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ABSTRACT

Sometimes the quality of a process or product is described by a functional relationship between a
response variable and one or more explanatory variables referred to as profile. In most researches in
this area the response variable is assumed to be normally distributed. However, occasionally in certain
applications, the normality assumption is violated. In these cases, the Generalized Linear Models
(GLM) such as Gamma regression models are used to characterize the profile. Also, in statistical
process control finding the real time of change in process, called as change point, is necessary because
it leads to saving time and cost in finding assignable cause(s). Therefore, in this paper we consider
Gamma regression profile and use maximum likelihood to estimate the real time of a step change in
Phase II. We evaluate accuracy and precision of the proposed change point estimator by simulation.
The results show that the proposed change point estimator is effective in estimating the real time of
step shifts in the process parameters of Gamma regression profiles. Also, a confidence set for the
process change point based on the logarithm of the likelihood function is presented. Finally, the
performance of the estimator is illustrated through a real case.

doi: 10.5829 /idosi.ije.2015.28.02b.08

1. INTRODUCTION

Control chart is an effectual tool to reduce variation of
process and to monitor quality characteristics.
Occasionally, quality of a product or performance of a
process is described by a relationship between a
response variable and one or more explanatory variables
that known as profile. According to the type of this
relationship, profiles are classified into categories such
as simple linear profiles, multiple linear profiles,
polynomial profiles, multivariate linear profiles, non-
linear profiles, logistic profiles, and so on.

Control charts have been proven to be effective in
detecting out-of-control signals. However, usually the
time of the control chart signals is after the real time of
a change. Identification of the exact time which in
process has changed would simplify exploration and
removing of the assignable cause. Consequently, having
an estimate of the process change point would be very
useful due to reduction of risk of misdiagnosing the
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control chart signals, which often leads to unnecessary
and costly adjustments of the process. Change point
problems are classified according to change types
including step, drift and monotonic shifts. Generally,
step shift happens when the parameter changes suddenly
and remains constant until the assignable cause is
detected and removed. To find the real time of a change,
many authors have suggested several methods. See a
comprehensive review on change point estimation
methods for control chart post signal diagnostics by
Amiri and Allahyari [1]. Perry and Pignatiello [2]
showed that the performance of an MLE is better than
the built-in EWMA and CUSUM estimator in
identifying the change point of a normal and Poisson
process, respectively. Amiri and Khosravi [3] proposed
an MLE change point estimator in high quality
processes under a drift in nonconforming proportion
parameter. Amiri and Khosravi [4] proposed an MLE
change point estimator under monotonic change for
process fraction nonconforming in a high-quality
process monitored by a cumulative count of conforming
control chart. Ghazanfari et al. [5] suggested a
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clustering approach to estimate a step change point.
Zandi et al. [6] introduced an MLE of change point
under a linear trend disturbance in the fraction
nonconforming of a proccess. Noorossana and Heydari
[7] proposed a change point estimator to find the real
time of a monotonic change in the variance of a normal
quality characteristic. Niaki and Khedmati [8] proposed
a multi-attribute 7° control chart to monitor the
parameters vector of multi-attribute Poisson processes
and then presented an MLE of change point for linear
trend and step change disturbances. Moreover, Niaki
and Khedmati [9] applied an MLE of change point in a
high-yield process when linear trend disturbance occurs
in the proportion nonconforming of the process.

Change point estimation after getting a signal from
the control chart is also considered in the area of profile
monitoring. Mahmoud et al. [10] and Zou et al. [11]
proposed methods based on likelihood ratio test to
estimate the step change point in simple linear profiles
in Phases I and II, respectively. Kazemzadeh et al. [12]
used the same method to estimate the change point in
polynomial profiles under a step shift in Phase I.
Fallahnezhad et al. [13] used a bayesian analysis to
estimate the change-point in a sequence of independent
random variables from exponential distributions.
Keramatpour et al. [14] proposed a remedial measure to
remove the effect of autocorrelation in monitoring of
autocorrelated polynomial profiles. Then, after using
some traditional methods in the literature to monitor the
polynomial profiles, they estimated the real time of a
step change in the parameters of the polynomial
profiles.

In most of researches, distribution of the response
variable is assumed to be normal, while in some
problems in real world, response variable may follow
other exponential family distributions such as Bernoulli,
Poisson, Exponential, Gamma, and etc. Sharafi et al.
[15] suggested an MLE method to find the exact time of
a step change in monitoring of Binary profiles in Phase
II. Sharafi et al. [16] investigated estimation of change
point of Binary profiles with a linear trend disturbance
as well. Recently, Sharafi et al. [17] proposed an MLE
of change point method to identify the real time of a
step change in Phase II monitoring of poisson regression
profiles. To the best of our knowledge, there is no
method for estimating the real time of a step change in
Gamma regression profiles. Despite there are many real
cases which can be characterized by a Gamma
regression profile such as the amount of rainfall
accumulated in reservoir under different levels of
temperature. Hence, it is important to monitor Gamma
regression profiles and estimate the real time of a
change in the parameters of Gamma regression profile.

In this paper, we propose an MLE method to
estimate step change point in Phase II monitoring of
Gamma regression profiles. The structure of the paper is
as follows: section 2 explains the Gamma regression

model and its parameters estimation procedure. In
section 3, the change point model is presented. The
performance of the proposed model is investigated in
section 4 through simulation studies. In section 5, a
confidence set is defined and the set cardinality and
coverage percentage criteria are computed to evaluate
the performance of the change point estimator. In the
next section, a real case presented. Finally, conclusions
and some recommendations for future researches are
provided.

2. GAMMA REGRESSION MODEL

In this paper, we concentrate on estimating the time of step
shifts in the Gamma regression profiles in Phase II.
Gamma distribution is a distribution that arises naturally
in processes for which the waiting times between events
are relevant. Thus, there are many real cases in which
the response variable follows Gamma distribution. It
can be used in a range of disciplines including queuing
models, climatology, and financial services. Examples
of events that may be modeled by Gamma distribution
include:

« The size of loan defaults or aggregate insurance
claims.

The flow of items through manufacturing and
distribution processes.

The load on web servers.

Waiting time between Poisson distributed events.
The aforementioned Gamma quality characteristics
can be related to an explanatory variable and describe a
Gamma regression profile. For example, the last quality
characteristic and the type of tools or materials used can
characterize a Gamma regression profile.

Gamma distribution belongs to a larger class of
distributions called the exponential family. Other
distributions belonging to the exponential family are the
normal, poisson, exponential, and  binomial
distributions. There are three components that comprise
GLM: (i) a random component, the random component
is the outcome (Y) and follows a distribution from the
exponential family. (ii) a systematic component which
needs the x’s to be combined in the model as a linear
function. (iii) the link function that relates the mean of
response variable to linear combination of explanatory
variables. Let assume there are P predictor variables for
any of n independent experimental sets, which are

shown by x;=(x x;)" i which " =1,
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such as the identity, m= xp , and the log, log(m) =xB,

are used with Gamma distributed data [18]. The identity
link requires restrictions on P ; the log link does not.

"The log link is probably the most commonly used for
Gamma regression" [19]. Hence, the log link function is
used in this paper as follows:

m.
Iog(Tj):ﬁ,xﬂ+ﬁ2xj2+,,,+ﬁpxjp, (1)
J

wherep = BBy B, )", is the regression parameters

vector. We consider xj =1 for B, as the intercept of
the model. The alternative equation which directly
specify 4 j is as follows:

m;
Ar=——n— 2)
T exp(x)'B)

In the field, Albert and Anderson [20] used the
following likelihood function to approximate the model
parameters:

2 A
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On the other hand, Equation (4) can be concluded from
Equation (2):

m my m, T
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andy = (¥;,¥,,..... ¥,). Thus, Equation (5) is obtained by
replacing Equations (4) in Equation (3):

mj - om;
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poexp(xi B)  mj-
O — (5]

(e
exp(ijB) Yi (5)
Vi .

I, y) =
Y Jj=1 F(mj)

3. PROPOSED MLE STEP CHANGE POINT

It is supposed that the process performs in a state of
statistical control with samples that coming from a

Gamma distribution with the known parameters p =,
that is a P-dimensional vector in PhaseIl. Thus, the
mass probability function is as follows:

m.
()Y
exp(x;TB,) Y m; m. m.-l
e B ) Ty’ (6)
exp(xj B())

(mj-l),’

f(}’,‘j) =

where Yij is the value taken by the response variable for

the /™ value of the predictor variable in the i profile.
After an indefinite amount of time passes, in an
unknown profile in 7, which called as the process
change point, the parameteres of the process change to
an unknown out-of-control state. The parameters after
tcan be denoted by g, =, +4. Since we consider a

step shift in Phase II, the parameters remain at the new
level until the source of the assignable cause is
identified and omitted. Hence, in the likelihood function
for i=1, 2, ..., T, the process parameter A is equal to

it’s known in-control value A, . Similarly, for profiles
i=t+1, 7 +2, ..., T,it become equal to some unknown
parameter A, where T is the last profile sampled, in
which, unknown parameters in the model are 7 and
A, , which represent the last profile taken from an in-

control process and the out-of-control process
parameter, respectively. To estimate these unknown
parameters along with the change point, we use the
MLE approach. The proposed change point estimator is

denoted as 7 . We describe the level of shift § in Bo

and then assess the performance of change point
estimator by shifts in the parameters. Based on the
aforementioned explanations, the likelihood function for
Gamma regression profile is given by:
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The MLE of 7 is the value of 7 that maximizes the
likelihood function in Equation (7) or, equivalently, its
logarithm. Hence, it is better to take the logarithm of the
likelihood function which is shown in Equation (9).
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To determine the unknown elements of vector B, in
Equation (8), we should take the partial derivatives from
the vector B, respect to its elements B, and j,,, then
solve the equations to find the MLE of the parameters
By, and B;;. Hence, 301 is computed by using Equation
(9) as follows:

g S MYy
l‘[+11 leXP(XJﬁn))

S my(T-2)
j=1

By, = In( )

by obtaining Boz and replacing it in partial derivative
function respect to B,;;, Equation (10) is obtained where
there is no closed-form solution for B;;. Hence, we use

Newton’s method to solve B;; in Equation (10) at each
potential change point value. This provides an estimate
of B;; for each 7 without requiring an explicit closed-

form expression.

51(’~'a)’,j) % n xly,jnml(T—ﬂ:) )
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Newton’s method is a derivative-based root finding
algorithm that uses the linear approximation. If 7 was
known, the Newton’s method could be used to solve for

B,in Equation (10). The ﬁn,r is computed through an
iterative algorithm using Equation (11). In this equation,
the initial value for f3 110,k 18 set equal to zero:

A f(ﬁ 117 k)
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and we have:
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After computing [;, 1. based on Newton’s algorithm
and by using Equation (13), we can compute Bm,r for
each 7. Then, we replace [;01,1 and [;, 1. in the vector of

ﬁh in the logarithm of likelihood function for all
possible change point values. The MLE of the change
point 7 is the value which maximizes the expression in

Equation (8). Hence, the estimator of the change point
by using the MLE approach is shown as follows:

argmax[z Z m; ln(LT)+ z Z (m;-1)
i=1 j=1 CXp(x BO) i=1 j=1

ITI
In(y;) - ZZyU(7)+ Z Z(m ~Dln(y;) (14)

1 j=1 exp(x By) i=rtlEl

ITI ITI :
£ S g )—ZZye—?—n

i=t+l j=1 exp(x Bl =+l j=1 b exp(x Blr

We use a shewhart T* control chart to monitor a Gamma
regression profile and estimate change point in Phase II.
It should be noted that Yeh et al. [21] introduced five

Hotelling T control charts to monitor Binary profiles in

2 .
Phase I that any of these T™ charts uses a different
method to estimate the mean vector and covariance

matrix. They showed that the 7> control chart, which
estimates the covariance matrix by averaging the
covariance estimates of each given sample, is more
effective in detecting both step and drift shifts. This
control chart is applied in Phase II with the assumption
that the mean vector and covariance matrix are known.

The T statistic for sample i(i= 1,2,...,T) in Phase II is
defined as:

T‘Z =B 'Bo)T Zil(ﬁ,‘ 'Bo), (15)
where B, and Y. are the mean vector and covariance
matrix of Gamma regression parameters, respectively
that ). is defined by Equation (16). When the process
is in-control, the upper control limit for the proposed

control chart is equal to xia which is the a percentile
of the chi-square distribution with 2 degrees of freedom
and W = diag(var(y;;), var(y;, ), ..., var(y;, )) is a PxP
diagonal matrix.

¥ - xTwxyl (16)

when the T” control chart is employed to monitor a
process, as long as the plotted points fall below the
upper control limit, the process is assumed in-control.
However, when a point exceeds the upper control limit,
the control chart signals a change in the parameters of
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the process and the process is assumed to be out-of-
control. In these situations, the most important problem
is that there is usually a considerable time lag between
the signaling time and the real time at which the change

2
has happened. Thus, whenever theT control chart
signals an out-of-control state, the real time of a change
can be estimated via Equation (14).

4. PERFORMANCE OF THE MLE ESTIMATOR

In this section, the performance of the proposed
estimator is examined using the Monte Carlo simulation

with an example. We assume that B, is a 2-dimensional
vector for ease representation of formulation and B,

and B,, are the in-control intercept and the slope of
the regression function, respectively, shown by vector
Bo = (,800,/3,0)T. Moreover, we set the design matrix

X as:

1 1 1 1
X_[log(IO) log(15) =~ “log(45) log(SO):ll
It is assumed that the in-control B vector is
Bo=(-4, 2)", which comes from the historical dataset

in Phase I. In addition, the covariance matrix of the
Gamma regression parameters ), in Phase II is
computed by the following equation:

5. of  pojo, |_( 20472 -05433)
po,c, o) ~0.5433  0.1446

Assuming a equal to 0.005, the upper control limit for
the T control chart is equal to 122’0'005 =10.59, =9

and mj=30 for all /=1, ... 9. Now, assume the
parameters of Gamma regression model have increasing

shifts and the vector B, changes to B; =B, +8 where

8 =(8,0,,6,0,) and §,, 6, are constant coefficients of
shifts in the intercept and slope of the Gamma
regression profile, respectively, and o, and o, are equal

to 1.4308 and 0.38026, respectively. Also, the
convergence threshold in the Newton’s method to
estimate f3,,is considered equal to 0.0005. A Monte
Carlo simulation study is performed to test the
performance of the estimator of the step change point.
In this study, the process change point is considered at
7 =50 . During the generating of profilesi =1, 2, ..., 50,

the process parameter is equal to its known in-control
value of B, . Therefore, for these profiles, the dependent

observations are randomly generated from a Gamma
. . T .
regression with parameter vector By =(4,2) . It is

assumed from profile 51, observations are generated
from the out-of-control process with parameter vector

. 2 .
B; until the T~ control chart signals an out-of control

state. At this time, the change point estimator in
Equation (14) is used and the real time of the process
change is determined. This procedure is repeated 10,000
times for different step shifts considered in the paper.
The simulation results are demonstrated in Tables 1,
2, 3 and 4. The mean and the corresponding standard
error of simultaneous and individual shifts in paramters
of Gamma regression profile are summarized in Tables
1 and 2, respectively. However, the precision
performance of the estimator under the mentioned shifts
is illustrated in Tables 3 and 4. In each simulation run,
E(T) is the expected value of the number of samples
taken until the first alarm happens; so, E(T)=ARL+50.
Table 1 shows the average change point estimator, the
standard error of the change point estimator and E(T)
under different magnitudes of step shifts that are
considered in this paper. For example, we conclude
from the results of simulation for shift equal to
(0.01,0.02), the expected number of samples taken until
the signal is E(T)=185.98. For this case, the average of
the change point estimates is 50.58, which is close to the
actual change point of 7 = 50 as shown in Table 1.
Moreover, the standard error of the change point
estimator is 0.12. As another example from the Table 2,
for shift equal to (0.03,0), the expected number of
samples taken until the signal is E(7)=180.06. For this
case, the average of the change point estimates is 50.53
which is close to the actual change point and the
standard error of the change point estimator is 0.08.
Hence, the proposed change point estimator is suitable
for all types of shifts even in small shifts in both
simultaneous and individual changes. Furthermore, as
the magnitude of the step change increases, the
performance of the proposed estimator improve
significantly. In other words, the proposed method
works well and provides adequately accurate and
reliable estimates of the real change point. In order to
illustrate the benefit of the proposed change point
estimator, E(7 ) is compared to E(T) in Figure 1. It can
be easily seen from Figure 1 that if one only relies on
E(T) and searches for the special cause around it, most
probably, one will not be able to find the cause.
However, the change point estimator? , on average,
directs one accurately to the actual change point and
enables one to find the cause more effectively. The
results in Table 2 are similar to Table 1. However, as
discussed before, shitfs in the parameters are separetely.
As shown in Tables 1 and 2, our proposed change point
estimator performs satisfactory for all types of shifts. By
comparing the results of simultaneous and individual
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changes in the regression parameters, we understand
that accuracy of the change point estimator for
simultaneous shifts is better than the individual shifts in
the intercept or slope. Also, accuracy of the change
point estimator for shift in the intercept of Gamma
regression model is better than the shift in the slope.

TABLE 1. The averages and standard errors of the change
point estimator under different step shifts in the parameters
(B,,B,) simultaneously with 10,000 simulations runs when P

=2 and 7 =50.

(6,,8,) E(T) T se(? )
(0.01,0.01) 244.18 52.89 0.23
(0.01,0.02) 185.98 50.58 0.12
(0.01,0.04) 107.18 49.78 0.06
(0.01,0.06) 86.18 50.04 0.03
(0.02,0.01) 183.36 50.38 0.09
(0.02,0.02) 105.45 49.75 0.06
(0.02,0.04) 88.02 49.82 0.04
(0.02,0.06) 67.93 49.98 0.03
(0.03,0.01) 129.26 49.69 0.05
(0.03,0.02) 107.89 49.77 0.03
(0.03,0.04) 77.75 49.96 0.02
(0.04,0.01) 110.05 49.75 0.06
(0.04,0.02) 90.42 49.79 0.05
(0.05,0.01) 88.19 49.85 0.04
(0.05,0.02) 78.47 49.97 0.03

TABLE 2. The averages and standard errors of the change
point estimator under different step shifts in the parameters
(B,.B,) individually with 10,000 simulations runs when P

=2 and 7 =50.

(3,.8,) E(T) z se(?)
(0,0.01) 265.41 53.71 0.3
(0,0.02) 199.15 52.26 0.15
(0,0.03) 191.54 50.97 0.09
(0,0.04) 114.76 50.34 0.09
(0,0.05) 107.45 50.08 0.03
(0,0.06) 99.94 50.06 0.02
(0.01,0) 258.9 52.97 0.28
(0.02,0) 189.9 51.95 0.11
(0.03,0) 180.06 50.53 0.08
(0.04,0) 111.05 50.29 0.07
(0.05,0) 95.1 50.26 0.03
(0.06,0) 85.54 49.95 0.02
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Figure 1. Expected time of a signal with T control chart,
average of change point estimates E(7) by MLE in 10,000
replicated simulation for 7 =50.

The results of the proportion of 10,000 simulation
runs in Tables 3 and 4 demonstrate that the estimator
lies within a specified tolerance of the real change point
value under different shifts. Assume that precision i
under the given shifts are percent of results which
distance of the change point estimator from exact
change point is 7 or less than 1.

In other words, a measure of the precision of the
change point estimator can be examined by constructing
a frequency distribution for P(/7-7 /< i) where i is
equal to 0, 1, ..., 7, so the results demonstrate that the
estimator lies within a specified tolerance. For example
in Table 3, under shift equal to (0.02, 0.02), in 58% of
simulation runs, distance of change point estimator from
exact change point is less than 2 and probability that 7
lies within tolerance of 2 or less from the real change
point is 0.58 that named as precision 2. Moreover, in
this case in 35% of the simulation runs, the estimator
correctly identify the real time of the change. Also, we
notice that the percentage of those simulation trials
identifying the change point correctly are 8%, 14%,
30%, 45%, 21%, 35%, 44% , 58%, 67% and 36%, 48%,
71%, 88%, 90% and 91% for the magnitude of shifts
(6,.6,)=(0.01,0.01), (0.01,0.02), (0.01,0.04),

(0.01,0.06), (0.02,0.01), (0.02,0.02), (0.02,0.04),
(0.02,0.06), (0.03,0.01) and (0.03,0.02), (0.03, 0.04),
(0.04,0.01), (0.04,0.02), (0.05,0.01) and (0.05,0.02)
respectively. Clearly, the probability of exact estimation
increases as the magnitude of the step shift increases.
Hence, as the magnitude of the step change increases,
the performance of the estimator improves significantly.
Also, the precision of the change point estimator under
individual shifts in the intercept and slope are
summarized in Table 4. Precision analysis of the change
point estimator in this case is similar to the
simultaneously shifts in Table 3.
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The results show the suitable precision of the
proposed estimator in estimating the real time of a step
change in the parameters intercept and slope separately.
By comparison of Tables 3 and 4, we conclude that the
precision of the change point  estimator for
simultaneous shifts in parameters of Gamma regression
model is better than the precision estimator under shifts
in the intercept or slope shifts individually.
Furthermore, we can conclude that precision of the
change point estimator for given shifts in the intercept
of Gamma regression model is better than shifts in the
slope.

5. CARDINALITY AND COVERAGE PERCENTAGE
OF CONFIDENCE SET ESTIMATOR

We consider constructing confidence set on the process
change point. Such a set would provide a window of
possible change points that covers the true process
change point with a given level of confidence and
enhances the identification chance of special cause. Box
and Cox [22] suggested constructing confidence regions
on parameter estimates using the likelihood function by
a confidence set of the form:

CS = {t:log, L(t) > log, L(7)— D}, 17

where, log, L(7) is the maximum of the log likelihood

function evaluated over all possible change points t If
the value of the log likelihood function at time ¢,

log, L(t), exceeds the maximum of the log likelihood

function minus a reference value D, then tis included in
the confidence set.

We use critical values of D between 1 and 8 and §
vectors given in Figure 1 to compute the cardinality and
coverage percentage of confidence set estimator. Figure
3 provides a surface plot showing the relationship

230

among cardinality, coverage, & and D for the
confidence set estimator. For example, if § =(0.04,0.01)
and D = 8, the confidence set obtained using Equation
(17) will yield an expected cardinality of approximately
37.3. In addition, 47 percent of possible change points
contain the change point estimator. Also, the result of
coverage and cardinality regarding to different small
values of D and § are reported in Table 5 for more
clarification.

60 80 100 120
Cardinality

0 20 20
Figure 2. Surface plot obtained from confidence set estimator
showing estimated relationships between set cardinality,
coverage, and & value D. Estimated surface obtained from
10,000 independent simulation runs and 7 = 50 .

TABLE 3. Estimated precision performances under shifts in parameters of B 0 simultaneously with 10,000 simulations runs when P

=2 and 7 =50.

(81,85) Precision 0 Precision 1 Precision 2 Precision 3 Precision 4 Precision 5 Precision 6 Precision 7
(0.01,0.01) 0.08 0.17 0.23 0.3 0.35 0.4 0.45 0.56
(0.01,0.02) 0.14 0.28 0.39 0.47 0.53 0.58 0.69 0.72
(0.01,0.04) 0.3 0.52 0.64 0.73 0.79 0.83 0.95 1
(0.01,0.06) 0.45 0.69 0.77 0.83 0.97 1
(0.02,0.01) 0.21 0.32 0.49 0.52 0.69 0.89 0.95 1
(0.02,0.02) 0.35 0.4 0.58 0.65 0.78 0.9 0.98 1
(0.02,0.04) 0.44 0.63 0.76 0.85 0.94 0.97 1
(0.02,0.06) 0.58 0.7 0.89 0.95 1
(0.03,0.01) 0.67 0.79 0.85 0.96 1
(0.03,0.02) 0.36 0.43 0.66 0.74 0.8 0.97 1
(0.03,0.04) 0.48 0.71 0.86 0.98 0.89
(0.04,0.01) 0.71 0.85 0.96 1 1
(0.04,0.02) 0.88 0.95 0.98 1
(0.05,0.01) 0.9 0.96 1
(0.05,0.02) 0.91 0.98 1
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TABLE 4. Estimated precision performances under shifts in parameters of B 0 individually with 10,000 simulations runs when P

=2 and 7 =50.
(8;,85) Precision 0 Precision 1 Precision 2 Precision 3 Precision 4 Precision 5 Precision 6 Precision 7
(0,0.01) 0.05 0.11 0.22 0.26 0.35 0.39 0.42 0.5
(0,0.02) 0.12 0.25 0.34 0.41 0.5 0.55 0.57 0.69
(0,0.03) 0.26 0.33 0.42 0.54 0.65 0.71 0.86 0.95
(0,0.04) 0.29 0.45 0.55 0.67 0.7 0.79 0.86 0.98
(0,0.05) 0.31 0.5 0.59 0.75 0.81 0.95 0.99 1
(0,0.06) 0.42 0.57 0.87 0.9 0.96 1
(0.01,0) 0.06 0.13 0.2 0.29 0.31 0.45 0.5 0.67
(0.02,0) 0.19 0.3 0.41 0.5 0.63 0.79 0.91 0.98
(0.03,0) 0.35 0.45 0.54 0.6 0.79 0.86 0.95 1
(0.04,0) 0.41 0.54 0.74 0.88 0.91 0.95 0.98 1
(0.05,0) 0.56 0.65 0.76 0.89 0.92 0.94 1
(0.06,0) 0.7 0.85 0.94 1

6. A REAL CASE

In this section, data set from Miller and Wu [23] is used
to show the applicability of the Gamma regression
profile and evaluate the performance of the change point
estimator.

In this case, the weight of the mold is the response
variable and is measured over eight levels of a high
injection pressure factor. It is known that the amount of
material injected could by affected by this factor.
Therefore, the relationship between the weights of the
mold and pressure could be characterized by a Gamma
regression profile. High injection pressure is varied over
the range of 650-1000 psi. Miller and Wu [23] presented
the data of this real case as 32 runs of an experimental
design. We used the data set of run 5 with four
replications. First, we estimated parameters of the
Gamma regression models for four profiles and
computed the average of the intercept and the slope
estimates of the four profiles equal to 6.2543 and
0.0003, respectively. Then, we estimated the my
(=1,2,...,8) based on the observations in each level of
the explanatory variable and then computed the m equal
to 219265. After that, using the m and Equation (2),
the scale parameter of the Gamma distribution in each
level of the explanatory variable is computed as follows:
A =[346.7 341.6 336.5 331.5 326.6 321.7 3169 312.2].
Therfore, the parameters of the Gamma regression
profile are estimated and known. To check the
performance of the proposed estimator, we generated
new data based on a shift with magnitude of 0.8 in the
intercept parameter of the Gamma regression profile

and continued generating the data until a signal is taken
by the T? control chart. Then, we applied the MLE
change point estimator and estimated the change point.
The T? control chart on the real samples as well as
simulated ones is illustrated in Figure 3. Also, the real
change point which is 4 ™ point and the estimated
change point which is 3™ point are shown in this Figure
as well. This shows the suitable performance of the
proposed estimator in real application.

TABLE 5. The relationships between set cardinality,
coverage, and & value D that obtained from 10,000

independent simulations runs and 7 = 50 .

D 1 2 3 4 5

5

(0.01,0.01)  5.68  9.67 13.16 17 22.56
% (0.02,0.01) 697  9.68 13.77 18.39  25.05
? (0.01,0.02) 737 12.36 16.15 20 28.64
§ (0.03,0.01) 753 13.37 18.16 22.9 30.09

(0.05,0.02)  7.71 13.67 18.41 24.65  30.39

(0.05,0.02) 391 6.65 9.13 1232 16.23
% (0.03,0.01) 5.01 7.33 10.41 1342 1656
é (0.01,0.02) 5.02 7.71 10.55 14.5 17.89
© (0.02,0.01) 5.1 7.78 10.59 1452 18.42

(0.01,0.01) 523 8.02 12.12 1539 20.56
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Figure 3. T2 control chart with a step change in the intercept
of Gamma regression profile.

7. CONCLUSION AND FUTURE RESEARCHES

There are many real cases in which the response
variable of the profiles does not follow Normal
distribution. In these situations, the Generalized Linear
Models such as Gamma regression models are used to
describe the profile. In this paper, an MLE approach
was proposed to identify the time of a step shift in Phase
IT monitoring of Gamma regression profiles. Then, the
performance of the proposed change point estimator
was evaluated through simulation studies. Our results
coming from Monte Carlo simulation revealed that the
change point estimator performs satisfactory under
different shifts. Also, the precision and accuracy of the
change point estimator for simultaneous shifts is better
than the accuracy and precision of the estimator under
shifts in the intercept or the slope of the Gamma
regression model individually. Moreover, the accuracy
and precision of the change point estimator only for
shifts in the intercept of Gamma regression model is
better than shifts in the slope. Finally, cardinality and
coverage percent of a confidence set estimator is
analyzed.

Developing a change point estimator for the other
change types such as drift and monotonic could be a
fruitful area for researches. Also, investigating the other
methods such as clustering and artificial neural network
for step change point estimation could be considered as
future researches. One also may consider the effect of
other link functions such as reciprocal link function on
the change point estimator and its performance as well.
Finally, the effect of missing data (Ashuri and Amiri
[24]) on change point estimates can be investigated as
future researches.
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