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A B S T R A C T  
 

 

Sometimes the quality of a process or product is described by a functional relationship between a 
response variable and one or more explanatory variables referred to as profile. In most researches in 
this area the response variable is assumed to be normally distributed. However, occasionally in certain 
applications, the normality assumption is violated. In these cases, the Generalized Linear Models 
(GLM) such as Gamma regression models are used to characterize the profile. Also, in statistical 
process control finding the real time of change in process, called as change point, is necessary because 
it leads to saving time and cost in finding assignable cause(s). Therefore, in this paper we consider 
Gamma regression profile and use maximum likelihood to estimate the real time of a step change in 
Phase II. We evaluate accuracy and precision of the proposed change point estimator by simulation. 
The results show that the proposed change point estimator is effective in estimating the real time of 
step shifts in the process parameters of Gamma regression profiles. Also, a confidence set for the 
process change point based on the logarithm of the likelihood function is presented. Finally, the 
performance of the estimator is illustrated through a real case. 
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1. INTRODUCTION1 
 
Control chart is an effectual tool to reduce variation of 
process and to monitor quality characteristics. 
Occasionally, quality of a product or performance of a 
process is described by a relationship between a 
response variable and one or more explanatory variables 
that known as profile. According to the type of this 
relationship, profiles are classified into categories such 
as simple linear profiles, multiple linear profiles, 
polynomial profiles, multivariate linear profiles, non-
linear profiles, logistic profiles, and so on. 

Control charts have been proven to be effective in 
detecting out-of-control signals. However, usually the 
time of the control chart signals is after the real time of 
a change. Identification of the exact time which in 
process has changed would simplify exploration and 
removing of the assignable cause. Consequently, having 
an estimate of the process change point would be very 
useful due to reduction of risk of misdiagnosing the 
                                                        
1*Corresponding Author’s Email: amiri@shahed.ac.ir (A. Amiri) 

control chart signals, which often leads to unnecessary 
and costly adjustments of the process. Change point 
problems are classified according to change types 
including step, drift and monotonic shifts. Generally, 
step shift happens when the parameter changes suddenly 
and remains constant until the assignable cause is 
detected and removed. To find the real time of a change, 
many authors have suggested several methods. See a 
comprehensive review on change point estimation 
methods for control chart post signal diagnostics by 
Amiri and Allahyari [1]. Perry and Pignatiello [2] 
showed that the performance of an MLE is better than 
the built-in EWMA and CUSUM estimator in 
identifying the change point of a normal and Poisson 
process, respectively. Amiri and Khosravi [3] proposed 
an MLE change point estimator in high quality 
processes under a drift in nonconforming proportion 
parameter. Amiri and Khosravi [4] proposed an MLE 
change point estimator under monotonic change for 
process fraction nonconforming in a high-quality 
process monitored by a cumulative count of conforming 
control chart. Ghazanfari et al. [5] suggested a 
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clustering approach to estimate a step change point. 
Zandi et al. [6] introduced an MLE of change point 
under a linear trend disturbance in the fraction 
nonconforming of a proccess. Noorossana and Heydari 
[7] proposed  a change point estimator to find the real 
time of a monotonic change in the variance of a normal 
quality characteristic. Niaki and Khedmati [8] proposed 
a multi-attribute 2T control chart to monitor the 
parameters vector of multi-attribute Poisson processes 
and then presented an MLE of change point for linear 
trend and step change disturbances. Moreover, Niaki 
and Khedmati [9] applied an MLE of change point in a 
high-yield process when linear trend disturbance occurs 
in the proportion nonconforming of the process.  

Change point estimation after getting a signal from 
the control chart is also considered in the area of profile 
monitoring. Mahmoud et al. [10] and Zou et al. [11] 
proposed methods based on likelihood ratio test to 
estimate the step change point in simple linear profiles 
in Phases I and II, respectively. Kazemzadeh et al. [12] 
used the same method to estimate the change point in 
polynomial profiles under a step shift in Phase I. 
Fallahnezhad et al. [13] used a bayesian analysis to 
estimate the change-point in a sequence of independent 
random variables from exponential distributions. 
Keramatpour et al. [14] proposed a remedial measure to 
remove the effect of autocorrelation in monitoring of 
autocorrelated polynomial profiles. Then, after using 
some traditional methods in the literature to monitor the 
polynomial profiles, they estimated the real time of a 
step change in the parameters of the polynomial 
profiles.  

In most of researches, distribution of the response 
variable is assumed to be normal, while in some 
problems in real world, response variable may follow 
other exponential family distributions such as Bernoulli, 
Poisson, Exponential, Gamma, and etc. Sharafi et al. 
[15] suggested an MLE method to find the exact time of 
a step change in monitoring of Binary profiles in Phase 
II. Sharafi et al. [16] investigated estimation of change 
point of Binary profiles with a linear trend disturbance 
as well. Recently, Sharafi et al. [17] proposed an MLE  
of change point method to identify the real time of a 
step change in Phase II monitoring of poisson regression 
profiles. To the best of our knowledge, there is no 
method for estimating the real time of a step change in 
Gamma regression profiles. Despite there are many real 
cases which can be characterized by a Gamma 
regression profile such as the amount of rainfall 
accumulated in reservoir under different levels of 
temperature. Hence, it is important to monitor Gamma 
regression profiles and estimate the real time of a 
change in the parameters of Gamma regression profile. 

In this paper, we propose an MLE method to 
estimate step change point in Phase II monitoring of 
Gamma regression profiles. The structure of the paper is 
as follows: section 2 explains the Gamma regression 

model and its parameters estimation procedure. In 
section 3, the change point model is presented. The 
performance of the proposed model is investigated in 
section 4 through simulation studies. In section 5, a 
confidence set is defined and the set cardinality and 
coverage percentage criteria are computed to evaluate 
the performance of the change point estimator. In the 
next section, a real case presented. Finally, conclusions 
and some recommendations for future researches are 
provided. 
 
 
2. GAMMA REGRESSION MODEL 
 
In this paper, we concentrate on estimating the time of step 
shifts in the Gamma regression profiles in Phase II. 
Gamma distribution is a distribution that arises naturally 
in processes for which the waiting times between events 
are relevant. Thus, there are many real cases in which 
the response variable follows Gamma distribution. It 
can be used in a range of disciplines including queuing 
models, climatology, and financial services. Examples 
of events that may be modeled by Gamma distribution 
include: 
v The size of loan defaults or aggregate insurance 

claims.  
v The flow of items through manufacturing and 

distribution processes.  
v The load on web servers.  
v Waiting time between Poisson distributed events. 

The aforementioned Gamma quality characteristics 
can be related to an explanatory variable and describe a 
Gamma regression profile. For example, the last quality 
characteristic and the type of tools or materials used can 
characterize a Gamma regression profile. 

Gamma distribution belongs to a larger class of 
distributions called the exponential family. Other 
distributions belonging to the exponential family are the 
normal, poisson, exponential, and binomial 
distributions. There are three components that comprise 
GLM: (i) a random component, the random component 
is the outcome (Y) and follows a distribution from the 
exponential family. (ii) a systematic component which 
needs the x’s to be combined in the model as a linear 
function. (iii) the link function that relates the mean of 
response variable to linear combination of explanatory 
variables. Let assume there are P predictor variables for 
any of n independent experimental sets, which are 
shown by , ,  . ( . ). ,j1 j j

T
2 px x x=j x  in which " j=1, 

2 ,   . . . , n." Assume " y j " as a Gamma distribution 

with parameters "( j jm , λ )". Then, the Gamma regression 
profile is modeled by relationship between mean of a 
Gamma random variable m j

( )
λ j

and P predictor variables 

through a log link function, "Often, noncanonical links 
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such as the identity, m = xβ , and the log, log(m) = xβ , 
are used with Gamma distributed data [18]. The identity 
link requires restrictions on β ; the log link does not. 
"The log link is probably the most commonly used for 
Gamma regression" [19]. Hence, the log link function is 
used in this paper as follows:  

2 ,j
1 j1 j 2 p jp

j

m
log( ) = x + x + +. . . 

λ
 xβ β β  (1) 

where ( T
1 2 p, , . . . ), β β β=β , is the regression parameters 

vector. We consider 1j1x ≡
 
for 1β

 
as the intercept of 

the model. The alternative equation which directly 
specify jλ  is as follows: 

,
exp( )

j
j

m
λ = T

jx β
 (2) 

In the field, Albert and Anderson [20] used the 
following likelihood function to approximate the model 
parameters: 

1

1
( ) .

( )

j
n j j j j

j
j j

m
ym

l y e
m

λ λ

=

−−
∏=

Γ
y, λ  (3) 

On the other hand, Equation (4) can be concluded from 
Equation (2): 

( ) ( , , ..., ) ,
exp( ) exp( ) exp( )

Tn1 2
n

mm m
1 2λ , λ , ..., λ= = T T T

1 2 nx x x
λ

β β β
 (4) 

and ...., ).1 2 n(y , y , y=y  Thus, Equation (5) is obtained by 

replacing Equations (4) in Equation (3): 

1

1

( ) ( )
exp( ) exp( )

( ) .
( )

j j j
jn j

jj j

m m m
y

m
l y e

m

−

=

−

∏=
Γ

T Txj jx
y

β β
λ,

 

(5)
 

 
 
3. PROPOSED MLE STEP CHANGE POINT 
 
It is supposed that the process performs in a state of 
statistical control with samples that coming from a 
Gamma distribution with the known parameters 0=β β  
that is a P-dimensional vector in Phase ΙΙ . Thus, the 
mass probability function is as follows: 

)
exp( ) 1

)
exp( )

( ) ,

j
ij

j j j
j

ij
j

m
-( y

m m m
e ( yi

f y
(m - 1)!

−

=

T
j 0

T
j 0

x

x

β

β  
(6) 

where yij  is the value taken by the response variable for 

the jth value of the predictor variable in the ith profile.  
After an indefinite amount of time passes, in an 
unknown profile in τ , which called as the process 
change point, the parameteres of the process change to 
an unknown out-of-control state. The parameters after 
τ can be denoted by 0 + δ1β = β . Since we consider a 
step shift in Phase II, the parameters remain at the new 
level until the source of the assignable cause is 
identified and omitted. Hence, in the likelihood function 
for i 1,  2, ..., τ= , the process parameter λ  is equal to 
it’s known in-control value 0λ . Similarly, for profiles 
i 1,  2, ..., ,Tτ τ= + + it become equal to some unknown 

parameter 1
λ  where T is the last profile sampled, in 

which, unknown parameters in the model are τ  and 

1λ , which represent the last profile taken from an in-
control process and the out-of-control process 
parameter, respectively. To estimate these unknown 
parameters along with the change point, we use the 
MLE approach. The proposed change point estimator is 
denoted as τ̂ . We describe the level of shift δ  in 0β  
and then assess the performance of change point 
estimator by shifts in the  parameters. Based on the 
aforementioned explanations, the likelihood function for 
Gamma regression profile is given by: 

11

1 1 1 1

1 1

( )
exp( )

)
exp( )

( , )
( 1)!

1

n j

jn n ij j j

i j i j

n
ji j

m
yij

m m m
( y eij

l ij
m

τ

τ τ

ττ

==

= = = =

= =

−

∏ ∏ ∏ ∏

= ×
∏ ∏ −

∑∑
− T

j
T

xj

x

y
0

0

β

β

)
exp( )1 1

1 1 1 1

1 1

)
exp( )

1

.
( 1)!

j
T n m

( ijT n T nj j j i j
iji j i j

T n
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(

ymm
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m

τ

τ τ

τ

= + =

= + = = + =

= + =
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j 1x β
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(7) 

The MLE of τ  is the value of τ  that maximizes the 
likelihood function in Equation (7) or, equivalently, its 
logarithm. Hence, it is better to take the logarithm of the 
likelihood function which is shown in Equation (9). 

1) !
1 1 1 1

lnl( , y ) ln( ) ln(( )
exp( )

n n
j ji j i j

mj
m mij

τ τ
τ −

= = = =
∑ ∑ ∑ ∑= −T

xj 0β

1 1 1 1
( 1) ln(y ) ( )

exp( )

n n j
j ij iji j i j

m
m y

τ τ

= = = =
∑ ∑ ∑ ∑+ − − T

x j 0β
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T n T n j
j ji j i j

m
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xj β1
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y m

τ τ
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(8) 
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To determine the unknown elements of vector 1β in 
Equation (8), we should take the partial derivatives from 
the vector 1β respect to its elements 01β  and 11β , then 
solve the equations to find the MLE of the parameters 

01 11 and β β . Hence, 01β
)

is computed by using Equation 
(9) as follows: 

1 111

1

exp( )
ln ( ).

( )
ˆ

T n j ij

j ji
01 n

j
j

m y
x

m T

τ β

τ
β

== +

=

∑ ∑

=
−∑

 (9) 

by obtaining ˆ
01β and replacing it in partial derivative 

function respect to 11β , Equation (10) is obtained where 

there is no closed-form solution for 11β . Hence, we use 

Newton’s method to solve 11β  in Equation (10) at each 
potential change point value. This provides an estimate 
of 11β  for each τ without requiring an explicit closed-
form expression.  

1 1

11

( , ) ( )
( )

( ( )) exp( )
exp( )

T nij j ij j
T n j ji j11 11 j

j 11 ji

l y x y nm T
m yi x

x
τ

τ

τ τ

β β
β

= + =

== +

∂ −
∑= ∑

∂ ×∑ ∑

1
( ) .

n
j

j
T xτ

=
∑− −  

(10) 

Newton’s method is a derivative-based root finding 
algorithm that uses the linear approximation. If τ was 
known, the Newton’s method could be used to solve for 

11β in Equation (10). The 11,
ˆ

τβ is computed through an 
iterative algorithm using Equation (11). In this equation, 
the initial value for , ,

ˆ
11 kτβ  is set equal to zero: 

, ,
, , 1 , ,

, ,

ˆ( )
ˆ ˆ ,

ˆ'( )
11 k

11 k 11 k
11 k

f

f
τ

τ τ
τ

β
β β

β
+ = −  (11) 

and we have: 

, ,
1 1

, ,1 1 , ,

( )ˆ( ) ( )
ˆ( ( )) exp( )ˆexp( )

T n j j j
11 k T n j ji j

j11 ki j 11 k
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τ
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β
β
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T xτ

=
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and  

1 1

1 1

),
ˆexp( ) ( ) Aˆ'( ) (

2ˆ(( ( )) exp( ))ˆexp( )

T n j j ij j
T n11,τ,k j iji j

j
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11,τ,k
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τ

β τ
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β
β

= + =

= + =
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× 

11, ,
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x x

τ
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β
β
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=
 

(13) 

After computing 1̂1,τβ  based on Newton’s algorithm 

and by using Equation (13), we can compute ˆ
01,τβ  for 

each τ. Then, we replace 0̂1,τβ and 1̂1,τβ  in the vector of 

ˆ
1τβ in the logarithm of likelihood function for all 

possible change point values. The MLE of the change 
point τ is the value which maximizes the expression in 
Equation (8). Hence, the estimator of the change point 
by using the MLE approach is shown as follows: 

1 1 1 1
arg max[ ln( ) ( 1)

exp( )
ˆ

n nj
j ji j i j

m
m m

τ τ
τ

= = = =
∑ ∑ ∑ ∑= + −T

xj 0β

1 1 1 1
ln( ) ( ) ( 1) ln( )

exp( )

n T nj
ij ij j iji j i j

m
y y m y

τ

τ= = = + =
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xj β0

ˆ ˆ1 1 1 1) )
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T n T nj j
j ji j i j

m m
m yiτ τ= + = = + =

∑ ∑ ∑ ∑+ −T T
exp(x exp(xj jβ β1τ 1τ

 

(14) 

We use a shewhart 2T control chart to monitor a Gamma 
regression profile and estimate change point in Phase II. 
It should be noted that Yeh et al. [21] introduced five 
Hotelling 2T control charts to monitor Binary profiles in 
Phase I that any of these 2T charts uses a different 
method to estimate the mean vector and covariance 
matrix. They showed that the 2T control chart, which 
estimates the covariance matrix by averaging the 
covariance estimates of each given sample, is more 
effective in detecting both step and drift shifts. This 
control chart is applied in Phase II with the assumption 
that the mean vector and covariance matrix are known. 
The 2T statistic for sample i(i= 1, 2, ..., T ) in Phase II is 
defined as: 

T 1ˆ ˆ= ( - ) ( - ),2
i i iT −

0 0β β β β∑  (15) 

where 0β  and ∑
 
are the mean vector and covariance 

matrix of Gamma regression parameters, respectively 
that  ∑

 
is defined by Equation  (16). When the process 

is in-control, the upper control limit for the proposed 
control chart is equal to 2

2,αχ  which is the α  percentile 
of the chi-square distribution with 2 degrees of freedom 
and d iag (var(y ) , var( ), ..., var( ))i1 i2 iny yW =  is a P P×   
diagonal matrix. 

.= T -1(X WX)∑  (16) 

when the 2T control chart is employed to monitor a 
process, as long as the plotted points fall below the 
upper control limit, the process is assumed in-control. 
However, when a point exceeds the upper control limit, 
the control chart signals a change in the parameters of 
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the process and the process is assumed to be out-of-
control. In these situations, the most important problem 
is that there is usually a considerable time lag between 
the signaling time and the real time at which the change 
has happened. Thus, whenever the 2T control chart 
signals an out-of-control state, the real time of a change 
can be estimated via Equation (14). 
 
 
4. PERFORMANCE OF THE MLE ESTIMATOR 
 
In this section, the performance of the proposed 
estimator is examined using the Monte Carlo simulation 
with an example. We assume that 0β  is a 2-dimensional 

vector for ease representation of formulation and 00β  

and 10β  are the in-control intercept and the slope of 
the regression function, respectively, shown by vector 

( , )T
00 10β β=0β .  Moreover, we set the design matrix 

x  as:  
1 1 1 1

  . . .  .
log(10) log(15) log(45) log(50)

=  
  

x
 

  
 

 It is assumed that the in-control β  vector is 

0β = ( )4,  2 T− , which comes from the historical dataset 
in Phase I.  In addition, the covariance matrix of the 
Gamma regression parameters ∑ in Phase II is 
computed by the following equation: 

2
1 1 2

2
1 2 2

2.0472 0.5433
.

0.5433 0.1446

  

σ ρσ σ

ρσ σ σ

−
∑ = =

−

          

Assuming α equal to 0.005, the upper control limit for 
the 2T  control chart is equal to  2

2,0.005 10.59χ = , n=9 

and jm =30  for all  j=1, . . ., 9. Now, assume the 
parameters of Gamma regression model have increasing 
shifts and the vector 0β  changes to 01β = β + δ  where 

1 1 2 2δ σ ,δ σ= ( )δ  and 1δ , 2δ   are constant coefficients of 
shifts in the intercept and slope of the Gamma 
regression profile, respectively, and 1

σ  and 2
σ are equal 

to 1.4308 and 0.38026, respectively. Also, the 
convergence threshold in the Newton’s method to 
estimate 11β is considered equal to 0.0005. A Monte 
Carlo simulation study is performed to test the 
performance of the estimator of the step change point. 
In this study, the process change point is considered at 

50τ = . During the generating of profiles 1,  2, ..., 50,i =  
the process parameter is equal to its known in-control 
value of 0β . Therefore, for these profiles, the dependent 

observations are randomly generated from a Gamma 
regression with parameter vector (-4, 2)T=0β . It is 
assumed from profile 51, observations are generated 
from the out-of-control process with parameter vector 

1β  until the 2T  control chart signals an out-of control 
state. At this time, the change point estimator in 
Equation (14) is used and the real time of the process 
change is determined. This procedure is repeated 10,000 
times for different step shifts considered in the paper. 

The simulation results are demonstrated in Tables 1, 
2, 3 and 4. The mean and the corresponding standard 
error of  simultaneous and individual shifts in paramters 
of Gamma regression profile are summarized in  Tables 
1 and 2, respectively. However, the precision 
performance of the estimator under the mentioned shifts 
is illustrated in Tables 3 and 4. In each simulation run, 
E(T) is the expected value of the number of samples 
taken until the first alarm happens; so, E(T)=ARL+50. 
Table 1 shows the average change point estimator, the 
standard error of the change point estimator and E(T) 
under different magnitudes of step shifts that are 
considered in this paper. For example, we conclude 
from the results of simulation for shift equal to 
(0.01,0.02), the expected number of samples taken until 
the signal is E(T)=185.98. For this case, the average of 
the change point estimates is 50.58, which is close to the 
actual change point of τ = 50 as shown in Table 1. 
Moreover, the standard error of the change point 
estimator is 0.12. As another example from the Table 2, 
for shift equal to (0.03,0), the expected number of 
samples taken until the signal is E(T)=180.06. For this 
case, the average of the change point estimates is 50.53 
which is close to the actual change point and the 
standard error of the change point estimator is 0.08. 
Hence, the proposed change point estimator is suitable 
for all types of shifts even in small shifts in both 
simultaneous and individual changes. Furthermore, as 
the magnitude of the step change increases, the 
performance of the proposed estimator improve 
significantly. In other words, the proposed method 
works well and provides adequately accurate and 
reliable estimates of the real change point. In order to 
illustrate the benefit of the proposed change point 
estimator, E(τ̂ ) is compared to E(T ) in Figure 1. It can 
be easily seen from Figure 1 that if one only relies on 
E(T) and searches for the special cause around it, most 
probably, one will not be able to find the cause. 
However, the change point estimator τ̂ , on average, 
directs one accurately to the actual change point and 
enables one to find the cause more effectively. The 
results in Table 2 are similar to Table l. However, as 
discussed before, shitfs in the parameters are separetely. 
As shown in  Tables 1 and 2, our proposed change point 
estimator performs satisfactory for all types of shifts. By 
comparing the results of simultaneous and individual 
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changes in the regression parameters,  we understand 
that accuracy of the change point estimator for 
simultaneous shifts is better than the  individual shifts in 
the intercept or slope. Also, accuracy of the change 
point estimator for shift in the intercept of Gamma 
regression model is better than the shift in the slope.  

  
  

 
TABLE 1. The averages and standard errors of the change 
point estimator under different step shifts in the  parameters 

1 2β , β( )  simultaneously with 10,000 simulations runs when  P 
=2 and τ =50. 

1 2,(δ  δ )
 

E(T) τ̂  se( τ̂ ) 

(0.01,0.01) 

(0.01,0.02) 

(0.01,0.04) 

(0.01,0.06) 

(0.02,0.01) 

(0.02,0.02) 

(0.02,0.04) 

(0.02,0.06) 

(0.03,0.01) 

(0.03,0.02) 

(0.03,0.04) 

(0.04,0.01) 

(0.04,0.02) 

(0.05,0.01) 

(0.05,0.02) 

244.18 

185.98 

107.18 

86.18 
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0.23 
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0.03 

0.09 

0.06 

0.04 

0.03 
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0.03 

0.02 

0.06 

0.05 
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TABLE 2. The averages and standard errors of the change 
point estimator under different step shifts in the  parameters 

1 2β , β( )  individually with 10,000  simulations runs when P 
=2 and τ =50.  

1 2,(δ  δ )
 

E(T) τ̂  se( τ̂ ) 

(0,0.01) 
(0,0.02) 
(0,0.03) 
(0,0.04) 
(0,0.05) 
(0,0.06) 
(0.01,0) 
(0.02,0) 
(0.03,0) 
(0.04,0) 
(0.05,0) 
(0.06,0) 

265.41 
199.15 
191.54 
114.76 
107.45 
99.94 
258.9 
189.9 

180.06 
111.05 

95.1 
85.54 

53.71 
52.26 
50.97 
50.34 
50.08 
50.06 
52.97 
51.95 
50.53 
50.29 
50.26 
49.95 

0. 3 
0.15 
0.09 
0.09 
0.03 
0.02 
0.28 
0.11 
0. 08 
0.07 
0.03 
0.02 

 

Figure 1. Expected time of a signal with 
2T  control chart,       

average of change point estimates E( τ̂ ) by MLE in 10,000 
replicated  simulation for  τ  = 50. 
 
 

The results of the proportion of 10,000 simulation 
runs in  Tables 3  and  4  demonstrate  that the estimator  
lies within a specified tolerance of the real change point 
value under different shifts. Assume that precision i 
under the given shifts are percent of results which 
distance of the change point estimator from exact 
change point is i or less than i . 

In other words, a measure of the precision of the 
change point estimator can be examined by constructing 
a frequency distribution for P(| ˆτ - τ |≤ i)  where i is 
equal to 0, 1, . . . , 7, so the results demonstrate that the 
estimator lies within a specified tolerance. For example 
in Table 3, under shift equal to (0.02, 0.02), in 58% of 
simulation runs, distance of change point estimator from 
exact change point is less than 2 and probability that τ̂  
lies within tolerance of 2 or less from the real change 
point is 0.58 that named as  precision 2. Moreover, in 
this case in 35% of the simulation runs,  the estimator 
correctly identify the real time of the change. Also, we 
notice that the percentage of those simulation trials 
identifying the change point correctly are 8%,  14%, 
30%, 45%, 21%, 35%, 44% , 58%, 67% and 36%, 48%, 
71%, 88%, 90% and 91%   for the magnitude of shifts 
(δ , δ ) =1 2 (0.01,0.01), (0.01,0.02), (0.01,0.04), 
(0.01,0.06), (0.02,0.01), (0.02,0.02), (0.02,0.04), 
(0.02,0.06), (0.03,0.01) and (0.03,0.02), (0.03, 0.04),  
(0.04,0.01), (0.04,0.02), (0.05,0.01) and (0.05,0.02)    
respectively. Clearly, the probability of exact estimation 
increases as the magnitude of the step shift increases. 
Hence, as the magnitude of the step change increases, 
the performance of the estimator improves significantly. 
Also, the precision of the change point estimator under 
individual shifts in the intercept and slope are 
summarized in Table 4. Precision analysis of the change 
point estimator in this case is similar to the 
simultaneously shifts in Table 3.  
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The results show the  suitable  precision of the  
proposed estimator in estimating the  real time  of a step 
change in the parameters intercept and slope separately. 
By comparison of Tables 3 and 4, we conclude that the 
precision of the change point  estimator  for 
simultaneous shifts in parameters  of Gamma regression 
model is better than the  precision estimator under shifts 
in the intercept or slope shifts individually. 
Furthermore, we can conclude that precision of the 
change point estimator for given shifts in the intercept 
of Gamma regression model is better than shifts in the 
slope.  
 
 
5. CARDINALITY AND COVERAGE PERCENTAGE 
OF CONFIDENCE SET ESTIMATOR 
 
We consider constructing confidence set on the process 
change point. Such a set would provide a window of 
possible change points that covers the true process 
change point with a given level of confidence and 
enhances the identification chance of special cause. Box 
and Cox [22] suggested constructing confidence regions 
on parameter estimates using the likelihood function by 
a confidence set of the form: 

ˆ{ : log ( ) log ( ) },CS t L t L De e τ= > −  (17) 

where, ˆlog ( )Le τ is the maximum of the log likelihood 
function evaluated over all possible change points t. If 
the value of the log likelihood function at time t, 
log ( )L te , exceeds the maximum of the log likelihood 
function minus a reference value D, then t is included in 
the confidence set. 

We use critical values of D between 1 and 8 and δ  
vectors given in Figure 1 to compute the cardinality and 
coverage percentage of confidence set estimator. Figure 
3 provides a surface plot showing the relationship 

among cardinality, coverage, δ  and D for the 
confidence set estimator. For example, if δ =(0.04,0.01) 
and D = 8, the confidence set obtained using Equation 
(17) will yield an expected cardinality of approximately 
37.3. In addition, 47 percent of possible change points 
contain the change point estimator. Also, the result of 
coverage and cardinality regarding to different small 
values of D and δ are reported in Table 5 for more 
clarification.  

 
 
 

  

Figure 2. Surface plot obtained from confidence set estimator 
showing estimated relationships between set cardinality, 
coverage, and δ  value D. Estimated surface obtained from 
10,000 independent simulation runs and 50τ = . 

 

 
 
TABLE 3. Estimated precision performances under shifts in parameters of 0

β  simultaneously with 10,000 simulations runs when  P 

=2 and τ =50.  

1 2(δ , δ )  Precision 0 Precision 1 Precision 2 Precision 3 Precision 4 Precision 5 Precision 6 Precision 7 

(0.01,0.01) 
(0.01,0.02) 
(0.01,0.04) 
(0.01,0.06) 
(0.02,0.01) 
(0.02,0.02) 
(0.02,0.04) 
(0.02,0.06) 
(0.03,0.01) 
(0.03,0.02) 
(0.03,0.04) 
(0.04,0.01) 
(0.04,0.02) 
(0.05,0.01) 
(0.05,0.02) 

0.08 
0.14 
0.3 
0.45 
0.21 
0.35 
0.44 
0.58 
0.67 
0.36 
0.48 
0.71 
0.88 
0.9 
0.91 

0.17 
0.28 
0.52 
0.69 
0.32 
0.4 
0.63 
0.7 
0.79 
0.43 
0.71 
0.85 
0.95 
0.96 
0.98 

0.23 
0.39 
0.64 
0.77 
0.49 
0.58 
0.76 
0.89 
0.85 
0.66 
0.86 
0.96 
0.98 

1 
1 

0.3 
0.47 
0.73 
0.83 
0.52 
0.65 
0.85 
0.95 
0.96 
0.74 
0.98 

1 
1 

0.35 
0.53 
0.79 
0.97 
0.69 
0.78 
0.94 

1 
1 

0.8 
0.89 

1 
 
 

0.4 
0.58 
0. 83 

1 
0.89 
0.9 
0.97 
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TABLE 4. Estimated precision performances under shifts in parameters of 0
β  individually with 10,000 simulations runs when      P 

=2 and τ =50. 

1 2(δ , δ )  Precision 0 Precision 1 Precision 2 Precision 3 Precision 4 Precision 5 Precision 6 Precision 7 

(0,0.01) 0.05 0.11 0.22 0.26 0.35 0.39 0.42 0.5 

(0,0.02)  0.12 0.25 0.34 0.41 0.5 0.55 0.57 0.69 

(0,0.03)  0.26 0.33 0.42 0.54 0.65 0.71 0.86 0.95 

(0,0.04) 0.29 0.45 0.55 0.67 0.7 0.79 0.86 0.98 

(0,0.05) 0.31 0.5 0.59 0.75 0. 81 0.95 0.99 1 

(0,0.06) 0.42 0.57 0.87 0.9 0.96 1   

(0.01,0) 0.06 0.13 0.2 0.29 0.31 0.45 0.5 0.67 

(0.02,0) 0.19 0.3 0.41 0.5 0.63 0.79 0.91 0.98 

(0.03,0) 0.35 0.45 0.54 0. 6 0.79 0.86 0.95 1 

(0.04,0) 0.41 0.54 0.74 0.88 0.91 0.95 0.98 1 

(0.05,0) 0.56 0.65 0.76 0.89 0.92 0.94 1  

(0.06,0) 0.7 0.85 0.94 1     

  
  

  
6. A REAL CASE 
 
In this section, data set from Miller and Wu [23] is used 
to show the applicability of the Gamma regression 
profile and evaluate the performance of the change point 
estimator.  

In this case, the weight of the mold is the response 
variable and is measured over eight levels of a high 
injection pressure factor. It is known that the amount of 
material injected could by affected by this factor. 
Therefore, the relationship between the weights of the 
mold and pressure could be characterized by a Gamma 
regression profile. High injection pressure is varied over 
the range of 650-1000 psi. Miller and Wu [23] presented 
the data of this real case as 32 runs of an experimental 
design. We used the data set of run 5 with four 
replications. First, we estimated parameters of the 
Gamma regression models for four profiles and 
computed the average of the intercept and the slope 
estimates of the four profiles equal to 6.2543 and 
0.0003, respectively. Then, we estimated the mj 
(j=1,2,…,8) based on the observations in each level of 
the explanatory variable and then computed the m equal 
to 219265. After that, using the m  and Equation (2), 
the  scale parameter of the Gamma distribution in each 
level of the explanatory variable is computed as follows: 

[346.7 341.6 336.5 331.5 326.6 321.7 316.9 312.2].=λ  
Therfore, the parameters of the Gamma regression 
profile are estimated and known. To check the 
performance of the proposed estimator, we generated 
new data based on a shift with magnitude of 0.8 in the 
intercept parameter of the Gamma regression profile 

and continued generating the data until a signal is taken 
by the T2 control chart. Then, we applied the MLE 
change point estimator and estimated the change point. 
The T2 control chart on the real samples as well as 
simulated ones is illustrated in Figure 3. Also, the real 
change point which is 4 th point and the estimated 
change point which is 3th point are shown in this Figure 
as well. This shows the suitable performance of the 
proposed estimator in real application.  
 
 
 
TABLE 5. The relationships between set cardinality, 
coverage, and δ  value D that obtained from 10,000 
independent simulations runs and 50τ = . 
       D 

δ  
1 2 3 4 5 

 
 

(0.01,0.01) 5.68 9.67 13.16 17 22.56 

(0.02,0.01) 6.97 9.68 13.77 18.39 25.05 

(0.01,0.02) 7.37 12.36 16.15 20 28.64 

(0.03,0.01) 7.53 13.37 18.16 22.9 30.09 

(0.05,0.02) 7.71 13.67 18.41 24.65 30.39 

 (0.05,0.02) 3.91 6.65 9.13 12.32 16.23 

(0.03,0.01) 5.01 7.33 10.41 13.42 16.56 

(0.01,0.02) 5.02 7.71 10.55 14.5 17.89 

(0.02,0.01) 5.1 7.78 10.59 14.52 18.42 

(0.01,0.01) 5.23 8.02 12.12 15.39 20.56 

C
ov

er
ag

e(
%

)
  

C
ar

di
na

lit
y

  



F. Sogandi and A. Amiri / IJE TRANSACTIONS B: Applications  Vol. 28, No. 2, (February 2015)  224-233                                   232 
  

                      0β                              1β  

0 2 4 6 8 10 12
10.5

10.52

10.54

10.56

10.58

10.6

10.62

10.64

10.66

 
 

Figure 3. T2 control chart with a step change in the intercept 
of Gamma regression profile. 

 
 
 
7. CONCLUSION AND FUTURE RESEARCHES 
 
There are many real cases in which the response 
variable of the profiles does not follow Normal 
distribution. In these situations, the Generalized Linear 
Models such as Gamma regression models are used to 
describe the profile. In this paper, an MLE approach 
was proposed to identify the time of a step shift in Phase 
II monitoring of Gamma regression profiles. Then, the 
performance of the proposed change point estimator 
was evaluated through simulation studies. Our results 
coming from Monte Carlo simulation revealed that the 
change point estimator performs satisfactory under 
different shifts. Also, the precision and accuracy of the 
change point estimator for simultaneous shifts is better 
than the accuracy and precision of the estimator under 
shifts in the intercept or the slope of the Gamma 
regression model individually. Moreover, the accuracy 
and precision of the change point estimator only for 
shifts in the intercept of Gamma regression model is 
better than shifts in the slope. Finally, cardinality and 
coverage percent of a confidence set  estimator is 
analyzed.  Developing a change point estimator for the other 
change types such as drift and monotonic could be a 
fruitful area for researches. Also, investigating the other 
methods such as clustering and artificial neural network 
for step change point estimation could be considered as 
future researches. One also may consider the effect of 
other link functions such as reciprocal link function on 
the change point estimator and its performance as well. 
Finally, the effect of missing data (Ashuri and Amiri 
[24]) on change point estimates can be investigated as 
future researches. 
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  چکیده
  

  
گاهی اوقات کیفیت یک محصول یا فرآیند بوسیله یک رابطه تابعی بین یک متغیر پاسخ و یک  یا چند متغیر مستقل تحت 

شود، در حالیکه گاهی در  در اکثر تحقیقات در این حوزه توزیع متغیر پاسخ نرمال فرض می. شود عنوان پروفایل توصیف می
در این موارد از مدل هاي خطی تعمیم یافته مثل مدل رگرسیونی گاما براي . شود هاي خاصی فرض نرمال بودن نقض میکاربرد

همچنین در کنترل فرآیند آماري پیدا کردن زمان واقعی تغییردر فرآیند که نقطه تغییر نام دارد . شود توصیف پروفایل استفاده می
بنابراین در این مقاله  پروفایل . شود ان وهزینه در شناسایی دلایل خاص میصرفه جویی زم ضروري است زیرا منجر به

شود و از  برآوردکننده حداکثر درست نمایی براي تخمین زمان واقعی یک تغییرپله اي در  در نظر گرفته می رگرسیونی گاما
تغییر ارائه شده بوسیله شبیه سازي مونت  به علاوه دقت وصحت برآورد کننده نقطه. شود استفاده می 2پارامترهاي گاما در فاز 

دهد که  برآورد کننده نقطه تغییر ارائه شده در تخمین نقطه واقعی تغییرات پله  سازي نشان می نتایج شبیه. شود کارلو ارزیابی می
قطه تغییر همچنین یک مجموعه اطمینان براي ن. اي در پارامترهاي پروفایل رگرسیونی از عملکرد مناسبی برخوردار  است

 .نهایتاً عملکرد برآورد کننده با یک مثال واقعی نشان داده شده است .فرآیند براساس لگاریتم تابع درست نمایی ارائه شده است

  
.doi: 10.5829/idosi.ije.2015.28.02b.08 

 
 
 


