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A B S T R A C T  
 

 

The aim of this paper is to study the effect of slip velocity and shape of stenosis on non-Newtonian 
flow of blood through a stenosed arterial segment. Blood is modeled as Bingham-Plastic fluid in a 
uniform circular tube with a radially non-symmetric stenosis. The problem is investigated by a joint 
effort of analytical and numerical techniques. The influence of stenosis shape parameter, slip velocity, 
stenosis height and yield stress on blood flow through a stenosed artery has been examined. The 
variations of wall shear stress, resistance to flow, volumetric flow rate and axial velocity with stenosis 
shape parameter, yield stress and slip velocity have been shown graphically. It is noticed that axial 
velocity and volumetric flow rate was increased with slip but was decreased with yield stress. This 
information of blood could be useful in the development of new diagnosis tools for many diseases. 
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1. INTRODUCTION1 
 
In developed and developing countries, one of the major 
health hazards is atherosclerosis, which refers to the 
narrowing of the arterial lumen. It means that the inner 
open space of an artery, due to sub-endothelial build-up 
of fatty or lipid material rich in cholesterol and 
proliferation of the connective tissues are believed to be 
the factors that accelerate the growth of the disease. 
This may lead to hypertension, myocardial infarction 
etc. This abnormal and unnatural growth in the arterial 
wall thickness is called stenosis which disturbs the flow 
of blood appreciably. The fluid mechanical study of 
blood flow in artery bears some important aspects due 
to the engineering interest as well as the feasible 
medical applications. A lot of investigations are 
performed for the prevention and cure of atherosclerosis 
which results in better understanding the nature of this 
type of disease.  
                                                        
1*Corresponding Author’s Email: amitbh2112@gmail.com (Amit 
Bhatnagar)  

M.M. Lih [1] and Mishra et al. [2] found that whole 
blood is predominantly a suspension of erythrocytes in 
plasma and behaves as a non-Newtonian fluid at low 
shear rates in micro-vessels. Published literature also 
reveals that in the stenotic region, blood exhibits low 
shear rate. Dwyer et al. [3] have emphasized that the 
formation of intravascular plaques and the impingement 
of ligaments and spurs on the blood vessel wall are 
some of the major factors for the initiation and 
development of this vascular disease. Chakravarty et al. 
[4] developed mathematical model of non-linear two-
dimensional blood flow in tapered arteries in the 
presence of stenosis taking the vascular wall 
deformability to be elastic and the flowing blood 
contained in is treated to be Newtonian. Mishra et al. [5] 
studied bell shaped geometry to develop a mathematical 
model for studying the non-Newtonian flow of blood 
through a stenosed arterial segment. Utilizing the 
Herschel-Bulkley fluid model, Jain et al. [6] examined 
the effect of mild stenosis on blood flow, in an irregular 
axisymmetric artery with oscillating pressure gradient. 
Venkateshwarlu and Rao [7] have discussed numerical 
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solution of unsteady blood flow through indented tube. 
Dash et al. [8] studied the pulsatile as well as steady 
flow pattern in a narrow catheterized artery taking blood 
as non-Newtonian fluid (Casson fluid) and estimated the 
increase in frictional resistance due to catheterization in 
a narrow artery. Dash et al. [9], Jayaraman et al. [10] 
discussed the changes in various flow characteristics in 
a catheterized curved artery with or without stenosis. 
Daripa et al. [11] have analyzed the numerical study of 
pulsatile blood flow in an eccentric catheterized artery, 
using a fast algorithm and in considering blood as to 
behave like a Newtonian fluid. Sankar [12] has studied a 
two-fluid model for the pulsatile flow of blood in a 
stenosed artery, by considering the core layer as a 
Casson fluid (non-Newtonian fluid) and the peripheral 
layer as a Newtonian fluid.  

Johnston et al. [13] investigated a mathematical 
model to study the wall shear stress in four different 
human right coronary arteries using non-Newtonian 
blood model, as well as the usual Newtonian model of 
blood viscosity. Tu et al. [14] studied pulsatile flow of 
blood through arterial stenosis and used finite element 
simulation to obtain the expression for various flow 
characteristics. Tandon et al. [15] developed a model for 
blood flow through a stenotic tube. In all of the above 
studies the shape of stenosis was considered to be 
symmetrical about the axis as well as radius of the flow 
cylinder. Shit et al. [16] explored the effect of externally 
imposed body acceleration and magnetic field on 
peristaltic flow of blood through a stenosed arterial 
segment. A mathematical model for magneto- 
hydrodynamics (MHD) blood flow in a stenosed artery 
under porous medium is developed by Jain et al. [17], 
considering the cosine shaped geometry of the stenosis. 
Singh et al. [18] formulated a mathematical model to 
study the effects of shape parameter and stenosis length 
on the resistance to flow and wall shear stress under 
stenotic conditions by considering, laminar, steady, one 
dimensional, non-Newtonian and fully developed flow 
of blood through axially symmetric but radially non-
symmetric stenosed artery. Assuming blood as non-
Newtonian fluid (Casson fluid) and artery as circular 
tube, Bali et al. [19] investigated the response of 
external applied magnetic field on the flow of blood 
through a multiple stenosed artery. Nanda et al. [20] 
investigated a mathematical model for analyzing flow 
characteristics through a multiple stenosed narrow 
artery. The radially non-symmetric stenosis has been 
analysed by Singh et al. [21], Srivastava [22] Sanyal 
and Maji [23], Haldar [24]. They studied the effect of 
stenosis shape parameter on different flow 
characteristics employing traditional no slip conditions 
at the constricted wall.  

A number of investigators like Brunn [25], and 
Chaturani et al. [26] have suggested the likely presence 
of slip (a velocity discontinuity) at the flow boundaries 
(or in their immediate neighbourhood). In view of the 

possible presence of a red cell slip at the wall, Mishra et 
al. [27] employed the momentum integral technique to 
investigate the problem of blood flow through a 
stenosed vessel taking the velocity slip condition at the 
arterial wall. Mishra et al. [28] developed a 
mathematical model for studying, analytically, blood 
flow through a stenosed arterial segment by taking into 
account the slip velocity at the wall of the artery. Mallik 
et al. [29] studied blood flow through an atherosclerotic 
artery with slip velocity at wall. A power law fluid 
model of the blood has been utilized in this study to 
account for the presence of red cells (erythrocytes) in 
plasma. Owing to the fact that due to permeability of the 
vessel wall, consideration of the no-slip condition at the 
wall may not be valid, the present study on blood flow 
in stenosed arteries is carried out to investigate the 
effects of stenosis shape parameter on resistance to 
flow, wall shear stress, volumetric flow rate and axial 
velocity with stenosis size, stenosis length and radial 
distance modeling blood as Bingham-Plastic fluid and 
introducing a velocity slip condition at the wall of the 
artery which makes the present model more general.  

 
 

2. FORMULATION OF THE PROBLEM 
 
In the present study, we have considered an arterial 
segment having stenosis which is symmetrical about the 
axis but non- symmetrical with respect to radial co-
ordinates. The geometry of the stenosis may be written 
as: 

1
0

0

( ) 1 ( ) ( ) ;m mR z A L z d z d
R

− = − − − − 

0d z d L≤ ≤ +  
         1;otherwise=                                                       

(1) 

where, 0R  is the radius of the artery (assumed to be a 
rigid circular tube) outside the stenosis, ( )R z  is the 
radius of the stenosed portion of the arterial segment,  

0L  is the length of the stenosis, d indicates its location, 
m is a parameter determining the shape of stenosis and 
is referred to as stenosis shape parameter( 2m ≥ ). 
Radially symmetric stenosis occurs when 2m = , and a 
parameter A  is given by: 

/( 1)

1
0 0 1

m m

m

mA
mR L

δ −

−=
−

 (2) 

where, δ denotes the maximum height of stenosis at 
1/( 1)

0 / mz d L m −= + . The ratio of the stenosis height to the 
radius of the normal artery is much less than unity (

0/ 1Rδ = ). The schematic diagram of the flow is given 
by the Figure 1. Blood is assumed to flow in steady, 
laminar and fully developed manner. The constitutive 
equation in one dimensional form for Bingham-Plastic 
fluid with the shearing stress τ, is given by: 
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0
0( ) ;du f

dr k
τ τ

τ τ τ
−

− = = ≥  

                    
00;τ τ= <              (3) 

where, u stands for the axial velocity of blood, 0τ the 
yield stress and k the viscosity coefficient of blood. 
The equation governing the flow of blood is taken 
(Mishra, et al. [7]) in the form: 

1 ( )dp d r
dz r dr

τ− =  (4) 

in which, p stands for the pressure at any point, (-dp/dz) 
is called the pressure gradient and (z,r) are co-ordinates 
with z measured along the axis and  r measured normal 
to the axis of the artery. 
The boundary conditions for the problem stated above 
may be listed as: 

u =  us at r =  R(z)  (slip velocity condition) (5) 

τ is finite at r = 0     (regularity condition) (6) 
 
 

3. ANALYTICAL SOLUTION OF THE PROBLEM 
 

As per the published literature and available 
physiological data, blood flow in the neighborhood of 
the vessel wall can be considered as Newtonian, if the 
shear rate of blood is high enough. However, the shear 
rate is very small towards the center of the artery 
(circular tube), the non-Newtonian behaviour of blood is 
more evident (cf. Mishra et al. [23]).  
Integrating Equation (4) and using the regularity 
condition (6), we get: 

2
r dp

dz
τ = −  (7) 

The corresponding yield stress in the core region is 
given by: 

0
0 2

r dp
dz

τ = −  (8) 

where, 0r is the radius of the core region. 
The expression for the wall shear stress τR may be 
written as: 

2R
R dp

dz
τ = −  (9) 

where, R=R(z). From Equation (7), it is clear that the 
shearing stress τ is proportional to the radial distance r. 
Blood will flow only if the shearing stress is more than 
the yield stress (i.e. if 0τ τ≥  or 0r r≥  ). And if the 
shearing stress is smaller than the yield stress (i.e. if 

0τ τ<  or 0r r<  ), then blood will not flow. Therefore, 
it is apparent for the region 00 r r≤ <  , the equation of 
flow is: 

( ) 0,du r
dr

=  0r r<   

which gives on integration, u(r) =  u0  = constant 

where, u0 is the velocity of blood in the core region.  
For the region r0 ≤ r ≤ R(z), using Equations (7) and (8) 
in Equation (3) we get the velocity function u(r) as: 

0( )
2

du P r r
dr k

= −  (10) 

where: 

( ) dpP P z
dz

= = −  

represents the pressure gradient. 
Using the slip velocity condition (5) for integrating 
Equation (10) between the limits r and R(z) we get: 

0( )
2

R R

r r

Pdu r r dr
k

= −∫ ∫  

This yields: 

2 2
0 0 0( ) ( ) ( ) , ( )

4s
Pu r u R r r r r r R z
k

 = + − − − ≤ ≤ 
 (11) 

The expression for velocity of blood in the core region 
when r =  r0 may be written as: 

2
0 0( )

4s
Pu u R r
k

= + −  (12) 

The volumetric flow rate Q can be defined as: 
0

00 0
2 ( ) 2 ( ) 2 ( )

R r R

r
Q ru r du ru r du ru r duπ π π= = +∫ ∫ ∫  (13) 

Using Equations (11) and (12) in (13), we get the 
expression for the volumetric flow rate Q  as: 

( )
4

22 22 11 1
8 3 3s
PRQ R u
k

π
π α α α = + + + − 

 
 (14) 

where 0 0

R

r
R

τ
α

τ
= =  

when 0 / 1Rτ τ =  Equation (14) reduces to: 
4

2 41
8 3s
PRQ R u
k

π
π α = + − 

 
 

(15) 

From Equation (15), pressure gradient is written as 
follows: 

( )2 0
4

8 8
3s

dp k Q R u
dz RR

τ
π

π
− = − +  (16) 

 
 

 
Figure 1. Geometry of stenosis in an arterial segment 
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Integrating Equation (16) along the length of the artery, 
if P = P1 at z = 0 and P = P2 at z = L, we obtain: 

0
1 2 4 4 2 20 0 0

0 00 0 0 0

88 8
3 /( / ) ( / )

L L LskukQ dz dz dzP P
R R RR R R R R R
τ

π
− = − +∫ ∫ ∫  (17) 

where, R/R0 can be obtained from Equation (1) 
Thus, the resistance to flow λR defined by: 

1 2
R

P P
Q

λ
−

=  (18) 

which may be expressed as: 
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Outside the stenosis (when R = R0), the resistance to 
flow λN is given by: 

0
4
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18
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k L
QRR
τ

λ
π
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A non-dimensional expression for the resistance to flow 
may be put as: 

2 3
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The wall shear stress obtained from (9) and (16) is given 
by: 

2 2
0 0

03 3
0 0

( / )4 4
3( / )

s
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Q R R R uk
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π
τ τ

π
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= +  (22) 

In the absence of any constriction (when R = R0), the 
expression for wall shear stress, τN reads: 

03
0

4 4
3N

kQ
R

τ τ
π

= +  (23) 

The expression for wall shear stress in a non-
dimensional form may be given as: 

2 2 3 3
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3 3
0 0 0
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4. NUMERICAL COMPUTATION AND DISCUSSION 
OF RESULTS 

 
The main aim of the present study was to quantify the 
influence of the stenosis shape parameter and the slip 

velocity at the arterial wall on the various flow 
characteristics. The effects of stenosis height, yield 
stress, axial distance and radial distance on wall shear 
stress, resistance to flow, axial velocity of blood and 
volumetric flow rate have also been observed and 
shown graphically. The analytical expressions for wall 
shear stress, resistance to flow, axial velocity of blood 
and volumetric flow rate derived in the previous section 
were executed by using MATLAB 7.8.  

The computations were carried out for different 
values of stenosis height δ/R0 = 0.2 (mild stenosis), 0.4, 
0.6 (moderate stenosis), 0.8 (severe stenosis), slip 
velocity (us = 0, 0.1 and 0.2), yield stress (τ0 = 0 and 
0.1) and stenosis shape parameter (m = 2, 3,…, 11). The 
non-dimensional wall shear stress, resistance to flow, 
axial velocity of blood and volumetric flow rate are 
obtained in the Equations (25), (22), (11) and (15), 
respectively. The Bingham-Plastic fluid model reduces 
to Power-Law fluid when τ0 = 0 and the radially non-
symmetric stenosis becomes symmetric when m = 2. In 
Figuers 2 and 3, the variation in the axial velocity of 
blood with radial distance has been shown. From these 
figures, it is found that the axial velocity increases as 
stenosis shape parameter m and slip velocity us increase 
and the velocity decreases with increasing radial 
distance and the yield stress τ0. 

 
 

 
Figure 2. Variation of axial velocity along radial distance for 
different values of stenosis shape parameter (m) and yield 
stress (τ0)  
 
 

 
Figure 3. Variation of axial velocity along radial distance for 
different values of stenosis slip velocity (us)  
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Figure 4. Variation of wall shear stress with stenosis height 
for different values of shape parameter (m) 
  
 

 
Figure 5. Variation of wall shear stress with axial distance for 
different values of stenosis height (δ/R0)  
 
 

 
Figure 6. Variation of wall shear stress with axial distance for 
different values of  shape parameter (m) and slip velocity (us) 
 

 
Figure 7. Graph of resistance to flow with stenosis shape 
parameter for different values of stenosis height (δ/R0)  

 
Figure 8. Graph of resistance to flow with stenosis height for 
different values of stenosis shape parameter (m)  

 
 
These results are consistent to the observations of 

Singh et al. [21] which validate our work. Figure 4 
consists of the variation of wall shear stress, τ with 
stenosis height (δ/R0) and shape parameter (m). It is 
evident that the wall shear stress increases in the 
stenotic region as stenosis height increases. This result 
is similar to that of Mishra et al. [6]. The wall shear 
stress attains maximum value in case of radially 
symmetric stenosis (m = 2) and starts diminishing as 
stenosis losing its symmetry i.e. stenosis shape 
parameter m becoming larger. By the inspection of the 
Figures 5 and 6, it is revealed that the wall shear stress 
has the minimum value at the extremities of stenosis, 
then it starts increasing with stenosis height along the 
axial distance of the artery and attains the maximum 
value at the stenosis throats and it goes on decreasing to 
the minimum value. Figure 6 represents the variation of 
the wall shear stress with stenosis shape parameter.  

The wall shear stress shows same variations for the 
equidistant values of z from the extremities of the 
constriction when m = 2 which indicates the radially 
non-symmetric stenosis becomes symmetric when m = 
2. It can also be seen that if slip velocity us increases 
then the wall shear stress decreases. The influence of 
stenosis shape parameter and stenosis size on the 
impedance (resistance to flow) has been revealed in 
Figures 7 and 8. It can be found easily that the flow 
resistance increases as the size of constriction increases 
but decreases with increasing shape parameter although 
the decrease is comparatively small. The variation in the 
volumetric flow rate of blood along the axial length of 
the artery for different values of the stenosis shape 
parameter m, slip velocity us, stenosis height δ/R0 and 
yield stress τ0 is illustrated in the Figures 9 and 10. The 
effect of  stenosis size and the shape parameter on the 
volumetric flow rate of blood for different values of the 
slip velocity us and yield stress τ0 is shown in the 
Figures 11 and 12. It can be noted that the volumetric 
flow rate decreases with the increase in stenosis height 
and the yield stress and that the flow rate increases with 
an increase in slip velocity and stenosis shape 
parameter. One can further observe that the flow rate 
takes the minimum value at the throats of stenosis 
irrespective of the size of stenosis. 
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Figure 9. Variation of volumetric flow rate v/s axial distance 
for different values of stenosis shape parameter (m) and slip 
velocity (us) 

 

 
Figure 10. Variation of volumetric flow rate with axial length 
for different values of stenosis height (δ/R0) and yield stress 
(τ0)  

 

 
Figure 11. Variation of volumetric flow rate with stenosis 
height for different values of stenosis shape parameter (m) and 
slip velocity (us) 
 

 
Figure 12. Variation of volumetric flow rate with stenosis 
shape parameter for different values of stenosis height (δ/R0) 
and yield stress (τ0) 

5. CONCLUDING REMARKS 
 

In the present work, we have investigated the influence 
of slip velocity and stenosis shape parameter on the 
different flow characteristics of blood behaving as a 
non-Newtonian fluid theoretically. Resistance to flow 
and wall shear stress increases as stenosis grows and 
stenosis shape parameter increases axial velocity and 
the rate of flow of blood. These increases are however, 
small due to non-Newtonian behaviour of the blood. It 
is observed that increase in shape parameter increases 
the wall shear stress in the upstream of the throat but 
decreases in the downstream. From the computational 
results it can be concluded that although slip velocity 
does not have any considerable effect on the flow 
resistance, but it has a significant role to play in 
reducing wall shear stress. Also, the volumetric flow 
rate is enhanced when the slip velocity increases. It 
appears that the non-Newtonian behaviour of the blood 
is helpful in the functioning of diseased arterial 
circulation.  
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  چکیده
  

  

. است تنگ شریانی بخش خون از طریق از نیوتنی غیر جریان در تنگی و شکل سرعت لغزش بررسی اثر این مقاله هدف از
مسئله با  .مدل شده است غیر متقارن شعاعی تنگی با دایره اي یکنواخت در یک لوله پلاستیک بینگهام سیال به عنوان ونخ

، تنگی لغزش، سرعت تنگی شکل پارامتر تاثیر. بررسی شده است هاي تحلیلی و عددي از تکنیک مشترك تلاش یک
، برشی دیوار تنشتغییرات  .گرفته است مورد بررسی قرار تنگ عروق از میان جریان خون در استرس و عملکرد ارتفاع

 به صورت لغزش و سرعت استرس عملکرد، تنگی شکل پارامتر با محوري و سرعت دبی حجمی، مقاومت در برابر جریان
با  اما افزایش لغزش با جریان حجمیسرعت  محوري و سرعت این نتیجه حاصل شد که .نشان داده شده است گرافیکی
 بسیاري از بیماري ها جدید براي تشخیص ابزار در توسعه می تواند خون از این اطلاعات .یافتعملکرد کاهش  استرس

  .مفید باشد
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