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A B S T R A C T  
 

 

In this paper, the problem of unsteady mixed convection boundary layer flow of a viscous 
incompressible fluid near the stagnation-point on a vertical permeable plate with both cases of 
prescribed wall temperature and prescribed wall heat flux is investigated numerically. Here, both 
assisting and opposing buoyancy forces are considered and studied. The nonlinear coupled partial 
differential equations governing the flow, thermal and concentration fields are first transformed into a 
set of nonlinear coupled ordinary differential equations by a set of suitable similarity transformations. 
The resulting system of coupled nonlinear ordinary differential equations is solved numerically using 
the Runge–Kutta scheme coupled with a conventional shooting procedure.Numerical results are 
obtained for the skin-friction coefficient, Nusselt number and Sherwood number as well as for the 
velocity, temperature and concentration profiles for some values of the governing parameters, namely, 
the unsteadiness parameter A, permeability parameter f0 and mixed convection parameter λ. It is found 
that dual solutions exist for both assisting and opposing flows, and the range of the mixed convection 
parameter for which the solution exists, increases with suction and unsteadiness parameters. 
 

doi: 10.5829/idosi.ije.2015.28.05b.16 
 

NOMENCLATURE   
A  Unsteadiness parameter ,x y Velocity component 
C  Fluid concentration ,u v Cartesian coordinates 

fC  Skin friction coefficient Greek Symbols 
D  Mass diffusivity α  Thermal diffusivity 
f  Dimensionless stream function β  Volumetric thermal expansion coefficient 
g  Acceleration due to gravity γ  Constant 
Gr  Grashof number ( )φ η  Dimensionless concentration 
k  Thermal conductivity of the fluid η  Similarity variable 
L  Charactristic length ( )θ η  Dimensionless temperature 
N  Ratio of buoyancy forces λ  Buoyancy or mixed convection parameter 

xNu  Local Nusselt number ν  Kinematic viscosity 
Pr  Prandtl number ρ  Fluid density 
P  Pressure τ  Shear stress 

wq  Surface heat flux ψ  Stream function 
Re  Reynolds number Subscripts 
Sc  Schmidt number w  Condition at the surface of the plate 

xSh  Local Sherwood number ∞ Ambient condition 

ws  Surface mass flux e  Inviscid flow 
T  Fluid temperature SubscriptsGas 

eu  Inviscid flow velocity ' Differentiation with respect toη  
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1. INTRODUCTION 
 

Progress in modern technologies has played an 
important role in interesting researchers in fluid flows 
which include interaction between various phenomena. 
Free convection is caused by the temperature difference 
of fluid at different locations and forced convection is 
the flow of heat due to some external applied forces. 
The characteristics of a mixed convection boundary 
layer depend on the velocity of the forced stream, the 
thermal and concentration conditions at the wall. 

It is worth mentioning that mixed convection flows 
have many applications; hence, they have great 
importance. They can be observed in natural 
phenomena and engineering devises such as 
atmospheric boundary layer flows, heat exchangers, 
solar collectors, nuclear reactors and electronic 
equipment, and so on. In such cases, finding similar 
solutions may be directly usable in technical 
applications or may provide a standard tool for 
calculating approximately more complex non-similar 
cases.  

The basic studies on similarity solution for the 
thermal boundary layer over flat surfaces are presented 
in heat transfer text books, namely, Bejan [1] and 
Incropera et al. [2]. Bejan [1] has suggested a similarity 
temperature variable which reduced the energy equation 
to an ordinary differential equation. Also, various 
studies [3, 4] have presented different variations of 
temperature and heat flux at the plate. Risbeck et al.[5] 
studied mixed convection flow over a horizontal flat 
plate using a single mixed convection parameter that 
covers the entire regime of mixed convection. Datta et 
al. [6] obtained non-similar solution of a steady mixed 
convection flow over horizontal flat plate with surface 
mass transfer. Ishak et al. [7] have studied the mixed 
convection boundary layer flow past an isothermal 
horizontal plate. Rahmannezhad et al. [8] investigated 
the effects of magnetic field on mixed convection flow, 
and the effects of Reynolds number and fluid 
temperature were studied by Rostamzadeh et al. [9].  

The existence of non-unique (dual) similarity 
solutions in mixed convection boundary layer flow has 
been pointed out by many researchers, for example, de 
Hoog et al. [10], Afzal and Hussain [11], Ramachandran 
et al. [12], Ridha [13]and Lok et al. [14]. Ramachandran 
et al. [12]studied the steady laminar mixed convection 
in two-dimensional stagnation flows around vertical 
surfaces by considering both cases of an arbitrary wall 
temperature and arbitrary surface heat flux variations. 
They found that a reverse flow develops in the 
buoyancy opposing flow region, and dual solutions are 
found to exist for a certain range of the buoyancy 
parameter. Dual solutions were found to exist by these 
authors only for the opposing flow case. The existence 
of dual solutions for both assisting and opposing flows 

was reported by Ridha [13] when he reconsidered the 
problems of mixed convection flow over a horizontal 
surface, mixed convection flow over a vertical surface, 
and axisymmetric mixed convection flow which has 
been investigated previously by some authors. Ridha 
[13] pointed out that the failure of the previous 
investigations to report the existence of dual solutions 
only for the assisting flow is perhaps due to the 
misleading behavior of the non-dimensional 
temperature used in the similarity formulation. Later, 
Deswita et al. [15]extended the work by Ridha [13] to 
obtain dual similarity solutions for the case when the 
horizontal surface of the wedge is permeable (porous). 

It may be noted that, on a different approach, Merrill 
et al. [16] have performed a stability analysis for 
different steady state solutions of mixed convection 
flow on a vertical surface near the stagnation point. 
They have reported the existence of dual solutions 
where the upper branch are linearly stable while those 
of lower branch are linearly unstable. It is worthy to 
mention that Ridha [13], Ishak et al. [17, 18] and 
Subhashini et al. [19, 20] have reported in their 
respective studies that the upper branch solution are 
most physically relevant solutions whereas the lower 
branch solution seem to deprive physical significance or 
may have realistic meaning in different situations. 
According to the studies by Merkin[21], Harris et al. 
[22], and Postelnicu and Pop [23], the first solutions are 
physically realizable, while the second solutions are not. 

Unsteady boundary layer plays important roles in 
many engineering problems like start-up process and 
periodic fluid motion. Unsteady boundary layer has 
different behavior due to extra time-dependent terms, 
which will influence the fluid motion pattern and the 
boundary layer separation [24]. Some typical examples 
of unsteady boundary layers in the history of fluid 
mechanics are the Rayleigh problem and Stokes 
oscillating plate [25, 26]. Yang [27] investigated the 
unsteady boundary layer for a stagnation flow involving 
the starting up of a cylinder. Following the pioneer 
work by Yang [27] the problem was extended to oblique 
stagnation-point flow by Wang [28]. Rahimi and Jalali 
[29] studied unsteady free convection from a sphere, 
and Jabari Moghadam and Baradaran Rahimi [30] 
studied time-dependent behavior of flow between two 
rotating spheres. Also, Haghighi and Rahimi [31] 
investigated the effects of unsteadiness on axisymmetric 
stagnation-point flow and heat transfer. Recently, the 
boundary layers of an unsteady stagnation-point flow in 
a nanofluid was considered by Bachok et al. [32] and 
found dual solutions for negative values of the 
unsteadiness parameters. 

It may be remarked that many of earlier studies did 
not include the effect of mass diffusion. However, if the 
body surface and the free stream fluid temperature 
differ, not only energy will be transferred to the flow 
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but also density difference exists. When heat and mass 
diffusion occurs simultaneously, it leads to a complex 
fluid motion called double diffusive convection.In 
practice, double diffusive convection may appear in 
wide range of scientific fields such as oceanography, 
astrophysics, geology, biology, chemical processes, etc. 
This fact motivates the authors to investigate the 
combined effects of thermal and mass diffusion on 
mixed convection flow. 

Recently, Rohni et al. [33] have studied the unsteady 
mixed convection boundary-layer flow near the two-
dimensional stagnation point on a vertical permeable 
surface embedded in a fluid-saturated porous medium 
with suction and temperature slip effect. Their results 
show that multiple solution exist for a certain range of 
governing parameters. The aim of the present paper is to 
study the simultaneous influence of unsteady double 
diffusive mixed convection flow near stagnation-point 
on a vertical permeable surface.  

 
 

2. MATHEMATICAL FORMULATION 
 

Consider a two-dimensional laminar viscous and 
incompressible stagnation-point flow of an unsteady 
flow with a velocity of the outer or inviscid flow of the 
form ue(x,t) = U∞(x/L)(1–γt)–1, where γ is a positive 
constant. We select a coordinate frame in which x-axis 
is extending along the surface, while the y-axis is 
measured normal to the surface of the plate and is 
positive in the direction from the surface to the fluid. 
Both cases of prescribed wall temperature (case A) and 
prescribed wall heat flux (case B) are considered and 
studied. The plate is maintained at a temperature Tw(x,t) 
for case A (see Figure 1) and it is heated by a heat flux 
qw(x,t) for case B (Figure 2). Also, the concentration 
near the wall is Cw(x,t). 

Variations in temperature and concentration of fluid 
make buoyancy forces. In order to relate the density 
changes to the above parameters (temperature and 
concentration) and couple them to the flow field, 
Boussinesq approximation is used for representing fluid 
properties. Under these assumptions and boundary layer 
approximations, the system of equations which models 
the problem under consideration, is given by: 

u v
0

x y

∂ ∂
+ =

∂ ∂
 (1) 

2

2

*

u u u 1 p u
u v g ( T T )

t x y x y

g ( C C )

∞

∞

∂ ∂ ∂ ∂ ∂
+ + = − + ν + β −
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∞

+ β −

 
(2) 

2
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(5) 

Here u and v are the velocity components along the x 
and y axes, respectively, T and C the fluid temperature 
and fluid concentration, respectively, α the thermal 
diffusivity, D the mass diffusivity, β and β*volumetric 
coefficient of thermal expansion and  coefficient of 
expansion for concentration, respectively, and g the 
acceleration due to gravity. Further, Vw(x,t) is the 
surface mass flux, where Vw(x,t)<0 corresponds to 
velocity suction and Vw(x,t)>0 corresponds to velocity 
blowing or injection, respectively. 

By employing momentum equation in direction of 
y-axis and Bernoulli's equation, in free stream, we have 

p
0

y

∂
=

∂
 (6) 

u udp1 p 1 dp 1 e eue
x dx dx t x

∂ ∂∂ ∞− = − = − = +
ρ ∂ ρ ρ ∂ ∂∞ ∞ ∞

 (7) 

Using Equation (7), Equation (2)can be written as: 

2u uu u u ue eu v ue 2t x y t x y
*g (T T ) g (C C )

∂ ∂∂ ∂ ∂ ∂
+ + = + + ν +
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β − + β −∞ ∞

 (8) 

In order to obtain similarity solutions, ue(x,t), Tw(x,t), 
qw(x,t) and Cw(x,t) are assigned in the following form: 

( )

( )

( )

( )

x 1
u x, t Ue

L 1 t

22
x 1
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5/21/22
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= + ∆∞
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(9) 

where, U∞ and γ are constants, k is thermal 
conductivity, L a characteristic length, ΔT and ΔC 
denote scale temperature and scale concentration, 
respectively. For both cases, the assisting flow (ΔT>0) 
occurs if the upper half of the plate is heated while the 
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lower half of the plate is cooled. In this case, the flows 
near the heated and cooled plates tend to move upward 
and downward, respectively. Therefore, this behavior 
acts to assist the flow field. The opposing flow (ΔT<0) 
occurs if the upper part of the plate is cooled while its 
lower part is heated. We now introduce the following 
similarity transformations: 

( ) ( ) ( )

( ) ( )

( ) ( )

1/2 1/2
U U L x

y, f
L 1 t 1 t L

2
x

T T T
L 1 t

2
x

C C C
L 1 t

ν∞ ∞η = ψ = η
ν − γ − γ

− = ∆ θ η∞
− γ

− = ∆ φ η∞
− γ

     
     

    

 
 
 

 
 
 

 
(10) 

where, ψ is the stream function defined as u=∂ψ/∂y and 
v= – ∂ψ/∂x, so as to identically satisfy Equation (1); and 
the velocity components u and v are obtained as: 

( ) ( ) ( )x 1
u U 1 t f u (x, t)fe

L

−
′ ′= − γ η = η∞

 
 
 

 (11) 

( ) ( )
1/2

U
v f

L 1 t

ν∞= − η
− γ

 
 
 

 (12) 

where, primes denote differentiation with respect to η. 
Therefore, in order that similarity solutions of Equations 
(1-5) exist, we take: 

( )

1/2
U

V (t) fw 0
L 1 t

ν∞= −
− γ

 
 
 

 (13) 

where the dimensionless constant f0 determines the 
transpiration rate, with f0> 0 for suction, f0 < 0 for 
injection and f0 = 0 for an impermeable surface. 
Employing the similarity transformations (10), 
Equations (3), (4) and (8) reduce to the following 
nonlinear ordinary differential equations: 

( )2f ff f 1 A 1 f f N 0
2

η
′′′ ′′ ′ ′ ′′+ − + + − − + λ θ + φ =
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1
f 2f A 2 0

Pr 2

η
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 (15) 

1
f 2f A 2 0

Sc 2

η
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 (16)
 

subject to the transformed boundary conditions: 

f (0) f , f (0) 0, (0) 1, (0) 10

f ( ) 1, ( ) 0, ( ) 0 (for case A)

f (0) f , f (0) 0, (0) 1, (0) 10
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′= = θ = φ =

′ ∞ → θ ∞ → φ ∞ →

′ ′= = θ = − φ =

′ ∞ → θ ∞ → φ ∞ →

 (17) 

Where, A is the unsteadiness parameter, Pr = ν/α is the 

Prandtl number, Sc = ν/D is the Schmidt number, λ is 
the buoyancy or mixed convection parameter and the 
ration of buoyancy forces N are given by: 

( ) ( ) ( )

*L Gr Gr
A , , N5/ 2U GrRe

3 * 3 U Lg TL g CL*Gr , Gr , Re2 22 2 1 t1 t 1 t

γ
= λ = =

∞

β∆ β ∆ ∞= = =
ν − γν − γ ν − γ

 
(18) 

with Gr and Gr* being the Grashof numbers and Re is 
the Reynolds number. It should be noticed that λ> 0 for 
assisting flow, λ< 0 for opposing flow and λ = 0 for 
forced convection flow.The physical quantities of 
interest are the skin friction coefficient Cf, the local 
Nusselt number Nux and the local Sherwood number 
Shx, which are defined by: 

( ) ( )
xq xsw w wC , Nu , Shx xf 2 k T T D C Cu w we

τ
= = =

− −ρ ∞ ∞

 (19) 

where, the wall shear stress τw, the wall heat flux qw and 
the wall mass flux sw are given by: 

u T C
, q k , s Dw w w
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∂ ∂ ∂
τ = µ = − = −

∂ ∂ ∂= = =

     
     
     

 (20) 
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(21) 

with μ and D being  the dynamic viscosity and mass 
diffusivity, respectively. Using the similarity variables 
(10), we obtain: 

( )
( ) ( )

1/2Re C f (0)x f

1/2 1/2Re Nu (0), Re Sh (0)x x x x

′′=

− −′ ′= −θ = −φ

 (22) 

where, Rex = ue(x,t) x / ν is the local Reynolds number. 
 
 

3. RESULTS AND DISCUSSIONS 
 

The nonlinear ordinary differential Equations (14-16) 
subject to the boundary conditions (17) have been 
solved numerically for different values of the governing 
parameters A, f0, λ, Pr and Sc using fourth order 
Runge–Kutta scheme coupled with a conventional 
shooting procedure. The values of the dimensionless 
skin friction coefficient f"(0), local Sherwood number –
φ'(0) and local Nusselt number –θ'(0) (for case A) and 
dimensionless wall temperature θ(0) (for case B) 
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obtained and compared with previously reported cases. 
This comparison is shown in Table 1. It is seen that the 
present values of (0)f ′′ are in very good agreement 
with the results obtained by Ramachandran et al. [12], 
Lok et al. [14] and Ishak et al. [34].  Therefore, it canbe 
concluded that the developed code can be used with 
great confidence to study the problem discussed in this 

paper. Also, the values of f"(0), –φ'(0) and –θ'(0) (for 
case A) and θ(0) (for case B) are presented in Tables 2-
4 for some particular cases, respectively. The results 
show that increasing in unsteadiness parameter and 
suction parameter increase the dimensionless skin 
friction coefficient, dimensionless Sherwood and 
Nusselt numbers in first solution for case A.  

 
 

  
(a) Assisting flow (b) Opposing flow 

Figure 1. Physical model of two-dimensional stagnation point flow on a vertical surface for prescribed wall temperature case. 
 
 

 
 

(a) Assisting flow (b) Opposing flow 

Figure 2. Physical model of two-dimensional stagnation point flow on a vertical surface for prescribed wall heat flux case. 
 
 

  
(a) Assisting flow (b) Opposing flow 

Figure 3.Velocity profiles f '(η) for different unsteadiness parameter A when Pr = 0.7, Sc=1.0, N=0.2 (case A) 
 
 

  
(a) Assisting flow (b) Opposing flow 

Figure 4.Temperature profiles θ(η) for different unsteadiness parameter A when Pr = 0.7, Sc=1.0, N=0.2 (case A) 
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(a) Assisting flow (b) Opposing flow 

Figure 5.Concentration profiles φ(η) for different unsteadiness parameter A when Pr = 0.7, Sc=1.0, N=0.2 (case A). 
 
 

TABLE 1. Values of f"(0) for various values of Pr when A=0, N=0 and f0=0(case A). 
  Ramachandran et al. [12]  Lok et al. [14]  Ishak et al. [19]  Present results 
Pr  1λ = −   1λ =   1λ = −   1λ =   1λ = −   1λ =   1λ = −   1λ =  
0.7  0.6917  1.7063  0.691693  1.706376  0.6917  1.7063  0.6917  1.7063 
7  0.9235  1.5179  0.923528  1.517952  0.9235  1.5179  0.9235  1.5179 
20  1.0031  1.4485  1.003158  1.448520  1.0031  1.4485  1.0031  1.4485 
40  1.0459  1.4101  1.045989  1.410094  1.0459  1.4101  1.0459  1.4101 
60  1.0677  1.3903  1.067703  1.390311  1.0677  1.3903  1.0677  1.3903 
80  1.0817  1.3774  1.081719  1.377429  1.0817  1.3774  1.0817  1.3774 
100  1.0918  1.3680  1.091840  1.368070  1.0918  1.3680  1.0918  1.3680 

 
 

TABLE 2. Values of f"(0) for various values of A, f0 and λ when, Pr = 0.7 and N=0.2. 
1λ = −   1λ =  

f0 A Second solution  First solution  Second solution  First solution 
Case B  Case A Case B  Case A Case B  Case A Case B  Case A 
-0.3677  -0.4467  0.3746  0.6372  -0.3166  1.2009  1.7789  1.7472 0 0 
-0.5930  -0.3653  0.5533  0.6922  -0.2213  1.3521  1.7700  1.7608  0.1 
0.7329  -0.2841  0.6723  0.7437  -0.1205  1.4013  1.7649  1.7749  0.2 

                 
-  -0.2383  -  0.3322  -0.2215  1.2214  1.6280  1.4895 -.5 0 

-1.1523  -0.8124  1.2884  0.9919  -0.8233  0.8426  1.9870  2.0380 .5  
 
 

TABLE 3. Values of –φ'(0)for various values of A, f0 and λ when, Pr = 0.7 and N=0.2. 
1λ = −   1λ =  

f0 A Second solution  First solution  Second solution  First solution 
Case B  Case A Case B  Case A Case B  Case A Case B  Case A 
0.4792  -0.6073  0.7814  0.8490  -3.2253  0.9027  1.0639  1.0589 0 0 
0.4373  -0.3883  0.9073  0.9380  -2.5782  0.9919  1.1252  1.1238  0.1 
0.4252  -0.2312  1.0068  1.0208  -0.5512  1.0582  1.1852  1.1866  0.2 

-  -0.2002  -  0.5127  -2.1233  0.6853  0.8093  0.7852 -.5 0 
0.3925  -1.5918  1.2709  1.2216  -4.2568  1.2135  1.3721  1.3786 .5  

 
 

TABLE 4. Values of –θ'(0) (case A) and θ(0) (case B) for various values of A, f0 and λ when, Pr = 0.7 and N=0.2. 
1λ = −   1λ =  

f0 A Second solution  First solution  Second solution  First solution 
Case B  Case A Case B  Case A Case B  Case A Case B  Case A 
2.2240  -0.2550  1.4411  0.7497  -1.1604  1.1851  1.0772  0.9241 0 0 
2.4269  -0.1465  1.2573  0.8209  -0.9134  1.1665  1.0229  0.9765  0.1 
2.5256  -0.0522  1.1418  0.8875  -0.7513  1.1234  0.9746  1.0273  0.2 

                 
-  -0.0944  -  0.4939  -0.9642  0.8400  1.3422  0.7246 -.5 0 

3.2312  -0.5207  0.9438  1.0187  -1.2241  1.7331  0.8743  1.1495 .5  
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It is also evident from these Tables that the 

dimensionless skin friction coefficient and the 
dimensionless Sherwood number increase while the 
dimensionless wall temperature decreases when the 
suction parameter increases. 

Figures 3, 4 and 5 respectively show the effects of 
unsteadiness parameter A on velocity, temperature and 
concentration profiles for Pr = 0.7, Sc=1.0, N=0.2 and 
f0=0 for case A. These figures show that the 
unsteadiness increases the velocity profiles while 
decreases the temperature and concentration profiles for 
first solutions. Also, it is seen from these figures that, 
increasing the unsteadiness parameter increases the 
velocity, thermal and concentration boundary layer 
thicknesses for second solutions. The velocity gradient 
at the wall is positive for both solutions range in the 
assisting flow; besides it is negative for second solution 
in the opposing flow case. Again, from this observation 
we can see that the temperature profiles are negatives 
for the second solutions in assisting flow case, away 
from the wall (η=0). As discussed by Ridha [13], those 
solutions for which θ(η) < 0 for any η have no physical 
sense. This can be explained by using the definition of 
the dimensionless temperature θ(η) given in 10, that 
requires Tmust be less than the ambient temperature T∞ 
to give θ(η)<0, since Tw>T∞for assisting flow (heated 
plate).The variations of f"(0), –θ'(0) and –φ'(0) with 
buoyancy parameter λ  for Pr = 0.7, Sc=1.0, N=0.2, and 
some values of A are shown in Figures 6, 7 and 8 
respectively, all for f0=0. It is observed that the mixed 

convection parameter for which the solution exists 
increases with unsteadiness parameter and it is possible 
as well to obtain dual solutions for the similarity 
Equations (14-17)for assisting flow (λ>0), apart from 
those for opposing flow (λ<0) that have been reported 
by Ramachandran et al. [10] and Lok et al. [14]. For 
assisting flow (λ>0), there is a favorable pressure 
gradient due to the buoyancy forces, which results in the 
flow being accelerated, and consequently, there is a 
larger skin friction coefficient than in the non-buoyant 
case (λ=0) as well as the opposing flow case (λ<0). It is 
seen that the solution exists up to a critical value of λ 
(sayλc) with two solution branches for λ>λc, a saddle-
node bifurcation at λ=λc and no solutions for λ<λc. We 
expect the first solution to be stable, while the second 
solution not, since the first solution is the only solution 
for the case λ=0, and the existence of reverse flow 
region for the second solution. On the other hand, 
Figure 4-b illustrates for the second solution of the 
temperature the existence of the heat generation inside 
the boundary layer, which is not physically possible 
while the viscous dissipation effects has not been 
considered in the present physical model. Figures 9, 10 
and 11 illustrate the variations of f"(0), θ(0) and –φ'(0) 
with buoyancy parameter λ for Pr = 0.7, Sc=1.0, N=0.2 
and some values of A for case B. Similar to the figures 
of case A, unsteadiness parameter increases the range of 
mixed convection parameter for which the solution 
exists, and we can see that there are two solutions for 
λc<λ≠0while there is only one for λ=λc and λ=0. 

 

  
Figure 6. Variation of f"(0) with λ for different unsteadiness 
parameter A when N=0.2, Pr = 0.7, Sc=1.0 and case A. 
 

Figure 7. Variation of –θ'(0)with λ for different unsteadiness 
parameter A when N=0.2, Pr = 0.7, Sc=1.0 and case A. 
 

  
Figure 8. Variation of –φ'(0)with λ for different unsteadiness 
parameter A when N=0.2, Pr = 0.7, Sc=1.0 and case A. 

Figure 9. Variation of f"(0) with λ for different unsteadiness 
parameter A when N=0.2, Pr = 0.7, Sc=1.0 and case B. 
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Figure 10. Variation of θ(0)with λ for different unsteadiness 
parameter A when N=0.2, Pr = 0.7, Sc=1.0 and case B. 

Figure 11. Variation of –φ'(0)with λ for different unsteadiness 
parameter A when N=0.2, Pr = 0.7, Sc=1.0 and case B. 
 
 

  
(a) Assisting flow (b) Opposing flow 

Figure 12. Velocity profiles f '(η) for different unsteadiness parameter A when Pr = 0.7, Sc=1.0, N=0.2 (case B). 
 
 

  
(a) Assisting flow (b) Opposing flow 

Figure 13. Temperature profiles θ(η) for different unsteadiness parameter A when Pr = 0.7, Sc=1.0, N=0.2 (case B). 
 
 

  
(a) Assisting flow (b) Opposing flow 

Figure 14. Concentration profiles φ(η) for different unsteadiness parameter A when Pr = 0.7, Sc=1.0, N=0.2 (case B). 
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The effects of unsteadiness parameter A on the velocity, 
temperature and concentration profiles for case B are 
presented in Figures 12, 13 and 14, respectively. It is 
seen from these figures that the profiles for both first 
and second solutions satisfy the far field boundary 
conditions asymptotically, thus supporting the 
numerical results presented in Figures 9, 10 and 11. It 
can be seen that the profiles of the second solution have 
a much higher boundary layer thickness. In the first 
solutions, velocity profile for assisting flow and both of 
the temperature and concentration profiles for assisting 
and opposing flows decrease with the increasing of the 
unsteadiness parameter, while the velocity profile for 
opposing flow has an opposite trend. We also notice 
that the reversed flow near the wall is present for the 
second solutions in both of the assisting and opposing 
flows. 

 
 

4. CONCLUSION 
 

The problem of an unsteady mixed convection 
stagnation-point flow towards a permeable vertical plate 
with prescribed external flow immersed in an 
incompressible fluid was studied numerically. The 
governing partial differential equations were first 
transformed into a system of ordinary differential 
equations using a similarity transformation, before 
being solved numerically by a finite-difference scheme 
known as the fourth-order Runge–Kutta coupled with 
shooting technique. The effects of the unsteadiness 
parameter A, permeability parameter f0and the mixed 
convection parameter λ on the fluid flow and heat and 
mass transfer characteristics were discussed for two 
cases: prescribed surface temperature (case A) and 
prescribed surface heat flux (case B). The conclusions 
drawn from the study can be summarized as follows: 
• Dual solutions exist for both assisting and opposing 

flows.  
• For the assisting flow case, a solution could be 

obtained for all positive values ofλ, while for the 
opposing case, the solution terminated in a saddle-
node bifurcation at λ=λc (λc<0). 

• As unsteadiness increases, the temperature and 
concentration profiles decrease for both of the 
prescribed surface temperature and heat flux. 

As expected, the mixed convection parameter increases 
the momentum, heat and mass transfer 

• for the assisting flow case, while the opposite is true 
for the opposing case. 

• Suction at the wall increases the local skin friction 
parameter, the local heat and mass transfer 
parameters due to decreased thermal and 
concentration boundary layer thicknesses, while 
injection has an opposite effect. 

• Suction and unsteadiness widens the range ofλ for 

which the solution exists, while injection has 
opposite effects. 
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  چکیده
  

در این مقاله، مسئله جریان لایه مرزي جابجایی مرکب ناپایا از یک سیال تراکم ناپذیر لزج در مجاورت نقطه سکون بر 
روي یک صفحه نفوذپذیر عمودي به همراه هر دوحالت دماي دیواره و شار حرارتی دیواره مشخص به صورت عددي 

ابتدا معادلاتدیفرانسیل . اندبررسی شدهسو و مخالف در نظر گرفته شده و اینجا، نیروهاي شناوري هم در. بررسی شده است
هاي جریان، حرارتی و غلظت با استفاده از یک مجموعه تبدیلاتتشابهی مناسب به یک جزئی غیرخطی حاکم بر میدان

یفرانسیل معمولی حاصل به صورت عددي به کمک دستگاه معادلاتد. دستگاه معادلاتدیفرانسیل معمولی کوپل تبدیل شد
اي، عدد ناسلت نتایج عددي براي ضریب اصطکاك پوسته. کوتاي ترکیب شده با روش شوتینگ حل گردید-تکنیک رانگ

هاي هاي سرعت، دما و غلظت به ازاي چندین مقدار پارامترهاي به دست آمده به نامو عدد شروود و نیز براي پروفیل
مشخص گردید که حل دوگانه براي . به دست آمدλ و پارامتر جابجایی مرکب f0 ، پارامتر نفوذپذیريAایا بودن پارامتر ناپ

سو و مخالف وجود دارد و محدوده داراي پاسخ پارامتر جابجایی مرکب با مکش و پارامتر ناپایا افزایش هر دو جریان هم
  .یابدمی
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