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A B S T R A C T  

   

The simple passive dynamic walker can walk down a shallow downhill slope with no external control 
or energy input. Nevertheless, the period-one gait stability is only possible over a very narrow range of 
slopes. Since the passive gaits are extremely sensitive to slope angles, it is important to use a control 
strategy in order to achieve a wide range of stable walking. The computed torque method is proposed 
here to produce stable period-one gait cycles for different slopes. In  present method, the unstable 
walking gait is stabilized by a stable period-one gait pattern on a small specific slope. The proposed 
approach is illustrated by the simplest passive walkers with point and curved feet. Simulation results 
reveal the usefulness of this control method for improvement in stability properties of the models. 
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1. INTRODUCTION1 

 
Humans can walk easily on different surfaces with the 
lowest effort to keep the stability of walking motion. 
However, walking is a very complicated dynamic 
phenomenon and not very well understood. Designing 
biped robots has developed remarkably in recent years 
to better understand human walking, and many control 
algorithms have been presented for this purpose. 
Although most of biped robots are controlled based on 
Zero Moment Point criterion [1], many researches are 
interested in higher energy efficient gait generation. 
Passive dynamic walking proposed by McGeer [2] has 
been thought as a good example of efficient bipedal 
locomotion. He showed that a simple two-link 
mechanism can perform an indefinitely stable walk on a 
range of shallow slopes [2, 3]. But passive dynamic 
walking is sensitive to the robot's initial posture and the 
slope angle is narrow. To increase performance and to 
realize a practical biped, further studies has been done 
on passive walking [4-16]. The most popular ones are 
the compass-like biped robot which is introduced by 
Goswami et al. [4-6] and the point-foot walker which 
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has been studied first by Garcia et al. [7, 8]. The main 
objective of these works is to produce a stable periodic 
walking from some initial conditions, and to analyze the 
stability properties of the resulted gait limit cycles using 
the Poincare map. Also, both of these two popular 
models are studied in the view of local stability and 
period doubling bifurcation leading to chaotic gaits with 
respect to the structural parameters of the systems such 
as the slope angle. Furthermore, the role of foot shape of 
these models in walking properties has been studied 
through simulations and experiments [17-19]. Passive 
dynamic walking is useful to generate quite natural gaits 
like human, but it depends on the slope angle. These 
walkers cannot walk on level ground and their motion 
on small slopes also implies low speeds [20]. To 
overcome this sensitivity problem, researchers have 
proposed semi-passive robots, also called under 
actuated robots, in order to avoid the use of inclined 
planes [21-23]. On the other hand, passive walking 
exhibits chaotic gaits as the slope angle steadily 
increasing and there are only unstable gaits in high 
speed region [7]. The chaotic gait is sensitive to the 
initial state and is not periodic; therefore, the biped 
robot may fall down easily. A periodic gait exists if the 
passive walker starts walking from the proper initial 
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posture. Indeed, favorable initial conditions of these 
bipeds usually lead to falling forward or backward. 
Using linearized equations of motion [7], search 
algorithm [24] and energy balance method [19] are 
conventional approaches in finding proper initial 
condition for stable walking on small specific slopes. 
On the other, the design of control scheme to make the 
chaotic gait converge to a stable periodic gait on steeper 
slopes is very important and in this regard, some biped 
robot control algorithms have been presented [25-33]. 
Liu et al. [34] used adaptive excitation control method 
to increase the gait stability of an under-actuated biped 
robot with knees. Using the linearized controlled 
Poincare map and designing a state feedback controller 
to stabilize unstable limit cycles of the compass-gait 
model is a recent approach in passive walking control 
[35]. 

Goswami et al. [25], investigated two different 
control laws for enlarge the basin of attraction of 
passive limit cycles and can create new gaits, one law 
tracks a given mechanical energy of the robot and the 
other tracks, in addition, a specified average progression 
speed. The principle of their first control scheme is: as 
the robot walks down on a slope its support point also 
shifts downward at every touchdown. As it loses 
gravitational potential energy in this way its kinetic 
energy increases accordingly. In a steady walk this is 
exactly the amount of kinetic energy that is to be 
absorbed at the end of each step by the impact. If, at 
every touchdown we reset our potential energy 
reference line to the point of touchdown, the total 
energy of the robot appears constant regardless of its 
downward descent. The performance of this scheme is 
limited by the fact that the generated gaits are still close 
to the passive gait. In order to improve the robot 
performance, in the second control scheme, they 
proposed a control law which attempts to maintain, in 
addition, a specified average speed of progression. 

Freidovich et al. [36], used a virtual holonomic 
constraint for obtaining stable gaits of passive 2 degrees 
of freedom robot. For this purpose, they used a searching 
algorithm, and changed the problem to an optimization 
problem to find this stable gait. Ames [37] presents the 
process of formally achieving bipedal robotic walking 
through controller synthesis inspired by human 
locomotion. He considered a humanoid robot, and tries 
to design a control based on Lyapunov function and 
quadratic programing to obtain stable walking. Asano 
et. al. [26] proposed virtual passive dynamic walking 
utilizing modified gravity condition with virtual gravity 
field for obtaining stable walking of biped robot. They 
proposed virtual passive walk and a virtual passivity 
mimicking control law for this purpose. They proposed 
this control strategy for generating the steady walking 
pattern even if the physical parameters are not suitable.  

In this work, a numerical algorithm is used to get 
initial conditions for stable and unstable period-one gait 

limit cycles of the simplest passive walker with point 
and curved feet. Then, a control method based on 
computed torque is presented in order to control 
unstable gaits on steeper slopes. Since biped robots have 
stable gaits for small slope angles, whose gait pattern 
and stability characteristics are know, they can be used 
to generate stable gait of higher slopes with unstable 
gait. Then, with using a controller, it is possible to 
generate stable gait at higher slopes, or for biped 
parameters with unstable gaits. This paper is organized 
as follows. Section 2 describes the hybrid dynamic of 
the models. Finding period-one limit cycles and stability 
analyes are explained in Section 3. The control 
approach is presented in Section 4. Section 5 provides 
some numerical simulations to verify the performance 
of the control method proposed in this work. Finally, 
conclusions are presented in Section 6. 

  
 
 

2. WALKING DYNAMICS 
 

2. 1. Models       The model which are based on the 
same prototype as considered by Garcia et al. [7] and its 
modified model with curved feet are illustrated in 
Figure 1. Also, this figure identifies the physical 
parameters in description of the system dynamics. 
Models have only two symmetric legs which are rigidly 
connected by a frictionless hinge joint at the hip, 
allowing them to swing freely. 

There are three point-masses, one for the hip and 
two for the legs. At the start of a step, both legs are in 

contact with the surface. These two-dimensional 
walkers go down an inclined plane with suitable initial 
conditions. During walking, the entire stance leg is fixed 
on the surface while the swing leg acts as a free 
pendulum pivoting around the hip until its foot touches 
the slope surface. At this instantaneous plastic collision, 
the roles of the two legs will be changed. The scuffing 
problem of the swing leg is neglected at the mid-stance. 
To describe the dynamic behavior of the models, the 
equations of motion of the swing phase together with 
transition rule are needed. Transition rule is obtained by 
using conservation law of angular momentum and 
geometric collision condition. 
 
 

 
Figure 1. Schematic of the simplest walking model (a) with 
point feet, (b) with curved feet. 
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2. 2. Dynamics of the Swing Phase       Continuous 
dynamics of the models defines the motion of the stance 
and swing leg between collisions. The models have two 
degrees of freedom, θst and ϕ which are functions of 
dimensionless time τ=(g/l)1/2t. θst is the angle of the 
stance leg relative to the slope normal and ϕ is the angle 
between the stance leg and the swing leg. Under some 
assumptions noted before, the two coupled second-order 
differential equations of swing phase can be determined 
by using the well-known method of Lagrange- Euler 
equation [5]: 

( ) ( , ) ( ) 0M C Gθ θ θ θ θ θ+ + =&& & &
 (1) 

where θ=[θst  ϕ]T, M is the inertia matrix, C includes the 
centrifugal and coriolis terms, and G is a vector of 
gravity forces. To simplify the governing equations, 
dimensionless parameters such as β=m/mH and r =r/l 
are introduced.  
For the simplest walking model with point feet, as 
presented in [7], the matrices in Equation (1) are: 
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For curved feet model, the terms of matrices are as 
follows: 
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2. 3. Transition Rules at Collision       Foot collision 
occurs when the swing leg is coincident with the ramp 
surface during moving forward and the former stance 
leg leaves the slope in the same instant. In this situation, 

there is a double-support phase and both legs are in 
contact with the surface. Then, the swing leg becomes 
the new stance leg and vice versa. This instantaneous 
impact is assumed to be plastic and without slipping. 
The geometric collision condition of this impact is given 
by ϕ=2θst. The effect of collision which appears in 
initial values including angular positions and their 
velocities is called transition rules. These algebraic 
equations relate the state vector q=[θst  ϕ  stθ& φ& ]T before 
foot collision to the same vector after collision. 
Transition rules of angular positions are determined by 
employing geometric collision conditions. Transition 
rules of angular velocities can be derived from angular 
momentum conservation around the impact point and 
the hip. Thus, the impact equations are given as follows: 

1,  ( )J Q Qθ θ θ θ+ − + + − − −= =& &
 (8) 

The superscripts ‘–’ and ‘+’ respectively denote just 
before and after collision. At every step, both of the 
models have just one foot collision. The simplest 
walking models with point and curved feet have a 
similar matrix J as the following form: 

1 0
2 0

J
− 

=  −   (9) 

The matrices, Q- and Q+ of the basic model are specified 
below: 
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For the curved feet model, the elements of these 
square matrices are given by: 
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Consequently, by merging the transition rules for 
angular positions and their velocities, the jump 
equations are identified as following: 
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3. CYCLIC WALKING 
 

3. 1. Proper Initial Conditions       Walking pattern of 
a passive walker consists of two parts. The first part is 
the time-continuous gait including the motion of swing 
phase. The second part is a series of discrete collision 
events. Each step can be defined as a function which 
takes the values of the various angles and their rates just 
after a collision to just after the next collision and can 
be written as {q+}i+1=F{ q+}i. 

With regard to walking, this function is termed stride 
function or Poincare map by McGeer [2]. A period-one 
gait cycle corresponds to a set of initial conditions of the 
walker which returns to itself after one step and is called 
a fixed point of the stride function. To get a stable gait 
cycle, we need to solve equations of the swing phase 
and transition rules with appropriate initial conditions at 
the start of the step. These conditions which are the 
roots of the step function can be obtained numerically, 
since it is difficult to solve the governing equations 
analytically. On the other, constructing Poincare map 
and finding its fixed points can be difficult for complex 
models with various foot shapes. To overcome this 
shortcoming , this work looks at this function as a new 
process. First, an iterative technique is used to 
approximate the solution of the swing phase. Although 
there are several methods of numerically integrating 
differential equations of higher orders like Runge-Kutta 
method, the Finite Difference method is employed here 
to approximate the solution of nonlinear differential 
equations of the swing phase. This technique replaces 
the derivatives in the equation with finite difference 
approximations on a discrete time. It is well-known that, 
the central difference formula gives a better 
approximation to the first derivative among finite 
difference formulas of order O (h2). For this discrete 
system, the range of step period [0, T] is divided into n 
sub intervals of width ∆t as shown in Figure 2. 

 
  
 

 
Figure 2. A trajectory of the passive dynamic walking gait. 
The gait starts at t0= 0 and it is terminated at the end of a step 
at tn= T. 

After deriving the differential equations of the swing 
phase in discrete form for n time intervals in a step 
period, transition rules and collision condition are 
applied and then our step function is constructed. Now, 
it is necessary to find roots of the step function for this 
discrete system. Although there exist several efficient 
numerical methods like iterative Newton-Raphson 
method, root finding of a function is one of the most 
common numerical problems that requires the 
capabilities of MATLAB or other numerical software. 
For solving systems of nonlinear equations F(x) =0, 
MATLAB provides a function in the Optimization 
Toolbox. By supplying a good starting point, the zeros 
of the step function that includes proper initial 
conditions and step period can be calculated. For a 
passive biped robot there may be several walking 
pattern and step periods, among them walking pattern 
with stable periodic gait is desirable. Depending on 
starting guess, two initial conditions and step periods 
(long and short period) can be found to simulate the 
walking motion for specified slope angle. According to 
important role of starting point in root finding and 
convergence to the proper initial conditions, the initial 
conditions of the basic model can be used as the starting 
guess for the modified model. Next subsection will 
explain the procedure for finding periodic gaits from the 
resulted initial conditions. 
 
3. 2. Period-one Gait Limit Cycle and Stability 
Analysis     After finding initial conditions and 
corresponding step periods, periodic walking solutions 
must be simulated. Solving equations of the swing 
phase for a period of time and corresponding to one 
step, for a given set of resulted initial conditions, yields 
an Initial Value Problem (IVP). Using function ODE45 
in MATLAB, numerical calculations found two period-
one solutions to this IVP as short and long period gait 
cycles with respect to different initial conditions and 
step periods. 

The cyclic stability of the periodic gait is analyzed 
around fixed points on Poincare map by evaluating the 
eigenvalues of the Jacobian. If the eigenvalues of 
Jacobian matrix are inside the unit circle in complex 
plane, the limit cycle is stable. Garcia et al. found the 
Jacobian by both numerical and analytic procedure [7]. 
In this paper, the Jacobian matrix is calculated by 
simulating one step motion for a small perturbation on 
each of the states of the initial conditions. First, a small 
perturbation is considered which applied to each of the 
variables of the initial conditions for finding periodic 
solution. Then, this solution is obtained by the 
intersection of the solution of IVP with the impact event 
for each state. This process is repeated for all the 
perturbed variables of the initial conditions. Finally, the 
Jacobian matrix and its eigenvalues are determined in a 
small neighborhood of the initial conditions. 
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Figure 3. Applied control torque to the hip of the simplest 
walking model. 

  
 

 
Figure 4. The outline of the designed control scheme based on 
computed torque method. 

 
  
 

4. CONTROL APPREOACH 
 
As a result, it is revealed that the passive walker has the 
self-stabilization property; that is, the walking motion 
converges to a periodic gait. But unstable period-one 
gait cycles and then chaotic gaits appear by changing 
the structural parameters of the systems such as slope 
angle. We stress that for the control of the simplest 
passive walker, we apply only one actuator torque u at 
the hip to restore kinetic energy dissipating on impact as 
seen in Figure 3. 

The equation of motion for robot with control input 
can be obtained from the Lagrange- Euler equations. 
Then Equation (1) an be rewritten as: 

( ) ( , ) ( )M C G Buθ θ θ θ θ θ+ + =&& & &
 (14) 

The input matrix B in the above equation is defined by 
[-1 1]T. If the actuator torque u always remains zero, the 
simplest walking model is said to be completely 
passive. Expression in (14) designs the dynamics of the 
passive walker during the swing phase; therefore, the 
angular momentum is conserved. Since the main 
objective in the control problem of biped robots is to 

have stable periodic gaits, the proposed control scheme 
based on computed torque method computes the 
required torque using the stable dynamic walking of the 
robot as a desired trajectory. Indeed, the values of 
angular position, velocity and acceleration of the stance 
leg over a stable gait on a shallow slope γs are used as 
input values for stabilization an unstable gait on a 
steeper slope γus. In this situation, the walker will be 
able to walk on the slope γus by using stance leg angle 
and its angular velocity for the slope γs. Thus, the proper 
values of the swing leg angle, its velocity and control 
torque related to the input values are calculated. In fact, 
this control method implies that stable walking can be 
obtained by applying a control torque and tracking the 
desired stable trajectory on a gentle slope. As mentioned 
previously, nonlinear dynamic equations of the walker 
on the slope γs can be solved as an IVP by defining the 
resulted proper initial conditions as initial values. Now, 
using the solution of the IVP related to the stance leg 
during stable walking, control torque and the angle of 
the swing leg in Equation (15) for the slope γus are 
determined. 
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The subscript n in the above expression indicates the 
dimensionless terms of matrices. Using the expression 
in the second row of the Equation in (15), the 
dimensionless control torque ū=u/ml2 is given by: 

21 22 21 22 21us uss sn st n n st n nu M M C C G
γ γγ γθ φ θ φ= + + + +&& && & &

 (16) 

Substituting the expression in (16) into the first row 
of (15) and introducing Nn=Cn(θ, θ& ) θ& +Gn(θ), we obtain: 

11 21 11 21

12 22

( )

( )
s

us

n n st n n

n n

M M N N

M M
γ

γ

β θ β
φ

β

+ + +
=

− +

&&
&&

 (17) 

Then, Equation (17) can be solved as an IVP with 
initial values 

us us0 0

T
γ γ

 φ φ 
& . Due to the importance of 

appropriate initial values for the solution of an IVP, two 
values 

s0γ
φ  and 

s0γ
φ&  obtained from the solution of the 

IVP for a desired slope γs can be the best possible 
choice. Figure 4 provides a schematic representation of 
the proposed control approach. 

After finding proper value of the swing leg angle and 
its angular velocity for stable walking on a steeper 
slope, cyclic stability is investigated to ensure the 
effectiveness of the presented control method. It is 
important to note that the computed torque method 
changes walking pattern or initial conditions in order to 
stabilize unstable period-one gait cycles. An excellent 
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advantage of this approach is that, it is easily accessible 
in comparison with the other conventional methods. 

 
 

5. NUMERICAL SIMULATION 
 
Our interest in this section is to determine period-one 
gait cycles with proper initial conditions. Then, we will 
verify the effectiveness of our control method for the 
stabilization of the unstable passive dynamic walking of 
the simplest walker with point and curved feet. It is 
assumed that the hip mass mH is much larger than the 
foot mass m (β=0) to prevent the effect of the motion of 
the swinging foot on the motion of the hip. Simulation 
results of these studied models will be discussed as 
follows. 
 
5. 1. Point Feet Model       By applying the proposed 
method based on finite difference approximation to find 
proper initial conditions, simulation results reveal that 
there are long and short gait cycles for the point feet 
model. The long period-one limit cycle with initial 
condition as [0.2003, 0.4006, -0.1998, -0.0158] for the 
slope angle 0.009 rad is shown in Figure 5. As seen, this 
limit cycle is stable because the corresponding 
eigenvalues of the Jacobian matrix at the resulted initial 
conditions are in the unit circle. The short period-one gait cycle for the same slope 
angle is shown in Figure 6. Its initial conditions are 
found as [0.1939, 0.3878,-0.2038, -0.0151]. Because 
one of the eigenvalues is larger than 1 in magnitude in 
Figure 6.b, this result implies that the short period-one 
limit cycle is unstable. Because there exist no stable 
desired walking for tracking, control of instability is not 
possible. The stability analysis imply that the short 
period-one gait cycles are always unstable, whereas 
long period-one gait cycles are stable for a range of 
slopes lying between 0 rad and 0.015 rad. The loci of 
eigenvalues in Figure 7 exhibits unstable long period-
one gait cycle of the simplest walking model with point 
feet for slope angle 0.015 rad. 

 
 

 
Figure 5. (a) A long-period limit cycle (b) loci of 
eigenvalues for the point feet model (γ=0.009 rad). 

 
Figure 6. (a) A short-period limit cycle (b) loci of 
eigenvalues for the point feet model (γ=0.009 rad). 
 
 

 
Figure 7. Loci of eigenvalues for the point feet model at long 
period-one gait cycle (γ=0.015 rad). 
 
 

From the result of Garcia et al. [7], the simplest 
walking model has stable period-one gaits for slopes up 
to 0.0151 rad. With increasing slope angle, unstable 
cycles of long period-one appear and the walking-like 
motions become chaotic through a sequence of period 
doublings. To stabilize unstable cycles of long period-
one on steeper slope angles and prevent falling, we use 
the control method based on computed torque. It is 
observed that under the control torque in Figure 8, all of 
the eigenvalues of the Jacobian matrix for the slope 
angle 0.015 rad lie in the unit circle as seen in Figure 9. 
Though the control torque is needed continuously, its 
value is very small. In this control method, we use the 
angle of stance leg and its velocity over a stable long 
period-one gait cycle on the slope 0.009 rad as a desired 
trajectory. Therefore, this unstable gait cycle becomes 
stable. It is reasonable to expect that if the value of the 
gentle slope of the stable desired trajectory is close to 
the steeper slope, a very small control torque is required 
for motion control. This expected result is shown in 
Figure 10, and it is clear that as the slope angle 
increases, the maximum value of the control torque 
decreases. Thus, choice of the gentle slope angle and 
desired trajectory due to the low energy consumption in 
passive dynamic walking has an important role in this 
control method.  



1783                                      M. Safartoobi et al. / IJE TRANSACTIONS B: Applications  Vol. 27, No. 11, (November 2014)  1777-1786 

 Figure 8. Control torque for stabilization the long period-one 
gait cycle of the point feet model at γ=0.015 rad. 

 


 

 Figure 9. Loci of eigenvalues for the controlled point feet 
model at long period-one gait cycle (γ=0.015 rad). 

 
 

 
Figure 10. Control torque variation with increasing the slope 
angle for the point feet model. 
 
 

 
Figure 11. (a) Leg angles versus time over one step at a long-
period gait cycle, (b) loci of eigenvalues for the point feet 
model (γ=0.015, β=0.0001). 

 

 
Figure 12. Loci of eigenvalues for the controlled point feet 
model at long period-one gait cycle with mass ratio 
disturbance (γ=0.015 rad). 
 
 
 
In order to investigate the robustness of the control 
approach, small perturbations are added into the 
physical parameters of biped robot. These perturbations 
in biped parameters act as external disturbances. For 
simulation purposes, the amount of controller input is 
calculated based on parameters without disturbances, 
while dynamics of robot is disturbed. For example, the 
mass ratio (β) has a disturbance ∆β=0.0001 in the 
process of walking. A plot of θst and ∅ over one step at a 
long-period gait cycle and its loci of eigenvalues are 
shown in Figure 11 for γ=0.015 rad and ∆β=0.0001. As 
seen from this figure, without control, period one gait 
cycle is unstable. By applying the computed torque 
control, this unstable gait becomes stable as seen in 
Figure 12. Simulation result reveals that the presented 
control method has weak sensitiveness to the parameter 
disturbances.   
 
5. 2. Curved Feet Model       Similarly, when r =0.05, 
the curved feet model also exhibits two period-one limit 
cycles as long and short period. From the stability 
analysis, the short period-one gait cycles are always 
unstable such as the limit cycle and its loci of 
eigenvalues for γ=0.009 rad are shown in the Figure 13. 
The corresponding initial conditions are [0.2032, 
0.4064, -0.2096, and -0.0162]. On the other hand, this model has stable long period-
one gait cycles for slopes up to 0.0165 rad. Recently, 
this range of slope angles for the curved feet model has 
been found by [19]. This result implies that adding 
curved feet to a basic model can make walking more 
stable. In order to stabilize this unstable walking on the 
slope angle 0.0165 rad as shown in Figure 14, the 
control process is applied by using the stable desired 
trajectory on the slope 0.009 rad. Proper initial 
conditions for the limit cycle of the curved feet model 
with  and γ=0.009 rad in Figure 15 are found as [0.2102, 
0.4204, -0.2052, and -0.0161]. As mentioned, the loci of 
eigenvalues also show the stability of this limit cycle.  
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Then, the required control torque for stable walking 
related to the input values as the stance leg angle and its 
velocity is computed as shown in Figure 16. Clearly, the 
maximum value of the control torque for the curved feet 
model is increased compared to the point feet model. 
Under this control method, all the eigenvalues are 
smaller than 1 in magnitude as seen in Figure 17 and the 
robot with curved feet can walk stable. 
 
 
 

 
Figure 13. (a) A short-period limit cycle (b) loci of 

eigenvalues for the curved feet model ( r  =0.05, γ=0.009 rad). 
 
 

 
Figure 14. Loci of eigenvalues for the curved feet model at 
long period-one gait cycle (γ=0.0165 rad). 

  
 

 
Figure 15. (a) A long-period limit cycle (b) loci of 
eigenvalues for the curved feet model ( r  =0.05, γ=0.009 rad). 

 
Figure 16. Control torque for stabilization the long period-
one gait cycle of the curved feet model at ( r  =0.05, γ=0.0165 
rad). 

 
 

 
Figure 17. Loci of eigenvalues for the controlled curved feet 
model at long period-one gait cycle ( r  =0.05, γ=0.0165 rad). 

 
  
 

6. CONCLUSION AND FUTURE WORKS 
 

In this paper, we have studied the behavior of period-
one gait limit cycles of a simplest passive walker with 
point and curved feet. Stability analysis shows that the 
short gaits of both models are unstable, while the long 
gaits are stable for a small range of slope angles. In 
order to stabilize the long period-one limit cycle on 
steeper slopes, we proposed a computed torque control 
method. Our control strategy is based on tracking stable 
desire walking on a gentle slope. This method can drive 
the unstable gait into a stable periodic gait with 
increasing the slope angle. Then, the passive robot can 
walk stably. Although, this approach has insured the 
stability and some energy efficiency, it cannot be able to 
stabilize the unstable short period-one limit cycles. 
Therefore, there is a need for a precise research on a 
new control method as a future work to achieve the goal 
of stabilization of these gaits. 
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  چکیده
  

  

وجود،  این با. رود راه می یمملا یبش یک يبر رو يورود يانرژ یابدون وجود کنترل خارجی  ینامیکید غیرفعال رونده راه
 یهبه شدت به زاو یرفعالغ هاي از آنجا که گام. است پذیر امکان ها یباز ش یمحدوده کم يمرتبه اول تنها برا یودگام پر یداريپا
 یزحا یداراز راه رفتن پا اي گسترده یفبه ط یابیبه منظور دست یراهبرد کنترل یک زسطح حساس هستند، استفاده ا یبش

 هاي یبش يبرا یدارمرتبه اول پا یودگام پر هاي یکلس یجاددر پژوهش حاضر، روش گشتاور محاسبه شده به ا. است یتاهم
 ینمع یمملا یبش یکبر  یدارود مرتبه اول پایگام پر يبه کمک الگو یدارگام ناپا یدارسازيروش، پا یندر ا. پردازد یمختلف م

گذاشته  یشبه نما یو منحن اي نقطه يبا پاها یرفعالغ هاي رونده راه ترین ساده یلهبه وس یشنهاديدستاورد پ. شود یانجام م
 ننشا یمورد بررس هاي مدل یداريپا هاي در بهبود مشخصه را یعملکرد روش کنترل ییکارا سازي یهشب نتایج. است شده
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