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A B S T R A C T  
 

 

This paper deals with state estimation of micro tunable capacitor subjected to nonlinear electrostatic 
force. To this end, a nonlinear observer has been designed for state estimation of the structure.  
Necessary and sufficient conditions for construction of the observer are presented. Stability of the 
observer is checked using Lyapunov theorem. Observer design is based on converting differential 
equation of dynamic error from heterogeneous to homogenous.  Thereby, non-linear electrostatic term 
is presented as coefficient of error which is done using decomposition of Taylor expansion of non-
linear term. By stabilizing of homogenous differential equation, gains of observer can be obtained. 
Ability of the observer in state estimation of micro tunable capacitor is checked and related results are 
presented.  
 
 

doi: 10.5829/idosi.ije.2015.28.05b.15 
 

 
1. INTRODUCTION1 

 
Currently, micro-electro mechanical systems (MEMS) 
have shown remarkable popularity in the engineering 
industry because of their several advantages such as 
order of magnitude, smaller size, better performance, 
possibilities for batch fabrication, cost effective 
integration with electronic systems, and low power 
consumption [1]. Electrostatically actuated MEMs 
devices such as, micro actuators [2, 3], mems capacitive 
microphone [4, 5], sensors [6, 7], capacitive micro-plate 
[8, 9], micro tunable capacitor [10-12], and micro-
mirrors [13, 14] are broadly designed, fabricated, used 
and analyzed. With the fast growth of micro scale 
technology, necessity for state estimation of these 
devices will be taken into consideration for controlling, 
fault detecting and identifying structures.  

Observer-based approach is a suitable tool for state 
estimation. This attention is mainly due to the 
associated advantages of this method such as quick 
detection and possibility of on-line implementation; it 
also does not require excitation signal. Moreover, 
                                                        
1*Corresponding Author’s Email: hamedmobki@live.com (H. Mobki) 

control engineers are more familiar with the concepts of 
observer design [15]. 

The problem of designing observers for linear 
systems first introduced by Luenberger [16], then 
extended for nonlinear systems by Thau [17].  

Overall, there are two procedures for design of 
observer for nonlinear systems. The first one is with 
respect to nonlinear state transformation in which 
dynamic error of state is rendered to linear and observer 
is designed using linear techniques [18-22]. The second 
method does not need the transformation [23-26].  
Although various methods have been presented for 
design of non-linear observer, but use of linearized term 
or first order Taylor expansion of nonlinear function for 
observer design is admissible [27-29]. It may be due to 
simplicity of mentioned observers. However, if the 
operating region is too wide, the linearized model will 
deviate largely from the nonlinear model, particularly, if 
the system is operating away from the linearizing point 
[15]. For example, it is possible to point that filter 
extended Kalman filter is designed for minimization and 
error variance. Due to the fact that this filter takes 
advantage of using linearized form of non-linear term, 
in some cases this filter is not capable of correct state 
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estimation and estimated state is deviated from actual 
state of non-linear system [30].  
 Furthermore using this method is not always possible. 
For this reason in this paper a method is presented that 
obviates above-mentioned shortages.  

Presented method is based on using Taylor 
expansion of non-linear term in order to turn differential 
equation of dynamic error from heterogeneous to 
homogenous. Observer gains may be determined using 
stabilizing homogenous differential equation. In 
addition to having simplicity of linearized observers, 
this method has high accuracy due to the use of higher 
order terms of Taylor expansion.  
 
 
2. CONSTRUCTION OF TAYLOR OBSERVER FOR 
NONLINEAR SYSTEM WITH LINEAR OUTPUT:  
 
Consider the nonlinear system with form of: 

( )x Ax u f x
y C x

= +
=

&  
(1) 

where nx R∈  , ru R∈ and my R∈ are state, input and 
output vectors, respectively, A and C are known system 
matrices, ( )f x  represents the nonlinear function. 
For implementation of the Taylor observer the 
following conditions must be satisfied: 
1. Matrices A and C are observable. 
2. The nonlinear function ( )f x  is continuously 

differentiable. It satisfies also the Lipschitz 
condition at least locally with constant γ , i.e. 

ˆ ˆ( ) ( )f x f x x xγ− ≤ −  (2) 

. denotes norm symbol. 
 The following observer is proposed for state 
reconstruction of system (1).  
ˆ ˆ ˆ ˆ ˆ( ) ( , )( )
ˆ ˆ
x Ax uf x L x x y y
y C x

= + + −
=

&  
(3) 

where  x̂ and  ŷ  represent estimated state and output 
and ˆ( , )L x x  is the unknown gain of observer that must 
be obtained. For the sake of simplicity, in the rest of 
paper observer gain is denoted by L.  Defining the 
observer error as ˆe x x= − , we have: 

ˆ( ) ( ) ( )e A LC e u f x u f x= − + −&  (4) 

where e&  is the dynamic error. We want to find an 
observer gain, L, such that the observer error dynamics 
is asymptotically stable. Equation (4) is a heterogeneous 
differential equation. In this paper we attempt to turn 
aforementioned equation from heterogeneous condition 
to homogeneous. 

If we can find continuous function ˆ( , )F x x  in which
ˆ ˆ ˆ ˆ( ) ( ) ( ) ( , ) ( , )f x f x x x F x x eF x x− − =; . 

Then, Equation (4) can be presented as: 
ˆ( ( , ) )e A L C u F x x e= − +&  (5) 

This is a homogeneous equation. For asymptotic 
stability of dynamic error, coefficient matrix must be 
Hurwitz, or in another word matrix ˆ( , )A LC uF x x− +  
must be negative definite. Considering this point 
observer gains can be found.   

Function ˆ( , )F x x  can be obtained using Taylor 
expansion of  ˆ( ) ( )f x f x−  about 0ˆx x x= = . Taylor 
expansion of ( )f x and ˆ( )f x  are presented in the 
following equations: 

2 2
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0 0( ) ( )
ˆ

n n

n n

d f x d f x
dx dx

=  So ˆ( ) ( )f x f x− can be presented as: 

( ) ( )

0 0 0 0

1 1
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(8) 

Following equality can be proved using mathematic 
induction: 

( ) ( ) ( ) ( )
1

1
0 0 0ˆ ˆ ˆ( )

n
n n n k k

k o
x x x x x x x x x x

−
− −

=

− − − = − − −∑
 

(9) 

Considering that ˆ ˆ ˆ ˆ( ) ( ) ( ) ( , ) ( , )f x f x x x F x x eF x x− − =;  and 
regarding Equation (9), ˆ( , )F x x can be presented in the 
following form:  

( ) ( )
1

10
0 0

0 0

( )ˆ ˆ( , )
!

nN n
n k k

n
n k

d f xF x x x x x x
n dx

−
− −

= =

 
− − 

 
∑ ∑;  (10) 

where N is finite integer. Theorem 1. Consider the 
nonlinear system (1), the nonlinear observer (3) and the 
dynamic error of (4). The dynamic error (4) is 
asymptotically stable. If there exists a n m×  matrix L 
and a positive definite, symmetric n n×  matrix P  
such that: 

ˆ[ ( , )] 0P A LC uF x x− + <  (11) 

i.e.  it is uniformly negative-definite for all magnitude 
of  x  and x̂ . Proof: consider the following Lyopunov 
function candidate: 
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Tv e P e=  (12) 

Then, time derivative of v for system (4) is: 

{ }
{ }

2

ˆ2 [( ) ( ) ( )]

ˆ2 [ ( , )]

T

T

T

v e P e

v e P A LC e u f x u f x

v e P A LC u F x x e

=

= − + −

= − +

& &

&

&

 
(13) 

Since form Equation (11) ˆ[ ( , )] 0P A LC u F x x− + <  so 
0v <& . Therefore v is a Lyapunov function for system 

(4). Theorem 2. The dynamic error of the observer is 
(globally) asymptotically stable if eigenvalues of  

ˆ[ ( , )]A LC u F x x− +  have negative real part. 
Proof: theorem 2 can be proved easily, if matrix P set 
equal with identity matrix. 
 
 
3. NUMERICAL EXAMPLE  
 
In this section, ability of the Taylor observer is 
examined with implementing of it to state estimation of 
micro tunable capacitor subjected to nonlinear 
electrostatic force. To this end geometrical and 
mathematical model of the capacitor are presented.  
     
3.1. Model Description       Figure 1a, shows 
schematic view of a classic parallel plate micro 
capacitor. This device consists of a movable electrode 
suspended over a stationary conductor plate. As shown 
in this figure, the initial gap between the movable 
electrode and substrate is Go. Attractive electrostatic 
force due to applied bias voltage u pulls movable 
electrode down towards the stationary plate. Figure 1b 
shows top view of the movable electrode. This electrode 
is suspended by four supporting beams (two at each 
side). The area and thickness of movable electrode are S 
and h, respectively.  
 
 

 
a. Front view of capacitor 

 

 
b. Top view of capacitor  

Figure 1. Parallel plate tunable capacitor 

All supporting beams are identical and width, 
thickness, and length of each beam are b, h, and l, 
respectively. The equivalent stiffness of each beam is 

3
12EIk l=  , where E and  I  are Young’s modulus and 

cross section moment of inertia, respectively. The 
movable electrode is considered isotropic with density 
ρ .  

 

3. 2. Mathematical Modeling        The governing 
equation of motion in a micro capacitor such as the one 
in Figure 1a can be described as: 

2

2 eq elec
d z dzm c k z q
dt dt

+ + =  (14) 

where z, m, c, and eqk , are the deflection, mass, 
damping coefficient, and equivalent stiffness (keq=4k) of 
the movable electrode, respectively. Also, qelec  
represents electrostatic force. When the actuating 
voltage u is applied between the movable and stationary 
electrodes, the electrostatic force is computed using a 
standard parallel capacitance model, which yields [1]: 

2
0

2
02( )elec
Suq

G z
ε

=
−

 
(15) 

where 
21212

0 10854.8 −−−×= mNCε  is the permittivity of 
the vacuum within the gap. For convenience, Equation 
(14) can be rewritten in a non-dimensional form by 
defining the following parameters: 

0

zw
G

=  ,  t
t

τ ∗=  (16) 

whereτ is the dimensionless time, and e qt m k∗ = . 

Therefore, Equation (14) may be written as:  
2 2

2 2(1 )
d w dw uc w
d d w

α
τ τ

′+ + =
−

 
(17) 

where c′  and α are dimensionless damping and 
electrostatic coefficients, respectively, defined as: 

' :
eq

cc
t k∗=

   ,   
0

3
0

:
2 eq

S
k G
ε

α =
 

(18) 

 
3. 2. 1. Mathematical Model in State Space Form   
Consider 1x w=  and 2

dwx
dτ

= ; so Equation (17) is 

rewritten in the state space form as: 

[ ]

1 1 2

2 2 2
1

1

2

0
0 1
1 '

(1 )

1 0

x x
ux xc
x

x
y

x

α

  
      = +      − −       −  

   =    

&
&

 

(19) 
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Matrix 1 0
0 1

C
C A

   
=   

   

is full rank therefore system is 

observable. As it is stated in the literature [1], 
0 0 .6 6x≤ ≤  so term 

2

2(1 )
u
x

α
−

 is locally Lipschitz and 

terms 1 and 2 for observer design are fulfilled. 
In this paper, output is considered as the non-
dimensional deflection x1. Following the same 
procedure for construction of Taylor observer for 
nonlinear system (section 2), the structure of the direct 
observer may be rewritten as: 

1 1 12

2 222
1

0ˆ ˆ0 1
ˆ( )

ˆ ˆ1 '
ˆ(1 )

x x L
y yux Lcx x

α
         = + + −        − −         − 

&

&

 
(20) 

Regarding Equations (19) and (20), dynamic error can 
be obtained as: 

[ ]1 1 1 2 2

2 2 2 2 2
1 1

0
0 1

1 0
1 '

ˆ(1 ) (1 )

e L e
u ue L ec
x x

α α
 

         = − +         −− −         − − 

&
&

 
(21) 

Using the same procedure of section 2, above equation 
can be rewritten as: 

1 1 1 1
2

2 2 2 1 1 2

1 1 1
2

2 1 1 2 2

2 2 3 2
1 1 1 1 1 1 1 1 1 1 1 1

1 0 0
ˆ1 ( , ) 0

or

1
ˆ( , ) 1

where

ˆ ˆ ˆ ˆ ˆ ˆ( , ) 2 3( ) 4( ) 5(

e L e e
e L c e u F x x e

e L e
e u F x x L c e

F x x x x x xx x x x x xx

α

α

 −        
= +         − − −         

 −     
=      − − −      

= + + + + + + + +

&
&

&
&

2 3
1̂ ) ...x + + 

 (22) 

Following conditions guarantee the asymptotic stability 
of dynamic error: 

1

2
2 1 1 1

1 1

2
2 1 1 1 2

ˆ1 ( , )
or

ˆ1 ( , )

L c
L L c u F x x

L c
L L c u F x x

α

ε
α ε

> −
> − − +

= − +
= − − + +

 

(23) 

where ε1  and  ε2   are positive value. Regarding Equation 
(23), it is concluded that L2 is a variable gain and 
depends on actual and estimated states of system.  
 
 
4. SIMULATION RESULTS  
 
In this section, state estimation of the micro parallel 
plate capacitor subjected to nonlinear electrostatic force  
has been developed using Taylor and linearized 
observer and related results are compared to each other. 
Spatial properties of the capacitor are presented in Table 
1. The initial conditions of system and observer are 
[ ] [ ]1 2 0 0x x =  and [ ] [ ]1 2ˆ ˆ 0.1 0.1x x = , respectively. 

Figures 2 and 3 show state estimation results for 
applied step DC voltage 2V. Dynamic pull-in voltage 

for the capacitor is about 4.08 V. Since there is a 
considerable difference between applied and pull-in 
voltage, the effects of nonlinearity may be neglected. In 
this condition, linearized observer has acceptable 
capability in state estimation of the capacitor. With 
comparing Figures 2 and 3, it may be concluded that, 
there is no significant difference between results of 
linearized and Taylor observer for applied voltage 2V. 

Figures 4 and 5 illustrate estimation results for 
applied voltage 4V. As this voltage is close to dynamic 
pull-in voltage, the effects of nonlinear term increased 
and we can’t use linearized observer for state estimation 
of capacitor. As it is shown in Figure 4, linear observer 
can’t estimate the state and difference between actual 
state and estimated state is not decreased with respect to 
time. But as it is shown in Figure 5, Taylor observers 
guarantee the stability of dynamic error and estimate 
state of the capacitor with good accuracy even in the 
vicinity of dynamic pull-in voltage. 

In the following, sensitivity of observer to noise is 
discussed. It is assumed that applied voltage is 
contaminated by 10%±  noise. Figure 6 indicates state 
estimation of micro tunable capacitor for the applied 
voltage 2V. In this condition, applied voltage varies in 
the range1.8 2.2u≤ ≤ . As it is clear by this figure, 
observer has good ability for state estimation of micro 
structure. Presented result indicates observer is robust 
against noise. 

 
 
 

TABLE 1. Spatial properties of the micro parallel plate 
capacitor 
Properties Value 
Area of movable electrode (S) 400 400m mµ µ×  

Thickness of movable electrode 2 mµ  

 Thickness of beam 2 mµ  

Length of beams 200 mµ  

Width of beams 5 mµ  
Young's modulus of beams 1 6 9 G P a  
Go  

3 mµ  

Density 32 30 0 K g
m

 

 
 

Figure 2a. Actual and estimated values of the state for applied 
voltage 2 using linearized observer 
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Figure 2b. A detailed closed view of  Figure 2a 

 
 

 
Figure 3a. Actual and estimated values of the state for applied 
voltage 2 using Taylor observer 
 
 

 
Figure 3b. A detailed closed view of  Figure 3a 

 
 

 
Figure 4a. Actual and estimated values of the state for applied 
voltage 4 using linearized observer 

 
Figure 4b. A detailed closed view of  Figure 4a 

 
 

 
Figure 5a. Actual and estimated values of the state for applied 
voltage 4 using Taylor observer 
 
 

 
Figure 5b. A detailed closed view of  Figure 5a 

 
 

 
Figure 6a. Actual and estimated values of the state for applied 
voltage 2 contaminated by 10%±  noise using Taylor observer. 
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Figure 6b. A detailed closed view of Figure 6a 

 
 

5. CONCLUDING REMARKS 
 
In this paper, a new method is presented for observer 
design of Lipschitz non-linear system. Necessary and 
sufficient conditions for construction of the observer are 
presented. Stability of the observer is checked using 
Lyapunov theorem. The presented method is based on 
stabilizing of dynamic error. To this end, the non-linear 
term of dynamic error differential equation is presented 
as coefficient of error in order to change differential 
equation from heterogeneous to homogenous. It is done 
using decomposition of Taylor expansion of non-linear 
term to error term. With stabilization of homogenous 
equation, gains of observer are extracted. Simulating 
results for state estimation of micro capacitor are 
obtained and presented. Furthermore, the obtained 
results are compared to the results obtained by 
linearized observer. The results show that Taylor 
observer has good ability in the state estimation of 
micro capacitor, even in the vicinity of dynamic pull-in 
voltage. 
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  چکیده
  

  
- تنظیم که تحت تاثیر نیروي غیرخطی الکترواستاتیک قرار دارد؛ پرداخته میدر این مقاله به تخمین حالت میکروخازن قابل

شرایط لازم وکافی براي طراحی . شودخطیی براي تخمین حالت این ساختار طراحی میگر غیربدین منظور مشاهده. شود
ي گر بر پایهطراحی مشاهده. شودگر با استفاده از تئوري لیاپانوف بررسی میگر ارائه شده است و پایداري مشاهدههمشاهد

براي این تبدیل از بسط تیلور استفاده شده . باشدتبدیل معادله دیفرانسیل خطاي دینامیکی از حالت غیرهمگن به همگن می
با استفاده از پایدارسازي معادله دیفرانسیل . شودبصورت ضریبی از خطا ارائه میو ترم غیر خطی نیروي الکترواستاتیک 

گر در تخمین حالت میکروخازن سنجیده در نهایت توانایی مشاهده. توان تعیین کردگر را میي مشاهدههمگن، ضرایب بهره
 . شودشود و نتایج بدست آمده ارائه میمی
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