57 26.72  3.14 2.93  0.016 0.020 
1 3 50 180  28.74 27.58  3.81 3.17  0.011 0.014 

Average  24.92 22.42  4.83 4.12  ---- ---- 
 
 
 

Figure 7. Convergence of objective value 
 
 

Based on (CV)2 outcomes, when the problem size (both 
activities and materials) increases, the convergence 

variation of both algorithm is gradually reduced. As 
seen, the convergence of hybrid GA in all instances is 
better than the hybrid SA algorithm. The convergence of 
each algorithm are illustrate in Figure 7. 

 
 

5. CONCLUSIONS 
 
In this research, a class of project-scheduling problems 
called resource-constrained project scheduling integrated 
with material ordering was considered.  While no 
resources of renewable type has been used in the 
available PSMO models of literature so far, in this 
paper, we extended the PSMO model to include 
problems in which the resources are renewable and 
constrained. The problem was first formulated into a 
mixed integer-programming model. Since the model 
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was strongly NP-hard, two hybrid meta-heuristic 
approaches of hybrid genetic algorithm (GA-GA) and 
hybrid simulated annealing (SA-GA) were developed to 
solve it. Both algorithms consist of an outside and an 
inside search engine. The outside search engine is either 
a simulated annealing, or a genetic algorithm to 
determine the project schedule. The inside search engine 
that is a genetic algorithm recognizes the demand 
profiles of all materials produced from the outside 
search engine. To evaluate and compare the 
performances of the two algorithms, various test 
problems of different sizes were generated by the 
PROGEN software, where they were modified to fit the 
model. Comparison of results of the two meta-heuristics 
revealed better performances of GA-GA compared to 
SA-GA. 
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  هچکید
  

اساساً به بررسی یکی از اهداف کمینه سازي زمان اتمام پروژه یا بیشینه  (RCPSP) بندي پروژه با محدودیت منابعمسئله زمان
ژه را هاي موجود زمانی که برنامه ریزي مواد نقشی کلیدي در یک پرومدل ،بنابراین. دازدپرسازي ارزش خالص فعلی پروژه می

با  (RCPSP) در این مقاله، ابتدا مسئله.نیستندها سازي هزینهکمینهبراي دهی مواد د، قادر به تعیین برنامه سفارشنکنایفا می
سپس، دو الگوریتم فراابتکاري ترکیبی براي . شود میترکیب  NP-Hard سازيالب یک مدل بهینهقدهی مواد در مسئله سفارش

کارگرفته ه تنظیم پارامترهاي هر دو الگوریتم ببراي هاي آماري نیز علاوه براین، روش. شود مینهاد حل مسئله ادغام شده پیش
 بندي پروژهخانه مسائل زماني از مسائل نمونه، برگرفته از کتابا در نهایت، نتایج محاسباتی براي مجموعه. شوند می

(PSPLIB)  شوند میارائه. 
doi: 10.5829/idosi.ije.2015.28.06c.10 

  


