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A B S T R A C T  
 

 

Recently, a new data driven controller synthesis is presented for calculating the family of stabilizing 
first, second and fixed order controllers using frequency respons. However, this method is applicable 
just for plants that can guarantee some smoothness at the boundary of the resulted high dimension 
LMI. This paper solve that issue and extends the approach to fixed order controllers guaranteeing some 
performance criteria which are applicable for the more general types of plants. It is shown that 
knowing the frequency response of plant is sufficient to calculate the stabilizing fixed order controllers 
from a set of convex linear inequalities. The H∞ norm on sensitivity and complementary sensitivity 
functions are satisfied from some frequency domain inequalities (FDI) that could be examined from 
frequency response data. The usefulness of the proposed approach is illustrated by an academic 
example. 
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1. INTRODUCTION1 
 
Fixed order controller is the subject of many studies in 
literature. Toward other analytical methods such as    
theorem, calculating the low order controller is the main 
advantage of fixed order controller design approaches. 
The most of these procedures lead to first or second 
order controllers [1-4] that are more conventional 
controllers toward other high order controllers. In fact, 
90 percent of industrial controllers are currently belong 
to the family of PID controllers (for example see [5]). 
The PID  

A polynomial method is implemented to calculate a 
fixed order controller so that the closed loop poles 
reside within a given region of complex plane [1]. A 
parameter space approach is presented [2] by 
constrained variance and minimum variance PID 
controller design for LTI models. The technique is 
based on plant mathematical model and noises. Using a 
version of Hermite-Biehler Theorem extended to 
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quasipolynomials for first order plants, the complete 
family of stabilizing PID controllers is determined in 
[3]. Also, a modified chaotic genetic algorithm has been 
used to optimize the coefficients of PID controller [4]. 
Some optimization based approaches to PI/PID 
controller design are reviewed in literatures [6, 7]. 
These approaches are faced to the problem of non-
convexity of the design parameters. A global lower 
bound on the achievable PID performance, defined in 
terms of output variance, is presented [8] that leads to 
solving a series of convex programs using sum of square 
programming. Another convex optimization of fixed 
order stabilizing controllers for systems with polytopic 
uncertainty is presented [9] as a linear matrix inequality 
using Kalman-Yakubovich-Popov (KYP) Lemma. 
Based on decoupling at singular frequencies, the 
algorithm of calculating the family of stabilizing PIDs is 
presented [10] in which nonconvex stability regions are 
built up by convex polygonal slices. All of these 
approaches are model based and need to mathematical 
model or time domain data of plant. 

Some of model free PID tuning approaches based on 
feedback tuning [11, 12], un-falsified control [13], 
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iterative feedback tuning [14] and extremum seeking 
[15] are already presented in the literature. A good 
review of these approaches could be found in literature 
[15]. Adaptive control is another model free approach 
[16, 17] that similar to other mentioned model free 
techniques relies on time domain data of plant. The first 
frequency based controller synthesis was based on loop 
shaping of open loop transfer function using Nyquist, 
Bode and Nicholz diagrams. The most practical issue in 
the frequency domain approaches is the difficulty in 
measuring the frequency response of unknown plants 
which are composed of hard nonlinear dynamics that 
triger high order harmonics. Also, the measurements are 
usually faced to measring noises. 

Recently a new model free controller synthesis 
based on frequency response of plant is proposed [18] 
that can achieve to the set of stabilizing fisrt and second 
order controllers that satisfies some performance 
considerations. That approach is extended to 
simultaneously stabilizing [19], robust PID synthesis for 
plants with single uncertainty [20], robust stability for 
unstructured uncertainties [21] and fixed order 
controllers that can satisfy a particular performance 
criteria [22]. However, this criteria has a general 
drawback. In fact, since the approach applies  a sort of 
gridding on a parameter of the performance criteria, the 
scope of solution is limited to plants that can guarantee 
some smoothness at the boundary of the resulted high 
dimension LMI. All the reviewed approaches have one 
or some of these limitations: (1) The mathematical 
model of plant is needed; (2) Some plants could not be 
stabilized by first or second order controllers [23]; (3) 
Some optimization approach may lead to a non-convex 
problem; (4) Some approach is applicable for plants that 
can that can guarantee some smoothness at the boundary 
of the resulted LMI. In the proposed approach of this 
paper, it is illustrated that for stability achievement, it is 
sufficient to examine the feasibility of some linear 
inequalities in terms of controller parameters. Many 
performance specifications can be achieved by 
satisfying H∞ norm of sensitivity and complementary 
sensitivity functions. But there is a problem in dealing 
with LMI in a model free manner. It isn’t possible to 
synthesis controller with these performance 
considerations using frequency response data. The 
frequency domain inequalities are model based and 
there isn’t any FDI that can be solved using spectral 
model of plant. The contribution of the paper is 
proposing a new approach to satisfy the performance 
specifications using FDIs. In fact the performance 
considerations are transformed to some linear 
inequalities in terms of controller parameters and 
frequency. The feasibility of this problem can be 
analyzed using new FDIs by MATLAB. Moreover, 
since the proposed approach does not rely on gridding, 
it is applicable to more general types of plants. 

This paper is organized as follows. In section 2, the 
idea of fixed order controller design presented in [22] is 
reviewed. Section 3 illustrates how to achieve the 
performance specifications using frequency response 
data. In section 4, the effectiveness of the proposed 
approach is illustrated by an academic example. Some 
concluding remarks are mentioned in section 5. 

  
 

2. FIXED ORDER CONTROLLER SYNTHESIS 
 
In this section, we propose an algorithm to calculate the 
stabilizing fixed order controllers in the structure of 
Figure 1. The control objective is to synthesis a lowest 
order stabilizing controller that satisfies H∞ norm of 
sensitivity and complementary sensitivity functions. 
First, some mathematical preliminaries will be 
presented. Consider a real rational function 

( )( )
( )

A sP s
B s

=  (1) 

where, ( )A s  and ( )B s  are polynomials with real 
coefficients and degrees m and n, respectively. We 
assume that ( )A s and ( )B s have no zero on jω  axis. Let 
z+ and p+  ( , )z p− − determine the number of open right 
half plane (RHP) (open left half plane (LHP)) zeros and 
poles of ( )P s . Also let ( )P jω∆∠  denotes the net 
change in phase as ω runs from 0 to +∞ . Then, we have 

( ) (( ) ( ))
2

P j z z p pπ
ω − + − +∆∠ = − − −  (2) 

The (Hurwitz) signature of ( )P s is defined as 

( ) ( ) ( )2 P z z p p P jσ ω
π

− + − += − − − = ∆∠  (3) 

since ( )P s has no pole and zero on jω axis, we have 

( ) ( ) 2( )P n m z pσ + += − − − −  (4) 

or 

( ) 2( )pP r z pσ + += − − −  (5) 

where, pr is the relative degree of plant ( )P s and can be 
obtained from high frequency slope of bode magnitude. 
The only available data is the frequency response of 
unknown plant ( )P s for 0ω ≥ . The frequency response 
of plants is as 

( ) ( ) ( ) ( )j
r ic P j e P jPφ ωω ω ω= = +  (6) 

where, ( )rP ω and ( )iP ω denote the real and imaginary 
parts of ( )iP ω , respectively. Assume that the real, 
distinct, finite zeros of (j ) 0P ω =  denote as 0 1 1, , , lω ω ω −…

such that 
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0 1 10 .l lω ω ω ω−= < <…< < = ∞  (7) 

Lemma 2.1: for n m− is even 

0
( 1)

( ) ( ( ( ))2 ( 1) ( ( ))

( 1) ( ( )))( 1) ( ( ))

j
r r j

l l
r l i

P sgn P sgn P

sgn P sgn P

σ ω ω

ω −

= Σ −

+ − − ∞
 (8) 

and for n m−  odd 

0
( 1)

( ) ( ( ( ))

2 ( 1) ( ( )))( 1) ( ( )).
r

j l
r j i

P sgn P

sgn P sgn P

σ ω

ω −

=

+ Σ − − ∞
 (9) 

Let the controller in the structure of Figure 1 be as 

( )
( ) ( )

( )( )

1 2( 1)2
01 2 ( 3)

1 2 1

3
2( 1)2

01 2 ( 3)

1 2 1

  :   
1 1 (1 )

  :   
1 1 (1 )

N
i

i i

N

N
i

i i

N

s s
N even

s sT sT sT
C s

s s
N odd

s sT sT sT

ρ ρ ρ

ρ ρ ρ

− +
= +

−

−
+

= +

−


+ + ∑

 + + … += 
 + + ∑
 + + … +

 (10) 

where, 1 2 3, , , iρ ρ ρ +… , 1 2 1, , , NT T T −… and N are design 
parameters, arbitrary constants and the order of 
controller, respectively. Now consider N  be even. Let  

( ) ( )( )

( )

1 2 1 1

( 1)
2 2( 1)

2 ( 3)
0

 1

.

1 (1 ) N

N
i

i
i

F s s sT s T

P

T

s s

s

s

ρ

ρ ρ

−

−
+

+
=

= + + … +

+ + ∑
 (11) 

Lemma 2.2: The closed loop stability is equivalent to 
the below equality 

( )( ) 2 .F s n m z Nσ += − + +   (12) 

Let ( ) ( ) ( )F s F s P s= −  and write 

( ) ( ) ( )1 3 4 3 2, , , , , , .r iiF F j Fω ω ρ ρ ρ ρ ω ω ρ+= … +  (13) 

Consider ( )2, 0iF ω ρ = and define 

( ) ( ) ( )
2 2(

:
)

i raP j bP j
g

P j

ω ω
ρ ω

ω ω

−
==  (14) 

in which, a  and b  can be obtained from the 
denominator of controller as 

( ) ( )11 1 Nj j T j T a jbω ω ω+ … + = +  (15) 

 

 
Unknown Plant 

P(jω)
Fixed Order 
Controller+ _

r u y

 
Figure 1. The feedback structure of plants with fixed order 
controller. 

And define 2[ ( , )]iJ sgn F ρ−= ∞ where *
2 2 2
min maxρ ρ ρ< < . 

Theorem 2.1: Let 1 2 1lω ω ω −< < … < denote the distinct 
frequencies of odd multiplicities which are solutions to 

( )2, 0iF ω ρ = . Determine string of integers 

0 1 2, , , , lI i i i i= …   where { }1,1ti ∈ −  such that for n m−  
even: 

( 1) ( 1)
0 1 ( 1)[ ... ( 1) 2 ( 1) ]( 1) 2l l l

l li i i i J n m z N− − +
−− + + − − − = − + +  (16) 

and for n m−  odd: 

( ) ( )1 1
0 1 11 2 1 2l l

li i i J n m z N− − +
−

 − +…+ − − = − + +  
 (17) 

and ( )1 3 4 3( , , , , , )rl ii sgn F ρ ρ ρ ρ− += ∞ … . Then for *
2 2ρ ρ= , 

the 1 3 4 3( , , , , )iρ ρ ρ ρ +…  values corresponding to closed 
loop stability can be found by solving the problem of 
feasibility of 

1

1

00 0
000
0 00 0

00 0

r

r

rt

f
f

f

 
 
 
 
 
 
 
 

≺O
MOM M

 
(18) 

where, 1 0   ,   1,2, ,rf i t< = …  are corresponding to 
inequalities 

( )1 3 4 3, , , , , 0r t i tF iω ρ ρ ρ ρ +… >  (19) 

and ti ’s are taken from strings satisfy Equations (16) or 
(17) and tω ’s are taken from the Equation (14). 
The proof for Lemmas 2.1 and 2.2 and Theorem 2.1 can 
be found in [18]. This theorem can be proved using the 
stability criteria of Equation (18) and applying Lemma 
2.1 to compute the signature of ( )F s .  
Theorem 2.2: The necessary condition for PID 
stabilizing is that there exists 2ρ  such that Equation 
(14) has at least R  distinct roots of odd multiplicities 
such that 

2 1       :  
2
2 1 1 :  .
2

n m z NR if n m even

n m z NR if n m odd

+

+

 − + +
≥ − −


− + + + ≥ − −

 (20) 

Using Theorem 2.2, we can calculate the range of 2ρ  
and then by sweeping on this range, the range of 
admissible 1 3 4 3( , , , , )iρ ρ ρ ρ +… can be obtained for an 
unknown plant. If the plant be unstable then we can’t 
directly obtain the frequency response. In this case, it 
should be exist a stabilizing known controller  ( )C s  with 
any order. Then, the frequency response of unstable 
plant can be obtained from 
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( ) ( )
( )(1 ( ))

H jP j
C j C j

ω
ω

ω ω
=

−
 (21) 

The next theorem illustrates how to calculate the 
number of right half plan (RHP) zeros and poles of plant 

( )P s . As it will be shown, there is no need to plant 
mathematical model to calculate RHP poles and zeros. 
Theorem 2.3: The number of RHP zeros and poles can 
be obtained from 

1 [ 2 ( )]
2 p C Cz r r z Hσ+ += − − − −  (22) 

( ) ( )1 2
2 C Cp P H r zσ σ+ + = − − −   (23) 

where, Cz+  and Cr  are the number of RHP zeros and the 
relative degree of ( )C s , respectively. 
The proof for Theorems 2.2 and 2.3 can be found in 
research [22]. The procedure of calculating the lowest 
order controllers with frequency response data is 
summarized in the following algorithm. 
Algorithm 2.1: Calculating the lowest order controllers 
with frequency response. 

1- Determine the relative degrees of plant from high 
frequency slope of Bode magnitude diagram. 

2- Determine z+  for every plant from (4). 
3- Set 1N = . 
4- Determine the range of 2 ρ  from Theorem 2.2. 
5- If there is not any 2 ρ that satisfies the conditions 

of Theorem 2.2 then set 1N N= + and go to Step 
4, else go to the next step. 

6- For *
2 2ρ ρ=  solve (14) and obtain roots with odd 

multiplicity as 1 2 1lω ω ω −< < … < . 
7- Let 1 0ω = and lω = ∞  and define 

( )2[ , ]iJ sgn F ρ−= ∞ . Determine 0 1 1, , , li i i −…  from 

Equations (16) or (17). 
8- For *

2 2ρ ρ= , determine the 1 3 4 3( , , , , )iρ ρ ρ ρ +…  
values from Equation (18). 

9- Change the value of 2ρ  and go to Step 4 to 
obtain another stabilizing PID controller. 

 
 
3. PERFORMANCE CONSIDERATION WITH FIXED 
ORDER CONTROLLER  

 
Many performance attainment problems for plant ( )P s  
can be cast as the problem of achieving an H∞ norm 
specification on the sensitivity and complementary 
sensitivity functions [18]. In Section 2, the stabilizing 
controllers obtained from solving the feasibility problem 

of the linear matrix inequality [18]. Here, the main 
contribution of the paper is presented. To obtain the 
lowest order controllers that achieves to stability and 
performance, another constraints are needed to add to 
Equation (18), but there isn’t any linear performance 
condition that can be examined by frequency response 
data. In the other hand, every FDI needs to state space 
or transfer function of the plant. In the next theorem and 
the following corollaries, we transform the problem of 
performance attainment to the feasibility problem of 
some linear inequalities that can be examined by new 
FDIs. 
Theorem 3.1: Consider the structure of Figure 1 with 
controller of Equation (10). Then: 
(1) The closed loop system achieves to the H∞ norm of 

sensitivity function, i.e. 1
1 ( ) ( )c s P s

γ<
+

, if the 

controller parameters satisfy one of the below sets of 
inequalities for 0ω ≥ : 

( ) ( )
( ) ( )
( ) ( )

1
11 1  :  0

1 1 0
1 1 0

Re CP Im CP h

Re CP Im CP
Re CP Im CP

γ− + + + − = <

+ + >
+ − + >








 (24) 

( ) ( )
( ) ( )
( ) ( )

2
11 1  :  0

1 1 0
1 1 0

Re CP Im CP h

Re CP Im CP
Re CP Im CP

γ− + + + − = <

+ + >
+ − + <








 (25) 

( ) ( )
( ) ( )
( ) ( )

3
11 1  :  0

1 1 0
1 1 0

Re CP Im CP h

Re CP Im CP
Re CP Im CP

γ− + + + − = <

+ + <
+ − + >








 (26) 

( ) ( )
( ) ( )
( ) ( )

4
11 1  :  0

1 1 0
1 1 0

Re CP Im CP h

Re CP Im CP
Re CP Im CP

γ− + + + − = <

+ + <
+ − + <








 (27) 

 (2) The closed loop system achieves to the H∞ norm of 
complementary sensitivity function, i.e. 

( ) '( )
1 ( ) ( )

C s P s
C s P s

γ<
+

, if the controller parameters satisfy 

one of the below sets of inequalities for 0ω ≥ : 

( ) ( )

( ) ( )
( ) ( )

' 1 :  0

0
0

Re CP Im CP J

Re CP Im CP
Re CP Im CP

γ
γ

− + − = <

<
+ >









 (28) 

( ) ( )

( ) ( )
( ) ( )

' 2 :  0

0
0

Re CP Im CP J

Re CP Im CP
Re CP Im CP

γ
γ

− + = <

>
+ <









 (29) 
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( ) ( )

( ) ( )
( ) ( )

' 3 :  0

0
0

Re CP Im CP J

Re CP Im CP
Re CP Im CP

γ
γ

− − − = <

<
− >









 (30) 

( ) ( )

( ) ( )
( ) ( )

' 4:  0

0
0

Re CP Im CP J

Re CP Im CP
Re CP Im CP

γ
γ

+ + = <

<
+ <









 (31) 

Proof: for part (1) we have the performance constraint 
as 

( )

( )2 2

11 ( )

1
 1 (1 )  :

C s P s

Re CP Im CP d

γ

γ

+ >

=> + + + > =
 (32) 

Let ( )(1 ( ))a Re C j P jω ω= +  and ( )(1 ( ))b Im C j P jω ω= + . 

Then from 2 2 2a b d+ >  we have two following cases: 
1) If 0ab > , then 2 2 2( )a b a b+ > −  and we have: 

• If ( ) 0a b− > , then the performance condition 
transforms to the constraint ( )a b d− >  that is 
equivalent to Equation (24). 

• If ( ) 0a b− < , then the performance condition 
transforms to the constraint ( )a b d− < −  that is 
equivalent to Equation (25). 

2) If 0ab < , then 2 2 2( )a b a b+ > +  and we have: 
• If ( ) 0a b+ > , then the performance condition 

transforms to the constraint ( )a b d+ >  that is 
equivalent to Equation (26). 

• If ( ) 0a b+ < , then the performance condition 
transforms to the constraint ( )a b d+ < −  that is 
equivalent to Equation (27). 

For part (2) of theorem, we have the performance 
constraint as 

( )
( )

'( )
1 (

.
)

C s P s
C s P s

γ<
+

 (33) 

From part (1) of theorem we have 

( )
( )

( ) ( )( )1 ( )
1 ( ) 1 ( )

C s P s
C s P s

C s P s C s P s
γ γ< => <

+ +
 (34) 

It can be written 
'

2 2 2 2 2      e f h e f hγ
γ

+ < = => + <  (35) 

1) If 0ef > , then 2 2 2( ) ( )e f e f+ > +  and we have: 
• If ( ) 0e f+ > , then the performance condition 

transforms to the constraint ( )e f h+ <  that is 
equivalent to Equation (28). 

• If ( ) 0e f+ < , then the performance condition 
transforms to the constraint ( )e f h+ > −  that is 
equivalent to Equation (29). 

2) If 0ef < , then 2 2 2( ) ( )e f e f+ > −  and we have: 
• If ( ) 0e f− > , then the performance condition 

transforms to the constraint ( )e f h− <  that is 
equivalent to Equation (30). 

• If ( ) 0e f− < , then the performance condition 
transforms to the constraint ( )e f h− > −  that is 
equivalent to Equation (31).  

The following two corollaries introduce two FDIs to 
obtain lowest order controllers that satisfy H∞ norm on 
sensitivity and complementary sensitivity functions. 
Corollary 3.1: To satisfy stability and H∞ norm on 
sensitivity function, the feasibility of the following FDI 
must be satisfied: 

1

2

0 0 00
0 000
0 00 0 0

000 0
00 0 0

r

r

rt

i

f
f

f
h

 
 
 
 
 
 
 
 
 
 

O
≺M MOM M

 
(36) 

where,    ,   1, ,4ih i = …  are corresponding to Equations 
(24-27). For every ℎ  and every frequency   a set of 
controller parameters will be obtained. Obviously, we 
select the controller that leads to best closed loop 
response.  
Corollary 3.2: To satisfy stability and H∞ norm on 
sensitivity and complementary sensitivity functions, the 
feasibility of the following FDIs must be satisfied: 

1

2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0
0 0 0 0 0
0 0 0 00
0 0 0 00

r

r

rt

i

i

f
f

f
h

J

 
 
 
 
 
 
 
 
 
 
 
 

O
M M O M M M ≺

 
(37) 

where,    ,   1, ,4iJ i = …  are corresponding to Equations 
(28)-(31). For every ih , iJ  and every frequency ω , a 
set of controller parameter will be obtained. Obviously, 
we select the controller that leads to best closed loop 
response. 
 
 
4. SIMULATION 

 
The Bode diagram for an academic example is shown in 
Figure 2. The corresponding function ( )g ω  is shown in 
Figure 3. Note that we examine a 2-order controller as 
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( )
2

1 2 3

(1 )
s sC s

s sT
ρ ρ ρ+ +

=
+

 (38) 

where, 1T = . From Equation (20) we have 
2 2 1 1.

2
R +

≥ − =  (39) 

For 2 10ρ = , from Figure 3 1 26.96ω =  and the 
corresponding inequalities for stability region are 

1

1 3

0
723 497 0

ρ
ρ ρ

>
 − − <

 (40) 

Choosing 1 150ρ =  and 3 10ρ =  is led to step response of 
Figure 4-a. Obviously, these parameters are 
corresponding to only stabilizing region and there isn’t 
any performance consideration. As you see in Figure 4, 
the overshoot is 50% and the rise and settling times are 
large. For the problem of satisfying H∞ norm of 
sensitivity function, the feasibility of Equation (36) 
must be examined through checking Equations (24)-(27) 
for 0ω > . This, in turn, will lead to a high dimension 
LMI in MATLAB. The simulation is accomplished and 
the parameters are obtained as 1 33.9978ρ =  and 3 1ρ = −

 So the corresponding controller is 

( )
233.9978 10

(1 )
s sC s

s s
+ −

=
+

 (41) 

And the corresponding step response is shown in Figure 
4-b. There isn’t overshoot in this case but still the rise 
and settling times are large. For the problem of 
satisfying H∞ norm of sensitivity and complenetray 
sensitivity function, the feasibility of Equation (37) 
must be examined through checking Equations (28-31) 
for 0ω > . This, in turn, will lead to a high dimension 
LMI in MATLAB. The simulation is accomplished and 
the parameters are obtained as 1 9.0228ρ =  and 

3 0.1ρ = −  and the corresponding controller is  

( )
29.0228 10 0.1 .

(1 )
s sC s

s s
+ −=

+
 (42) 

 

 
Figure 1. The Bode diagram of plant ( )P s . 

 
Figure 2. The plot of function ( )g ω  

 

 
Figure 3. Step responses corresponding to (a), stabilizing 
controller without any performance consideration; (b), 
stabilizing controller of Equation (41) which satisfies H∞

norm of sensitivity function; (c), stabilizing controller of 
Equation (42) which satisfies norm of sensitivity and 
complementary sensitivity functions. 

 

 
Figure 5. The magnitude of sensitivity and complementary 
sensitivity functions corresponding to Equation (42).  
 
 

The corresponding step response is shown in Figure 
4-c. The rise and settling time are improved and there 
isn’t overshoot in the response. Finally, the magnitude 
plot of sensitivity and complementary sensitivity 
functions, i.e. | ( ) |S s  and |  ( ) |T s , with controller as the 
form of Equation (42) are shown in Figure 5. It could be 
concluded that the proper shaping of these diagrams is 
resulted to better specifications in the step response of 
the plant with frequency response of Figure 2. 
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Other admissible parameters can be obtained by 
sweeping on the admissble range of 2ρ . All resulted 
controllers can guarantee the performance criteria used 
in this paper. However, solving Equations (36) and (37) 
may result in a non-minimum phase controller. 

For the time being, there has not been found any 
general rule on the effect of sweeping on controller 
parameters. Since the controller parameters must be 
selected among a set of convex inequalities through 
Equations (24) to (31), the computed parameters by 
MATLAB might construct a conservative controller. 
This is a work in progress to find the optimal parameters 
among the admissible range. There has been provided 
lots of examples on this issue in literature [24]. 
 
 
5. CONCLUDING REMARKS 
 
Through the paper, an algorithm for calculating the 
fixed order controller proposed using only frequency 
domain data is reviewed. The previous technique was 
applicable just for plants that can guarantee some 
smoothness  moothness at the boundary of the resulted 
high dimension LMI. This paper solve that issue and 
extends the approach to fixed order controllers 
guaranteeing some performance criteria which are 
applicable for the more general types of plants. It is 
shown that the performance specifications such as H∞

norm of sensitivity and complementary sensitivity 
functions can be examined by new linear inequalities in 
terms of controller parameters and frequency. This is the 
important feature of these constraints by which the 
problem of stabilizing controller synthesis with 
performance consideration can be transformed to the 
feasibility problem of new FDIs that could be analyzed 
using frequency response data.  

Another important feature of the proposed approach 
is that there is no need to exact data on the whole range 
of frequency response. In fact, exact data are needed just 
at low frequency band and beyond which data might be 
rough or approximated.  

Althought there are some useful techniques for 
measuring the frequency response such as attaining the 
input-output data using Fourier analysis, virtual sine 
sweeping, spectrum analyzer, network analyzer or using 
audio sine-wave generators and the sine function of 
function generators, but measuring the frequency 
response of plants with hard nonlinearity is still a 
challenging issue. This needs to more improvement to 
the measuring technologies and instruments. 
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  چکید
  

هاي حوزه فرکانس ارائه شده هاي مرتبه اول و دوم پایدارساز با استفاده از دادهکنندهاخیرا روشی براي محاسبه خانواده کنترل
برآورده نمودن شود که قادر به تعمیم داده می) Nاز مرتیه (کننده مرتبه ثابت در این مقاله، این روش به طراحی کنترل. است

اي از ناتساویهاي خطی کننده مرتبه ثابت پایدارساز به کمک مجموعهبراي محاسبه کنترل. باشدمعیارهاي عملکرد نیز می
توابع حساسیت و مکمل حساسیت با استفاده از تعدادي ∞H نرم. محدب، کافیست پاسخ فرکانسی فرآیند دردسترس باشد

. شوندهاي پاسخ فرکانسی بررسی میشوند  که این ناتساویها با استفاده از دادهخطی در حوزه فرکانس ارضا میناتساوي 
  .کارآیی روش پیشنهادي با یک مثال اکادمیک نشان داده شده است
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