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A B S T R A C T  
 

 

Lateral spreading is one of the most destructive effects of liquefaction. Liquefaction is known as one of 
the major causes of ground failure related to earthquake. This phenomenon is likely to occur when the 
rate of earthquake-induced excess pore water pressure buildup exceeds the rate of drainage. Estimation 
of the hazard of lateral spreading requires characterization of subsurface conditions. In this study, 
neuro-fuzzy group method of data handling (NF-GMDH) is utilized for assessment of lateral 
displacement in both ground slope and free face conditions. The NF-GMDH approach is improved 
using particle swarm optimization (PSO) algorithm. The comprehensive database used for the 
development of the model was obtained from different earthquakes. Contributions of the variables 
influencing the lateral displacement of soil are evaluated through a sensitivity analysis. Performance of 
the NF-GMDH-PSO models are compared with those yielded using empirical equations in terms of 
error indicators parameters and the advantages of the proposed models over the conventional method 
are discussed. 
 

doi: 10.5829/idosi.ije.2015.28.05b.05 
 

 
1. INTRODUCTION1 
 
Lateral spreading, a phenomenon observed after 
occurrence of liquefaction, has caused extensive 
damage during many earthquakes (e.g., 1971 San 
Fernando, 1983 Nihonkai-Cihubu, and 1987 
Superstition Hills). Prediction of liquefaction and the 
resulting lateral displacement is a complex engineering 
problem due to disparate nature of soils and 
participation of a large number of factors involved. 
Because of the participation of a large number of 
factors, the determination of liquefaction-induced lateral 
displacement is a complex geotechnical engineering 
problem. Several methods have been developed to 
predict lateral ground displacements using analytical 
[1], laboratory [2, 3], and finite element methods [4]. 
However, these methods have not been able to estimate 
lateral displacements caused by liquefaction with a good 
accuracy. 

Assessment of liquefaction potential and 
determination of liquefaction induced lateral 
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displacement have attracted considerable attention of 
geotechnical earthquake engineers in the past three 
decades [5-10]. Empirical models based on case 
histories have remained the more popular methods. 
Several researchers [11-15] introduced empirical 
correlations and multi-linear regression models for the 
assessment of liquefaction induced lateral displacement. 

The progress of advanced computational methods 
for problems analysis has necessitated the accurate 
determination and estimation of lateral displacement. In 
the recent years, new aspects of modeling, optimization, 
and problem solving have been evolved in light of the 
pervasive development in computational software and 
hardware. These aspects of software engineering are 
referred to as soft computing based methods such as 
artificial intelligence which is a powerful tool for 
multivariate and nonlinear modeling. In case of 
complicated problems, experimentalists prefer these 
trial approaches rather than analytical optimization. A 
large number of researchers applied artificial 
intelligence (AI) models in the various fields of 
geotechnical engineering such as stress-strain modeling 
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of soil [16], slope stability [17], shallow foundations 
[18], and liquefaction [19].  

In the past years, the GMDH networks provided 
successful evaluations in various field of geotechnical 
engineering sciences such as prediction of the scour 
depth around hydraulic structures [20-22] and 
estimation of the Su-NSPT correlation [23]. Application 
of the GMDH networks yielded relatively precise 
estimations than those obtained using empirical 
equations based regressive models. The main concern of 
the GMDH network is to present analytical solutions for 
various problems within a feed forward network in form 
of quadratic polynomial whose weighting coefficients 
are obtained using regression method [20, 21, 23].  

In the recent decades, structure of the GMDH 
network has been improved based multi-stage fuzzy 
decision rule as neuro-fuzzy GMDH to obtained 
physical insights of problems with high degree of 
complexity. The NF-GMDH networks have been 
successfully applied to the different problems such as 
grinding characteristics, forecasting the unreliable 
mobile communication [24, 25]. The neuro-fuzzy 
GMDH has higher flexibility and lower complexity 
compared to the GMDH network. The Other advantages 
of the NF-GMDH models were presented in literatures 
[26-28]. 

In case of practical contributions, the NF-GMDH 
model in the field of geotechnical engineering has not 
been applied yet. In this study, a computer program is 
coded for the NF-GMDH network with MATLAB. 
Also, the PSO algorithm is applied in topology design 
of the NF-GMDH model for prediction of the lateral 
spread. The performance of the proposed NF-GMDH-
PSO is evaluated with empirical equations based 
regression models. 
 
 
2. DATA COLLECTION 
 
2. 1. In luencing Factors on Lateral Displacement   
Liquefaction occurrence and the resulting lateral 
displacement depend on the physical and mechanical 
characteristics of the soil layers in the site, the depth of 
the water table, the intensity and duration of the ground 
shaking, the distance from the source of the earthquake 
and the seismic attenuation properties of in situ soil. A 
thorough understanding of the factors affecting lateral 
ground displacement is needed in order to obtain 
accurate displacement predictions. Based on the 
previous researches e.g., [29], the most important 
factors that affect the lateral displacement due to 
liquefaction can be categorized as earthquake 
(earthquake magnitude, M; the nearest distance of site to 
the seismic energy source, R), topographical (slope of 
ground surface, S; free face ratio, W), and soil (the 
cumulative thickness of saturated cohesion-less layers 

with corrected blow counts of SPT (N1)60 less than 15, 
T15; the average fines content for granular materials 
included within T15, F15; the average mean size for 
granular materials within T15, D5015) factors. 

The difference between the two types of ground 
condition is reflected in the geometry of ground surface 
at the location of the displacement vectors. As shown in 
Figure 1, the free face case is characterized by the free 
face ratio (H/L), where H is the height of the free face 
(i.e., difference between the crest and toe elevations) 
and L is the horizontal distance from the toe of free face 
to the displacement vector. 
 
2. 2. Data Analysis         In this paper, the authors 
reanalyze those available earthquakes data and an 
attempt is made to propose a model liquefaction-
induced lateral ground displacement. A wide-range 
database was compiled from previously different 
earthquakes (1906 San Francisco, 1964 Anchorage, 
1964 Niigata, 1971 San Fernando, 1979 Imperial 
Valley, 1983 Nihonkai-Chubu, 1983 Borah Peak, 1987 
Superstition Hills, 1989 Loma Prieta, 1995 Hyogo-Ken 
Nanbu). 

The database was divided into two separate groups 
denoted as training and testing sets consisting 80 and 
20% of data, respectively. Once the training of the 
model has been successfully accomplished, the 
performance of the trained model is validated using the 
validation data, which have not been used as the part of 
model building process. The data division process was 
performed so that the main statistical parameters of the 
training and testing subsets (i.e., maximum, minimum, 
mean, and standard deviation) become close to each 
other. For this purpose, a trial selection procedure was 
carried out and the most possible consistent division 
was determined [30]. 

The case histories involving the lateral displacement 
towards a free face and those corresponding to gently 
sloping ground, have been analyzed separately. The 
lateral displacement database includes 426 case histories 
gathered from the literature. In the collected database, 
219 cases are related to sloping ground condition and 
the 207 cases involve free face ground. Descriptive 
statistics of these two groups variables used in the 
model development for both sloping ground and free 
face conditions are presented in Table 1. 

In the model development, the parameters M, R, W, 
S, T15, F15, and D5015 used as inputs parameters and 
lateral ground displacement (Dh) was the single output 
variable. 

 

 
Figure 1. Topography related to free face and sloping ground 
conditions 
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3. DESCRIPTIONS OF THE NF-GMDH MODEL 
 
The GMDH network is a learning machine based on the 
principle of heuristic self-organizing, proposed by 
Ivakhnenko in the 1960s [31]. Also, it is a series of 
operations of seeding, rearing, crossbreeding, selection 
and rejection of seeds correspond to the determination 
of the input variables, structure and parameters of 
model, and selection of model by principle of 
termination [32]. The other descriptions of the GMDH 
network were presented in literatures [20-22, 33] 

In this paper, a neuro-fuzzy GMDH model based 
PSO algorithm has been proposed for the lateral spread 
prediction. The structure of neuro-fuzzy GMDH is 
constructed automatically using heuristic self-organized 
algorithm [25, 26]. The neuro-fuzzy GMDH network is 
a very flexible algorithm and it can be hybridized easily 
by other iterative and evolutionary algorithms. 
Furthermore, a simplified fuzzy reasoning rule is 
utilized to improve the GMDH network as follows [34]: 

If 1x is 1kF  and 2x  is 2kF , then, output y  is kw

.Gaussian membership function is used in term of kjF
which is related to the kth fuzzy rules in the domain of 

the jth input values jx . 

)/)(exp()( 2
kjkjjjkj baxxF −−=  (1) 

where, kja  and kjb  are constant values for each rules. 
Also, the y  parameter is defined as output that has 
been expressed as follows: 
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where, kw  is real value for kth fuzzy rules [25, 34]. 
The NF-GMDH model is one of the adaptive 

learning networks that have hierarchical structure. In 
this model, each neuron has two input variables and one 
output. General configuration of the neuro-fuzzy 
GMDH with two fuzzy rules for each partial description 
(PD) was presented in Figure 2.  

Through Figure 2, output of each neuron in a layer is 
considered as the input variable in the next layer. The 
final output is calculated using the average of the 
outputs from the last layer. From Figure 2, it can be said 
that the inputs from the mth model and pth layer are the 
output variables of the (m-1)th and mth model in the (p-
1)th layer. The mathematical function for calculating 

pmy  is, 
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where, 
pm
kµ  and 

pm
kw are the kth Gaussian function and 

its corresponding weight parameter, respectively, that 
are related to the mth model in the pth layer. In addition, 

pm
ka and 

pm
kb are the Gaussian parameters that are 

utilized for the ith input variable from the mth model and 
pth layer. 
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Also, the final output is expressed using following 
function: The learning process of feed forward neuro-
fuzzy GMDH network is known as an iterative method 
to solve the complicated systems. In each iteration, the 
error parameter for the network can be obtained as 
follows: 

2)(
2
1 yyE −= ∗

 
(7) 

which 
∗y is the predicted value. 

 
 
4. DEVELOPMENT OF THE NEURO-FUZZY GMDH 
MODEL 
 
In this section, the NF-GMDH model is developed 
using PSO algorithm. The basic structure of NF-GMDH 
has been consisted of partial descriptions (neurons). As 
mentioned in previous section, grouped parameters in 
form of Gaussian variables and weights related to the 
fuzzy rule are unknown in each partial description (PD). 
PSO algorithm has been applied to optimized grouped-
unknown parameters in PDs [25, 26]. Performing the 
NF-GMDH and PSO models is a parallel action in each 
PD. Also, two fuzzy rules were used to model the 
neuro-fuzzy in each PD. The NF-GMDH-PSO model 
has four inputs and one output. Through modeling the 
NF-GMDH-PSO model for the lateral spread in free 
face, 45 partial descriptions (PDs) were produced in the 
first layer.  

 
 

 
Figure 2. General structure of the NF-GMDH 



M. Goharriz and S.M. Marandi/ IJE TRANSACTIONS B: Applications  Vol. 28, No. 5, (May  2015)  677-685                              680 
  

 

After that the second layer was generated using 45 
PDs from the first layer. This process could be 
continued until minimum error of training network is 
obtained [28]. In conclusion, the NF-GMDH-PSO 
network was modeled with three layers, 45 PDs, and 90 
fuzzy rules generated through an optimization process. 
In addition, for ground status, the proposed NF-GMDH-
PSO model has three layers with 30 PDs and 60 fuzzy 
rules. Figures 3 and 4 illustrated proposed structures of 
the NF-GMDH-PSO for prediction of lateral spread in 
free face and ground conditions, respectively. Table 2 
indicates the values of the PSO properties for predicting 
the lateral spread in both conditions. Furthermore, three 
of partial descriptions (PDs) generated in the first layer 
of the proposed NF-GMDH-PSO networks were 
expressed as follows: For free face conditions: 

]
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And, for ground status: the superscript and subscript of 
each parameter present the number of pertaining layer 
and partial description, respectively. 
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Figure 3. Proposed structure of the NF-GMDH-PSO model 
for prediction of the lateral spread in free face conditions 
 
 

 
Figure 4. Proposed structure of the NF-GMDH-PSO model 
for prediction of the lateral spread in sloping ground 
conditions 
 

 
TABLE 1. Descriptive Statistics of the Variables Used In the Models Development 

Model Variables All data Training stage Testing stage 
   Max.a Min.b Mean S.D.c Max. Min. Mean SD Max. Min. Mean SD 

Free face 

Inputs M 9.2 6.4 7.19 0.54 9.2 6.4 7.17 0.55 9.2 6.4 7.27 0.53 
 R (km) 100 0.5 18.12 16.03 100 0.5 17.38 15.5 95 0.5 21.13 19.1 
 W (%) 56.8 1.64 11.21 9.19 56.8 1.64 11.31 9.38 41.38 2.27 10.83 8.45 
 T15 (m) 16.7 0.2 8.36 4.87 16 0.2 8.2 4.87 16.7 0.5 9.02 4.86 
 F15 (%) 70 1 17.86 13.54 70 1 18.13 13.92 47 3 16.78 11.94 
 D5015 (mm) 1.98 0.04 0.36 0.42 1.98 0.04 0.37 0.44 1.98 0.07 0.33 0.33 

Output Dh (m) 10.16 0.01 251 2.29 10.16 0.01 2.61 2.36 8.39 0.01 2.1 1.95 

Sloping 
ground 

Inputs M 9.2 6.4 7.53 0.37 9.2 6.4 7.55 0.33 7.7 6.4 7.43 0.34 
 R (km) 100 0.2 24.26 12.62 100 0.2 24.91 13.1 65 0.2 21.69 10.35 
 S (%) 11 0.05 1.05 1.62 11 0.05 0.92 1.2 11 0.21 1.54 2.68 
 T15 (m) 19.7 0.01 6.49 3.94 19.7 0.01 6.63 3.94 11.6 0.7 5.95 3.95 
 F15 (%) 68 0 9.53 11.53 59 0 9 10.41 68 0 11.66 15.16 
 D5015 (mm) 12 0.06 0.44 1.06 10 0.06 0.38 0.74 12 0.06 0.7 1.84 

Output Dh (m) 3036 0.01 1.89 1.02 3.36 0.01 1.92 1.03 3.55 0.01 1.77 1.01 
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TABLE 2. Values of the PSO Properties for Predicting the 

hD  Parameter 
Parameter Range 
Omega 0.04-0.09 
Number of Particles 40 
Number of Variables 6 
Maximum Iteration 100 
error 0.00001 
C1 and C2 2.5 
Weighting Coefficients 0-1.5 
 
 
 
5. MODEL PERFORMANCE 
 
In order to examine the robustness of the proposed 
models, the coefficient of determination (R2), mean 
absolute error (MAE), and root mean squared error 
(RMSE) between the measured and predicted lateral 
displacement (Dh) were obtained according to the 
following equations: 
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where, N is the number of data, m
ix  and p

ix  is 
measured and predicted values, respectively. 
 
 
6. RESULTS 
 
Numerous runs were performed with various initial 
settings and the performance of the developed model 
was analyzed for each run. Consequently, the best 
model was selected according to statistical criteria such 
as R2, MAE and RMSE. In addition, a comprehensive 
parametric study was performed to monitor the behavior 
of each model versus variations of input variables. 
Proposed NF-GMDH based model that selected as most 
appropriate model, was constituted by six input 
parameters (M, R, W or S, T15, F15, D5015) and one 
output (Dh). 

Precision of the proposed model is examined by 
plotting the observed versus predicted values of the 
lateral displacement (Dh) for training, testing, and all 
data as shown in Figsures 5-10, respectively.  

The results shown in Figures 5–7 indicate reasonable 
good performance of NF-GMDH based model for 
assessment of lateral displacement of free face cases 

because the predicted values are satisfactorily 
distributed between two lines illustrating 0.6 and 1.4 
times of observed values. In the free face condition, the 
values of R2, MAE, and RMSE are equal to 0.916, 
0.462, and 0.664, respectively, for training sets (Figure 
5) and 0.897, 0.545, and 0.742, respectively, for testing 
sets (Figure 6). Figures 8-10 depicts good accuracy of 
NF-GMDH based model for predicting Dh of sloping 
ground cases because the predicted values are 
distributed between two lines illustrating 0.7 and 1.3 
times of observed values. Figures 8 and 9 illustrate the 
observed and predicted lateral displacement values of 
sloping ground cases for training (R2=0.907, 
MAE=0.252, RMSE=0.312) and testing (R2=0.892, 
MAE=0.270, RMSE=0.331), respectively. 

The values of statistical parameters of neuro-fuzzy 
group method of data handling (NF-GMDH) based 
model for training, testing, and all data set are presented 
in Table 3. 
 
 
 

 
Figure 5. Measured versus predicted values of Dh for free face 
cases - training data set 
 
 

 
Figure 6. Measured versus predicted values of Dh for free face 
cases - testing data set 
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Figure 7. Measured versus predicted values of Dh for free face 
cases - all data 
 

 
Figure 8. Measured versus predicted values of Dh for sloping 
ground cases - training data set 
 
 
TABLE 3. Target Statistical Parameters of NF-GMDH Based 
Models 

Group Performance 
 Free face Sloping ground 
 R2 MAE RMSE R2 MAE RMSE 
Training 0.916 0.462 0.664 0.907 0.252 0.312 
Testing 0.897 0.545 0.742 0.892 0.270 0.331 
All data 0.911 0.481 0.680 0.905 0.256 0.315 
 
 
7. MODELS ACCURACY 
 
Difference between the observed Dh to the values 
predicted by the NF-GMDH based model for free face 
conditions as relative error, with respect to the free face 
ratio, W, and T15 for all data set is shown in Figures 9 (a, 
b). As the scattering increases in this figure, the 
accuracy of the model consequently decreases. It is 
observed that the developed model can predict the Dh of 
free face cases with reasonable accuracy because the 
relative error is satisfactorily distributed between two 
lines illustrating ±1m relative error. 

Besides, Figures 10 (a, b) presented the relative 
errors values of NF-GMDH based models for prediction 
of lateral displacement (Dh) in sloping ground 
conditions with respect to variation of slope of ground 
surface, S, and T15. These figures indicate that the 

proposed model has high accuracy in evaluation of 
lateral displacement in both free face and sloping 
ground cases. 
 
 

 
Figure 9. Measured versus predicted values of Dh for sloping 
ground cases - testing data set 
 

 
Figure 10. Measured versus predicted values of Dh for sloping 
ground cases - all element tests data  
 

 

 
Figure 11. Variation of relative error of NF-GMDH based 
model for free face cases, a) with respect to W, b) with respect 
to T15 
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8. COMPARISON WITH PREVIOUS STUDIES 
 
Predictions of some previously published empirical 
relations for evaluation of lateral displacement are 
compared with the Dh values predicted by the proposed 
neuro-fuzzy group method of data handling (NF-
GMDH) model. Table 4 presents these equations. Due 
to complexities of the liquefaction-induced lateral 
displacement phenomenon, the aforementioned 
constitutive models as well as simplified analytical 
methods have failed to capture the full effect. Thus, 
empirical models based on case histories have remained 
as a popular method in the past decades. Bardet et al. 
(1999), Youd et al. (2002), and Kanibir (2003) 
introduced empirical correlations and multi-linear 
regression (MLR) models for the assessment of lateral 
displacement (Dh). Table 5 presents the values of R2, 
MAE, and RMSE for the proposed NF-GMDH based 
model, and the values estimated by empirical relations 
(Table 4) for lateral displacement (Dh) in free face and 
sloping ground cases. The results presented in this table 
confirm higher precision of the proposed NF-GMDH 
based model with respect to the previously equations. 

The developed NF-GMDH model is proposed as an 
applicable and more reliable tool for predicting 
liquefaction induced lateral displacement because it was 
developed using a comprehensive database of the 
previously documented results. 
 
 
9. SUMMARY AND CONCLUSIONS 
 
Determination of liquefaction induced lateral spreading 
is complex geotechnical engineering problem. A robust 
neuro-fuzzy group method of data handling (NF-

GMDH) based model was developed for assessment of 
liquefaction induced lateral displacement using a large 
data. A wide-range database of case histories consisting 
of 426 data of liquefaction-induced lateral displacement 
for free face and sloping ground conditions from ten 
earthquakes were compiled and analyzed. 

 
 
 

 

 
Figure 12. Variation of relative error of NF-GMDH based 
model for sloping ground cases, a) with respect to S, b) with 
respect to T15 
 

 
 

TABLE 4. Some Empirical Relations for Prediction of the Lateral Displacement 
Reference Subset Model 

Kanibir 
(2003) 

Free 
face 

( )( )
( )mmD

FTWRRMD M
k

1.050log84.0
02.05.019.0log15.1009.010log39.1log32.2571.20log

15

1515
64.589.0

+−
−++−+−+−= −

 

Sloping 
ground 

( )( ) 151515
64.589.0 50log89.022.0log6.0115.023.010001.0log44.852.7log DFTRRMD M

k −−++−+++−= −  

Youd et 
al. (2002) 

Free 
face 

( )( ) ( )
( )mmD

FTWRRMD M
k

1.050log795.0
100log413.3log540.0log592.0012.010log406.1532.1713.16log

15

1515
64.589.0

+−
−+++−+−+−= −  

Sloping 
ground 

( )( )
( ) ( )mmDF

TSRRMD M
k

1.050log795.0100log
413.3log540.0log338.0012.010log406.1532.1213.16log

1515

15
64.589.0

+−−
+++−+−+−= −

 

Bardet et 
al. (1999) 

Free 
face 

( ) ( )
15

1515

50091.1
100log826.4log3.0log685.0014.0log923.0248.1372.1701.0log

D
FTWRRMDk

−
−+++−−+−=+  

Sloping 
ground 

( ) ( )
15

1515

50705.0
100log287.4log619.0log318.0011.0log049.1988.0152.1401.0log

D
FTSRRMDk

−
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TABLE 5. Comparison between Statistical Parameters for NF-GMDH Based Model and Previous Models 
Model Performance 

 Free face Sloping ground 
 R2 MAE RMSE R2 MAE RMSE 

NF-GMDH model (this study) 0.911 0.481 0.680 0.905 0.256 0.315 
Kanibir (2003) 0.681 0.600 0.654 0.628 0.514 0.612 
Youd et al. (2002) 0.791 2.335 3.061 0.517 1.728 1.915 
Bardet et al. (1999) 0.698 0.832 1.257 0.574 0.509 0.667 
 
 

Based on data analysis and the previous researches 
liquefaction phenomena, the most important factors that 
affect the lateral displacement (Dh) due to liquefaction 
categorized as seismological (M, R), topographical (S, 
W), and geotechnical (T15, F15, D5015) parameters. 

It was shown that in both free face and sloping 
ground cases the NF-GMDH based models are able to 
learn, with a very high accuracy, the complex 
relationship between liquefaction and its contributing 
factors in the form of a function. They can also 
generalize the learning to provide predictions for new 
cases which not used in the construction of the model. 
The results obtained in this study indicate that the new 
NF-GMDH based model has ability to predict the lateral 
displacement with an acceptable degree of accuracy in 
both free face condition (R2 = 0.911, MAE = 0.481, 
RMSE = 0.680) and slping ground condition (R2 = 
0.905, MAE = 0.256, RMSE = 0.315) for displacements 
ranging from 0.01 to 10.16m, and 0.01 to 3.36m, 
respectively. A comparison between the performance of 
the developed model and some previously published 
relations has been done. It is clearly observed that the 
NF-GMDH based model yields a much better 
performance than the previous relations. The results of 
comparison confirm higher precision of the proposed 
model. This accuracy shows the superiority of the 
proposed NF-GMDH model over relations and models, 
and suggests that the model can be applied in 
engineering practice. 
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  چکید
  

  

گسترش جانبی نیز یکی از مخربترین .خسارتهاي ناشی از زلزله شناخته شده است نگرایی به عنوان یکی از علل عمدهروا
در مواقعی که میزان فشار آب حفرهاي ایجاد شده در اثر بارگذاري زلزله فراتر از . آید آثار پدیدهی روانگرایی به شمار می

هاي  برآورد میزان گسترش جانبی نیازمند شناسایی. رخ زهکشی باشد، احتمال بروز این پدیده بیشتر خواهد شدن
از اینرو در این تحقیق، ترکیب فازي عصبی . ترین تحقیقات ژئوتکنیکی میباشد زیرسطحی میباشد که خود یکی از پرهزینه

به منظور ارزیابی گسترش جانبی در شرایط زمین مسطح و وجه ) NF-GMDH(ها  بندي گروهی داده و الگوریتم دسته
مجموعه وسیعی از . توسعه داده شد) PSO(با استفاده از الگوریتم ازدحام ذرات  NF-GMDHترکیب . آزاد استفاده شد

ر گسترش انتخاب مهمترین پارامترهاي مؤثر ب. ي مدلهاي پیشنهادي بکار گرفته شد هاي مختلف جهت ارائه نتایج زلزله
با روابط و مدلهاي  NF-GMDH-PSOعملکرد مدلهاي مبتنی بر . جانبی با استفاده از آنالیز حساسیت انتخاب گردید

 .نتایج بیانگر دقت بالاي مدلهاي پیشنهادي در ارزیابی گسترش جانبی ناشی از روانگرایی میباشد. موجود مقایسه گردید
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