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A B S T R A C T  

   

In this paper, one of the simplest and most regular members of the family of the Meshless Local 
Petrov-Galerkin (MLPG) methods; namely MLPG5, is applied to analyze the thick-walled isotropic 
laminated cylinders under elasto-static pressure. A novel simple technique is proposed to eliminate a 
very important difficulty of the meshless methods to deal with material discontinuities regarding to the 
high continuity of their shape functions. The Moving Least Squares (MLS) approximation is used for 
constructing the trial functions, and a simple Heaviside step function is chosen for the test function. 
The direct interpolation method is employed to impose the essential boundary conditions. Acceptable 
agreements with the analytical solutions and finite element method results are obtained specially at the 
material discontinuity boundaries, which suggest its application in other classes of problems. 
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1. INTRODUCTION1 
 
Compared to the traditional finite element methods 
(FEM), the meshless methods have received a lot of 
attention in the past two decades; due to their potential 
in eliminating the costly effort of the mesh generation. 
The Meshless Local Petrov-Galerkin (MLPG) approach 
is one of the most successful meshless methods 
presented by Atluri and Zhu in 1998 [1]. The main 
advantage of this method over the FEM is that it does 
not need any mesh, either for the interpolation of the 
solution variables or for the integration of the weak 
forms. In the recent years, researchers have applied this 
approach to solve various engineering problems. For 
instance, Chen and Raju coupled the finite element and 
meshless local Petrov–Galerkin methods to solve two-
dimensional potential problems [2]. Xiao proposed the 
local heaviside weighted MLPG meshless method for 
two-dimensional solids using compactly supported 
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radial basis functions [3]. Qian et al. studied the static 
and dynamic deformations of thick functionally graded 
elastic plates by the MLPG approach [4]. Li et al. 
applied a locking-free MPLG formulation for thick and 
thin plates [5]. Ma utilized the MLPG technique for 
two-dimensional nonlinear water wave problems [6]. 
Sladek analyzed the stress of the anisotropic 
functionally graded materials by the MLPG method [7]. 
Ching used the MLPG method to analyze two 
dimensional functionally graded elastic solids under 
mechanical and thermal loads [8]. Batra et al. analyzed 
the micro electro-mechanic systems using the MLPG 
technique [9]. Sladek et al. solved the inverse heat 
conduction problems by meshless local Petrov–Galerkin 
approach [10]. Kaiyuan et al. proposed a simple and 
less-costly MLPG technique for the dynamic fracture 
problem [11]. Xiao et al. analyzed the thick plates by 
using a higher-order shear and normal deformable plate 
theory and MLPG method with radial basis functions 
[12]. Sladek et al. used MLPG method for Reissner–
Mindlin plates under dynamic load [13]. Gilhooley et al. 
analyzed the thick functionally graded plates by using 
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higher-order shear and normal deformable plate theory 
and MLPG method with radial basis functions [14]. Liu 
and Tan applied meshless local Petrov–Galerkin 
approach for coupled radiative and conductive heat 
transfer [15]. Hu et al. proposed a meshless local 
Petrov–Galerkin approach for large deformation contact 
analysis of elastomers [16]. Li et al. solved mindlin 
shell problem by meshless local Petrov-Galerkin [17]. 
Wu and Tao proposed a meshless method based on the 
local weak-forms for steady-state heat conduction 
problems [18]. Gilhooley et al. studied two-dimensional 
stress of functionally graded solids using the MLPG 
method with radial basis functions [19]. Sladek et al. 
solved the inverse fracture problems in piezoelectric 
solids by local integral equation methods [20]. Li et al. 
studied the fracture of cracked two dimensional planar 
and axisymmetric problems of magneto–electro-elastic 
materials by the MLPG coupled with FEM [21]. Sladek 
et al. analyzed the fracture in continuously 
nonhomogeneous magneto-electro-elastic solids under a 
thermal load by the MLPG approach [22]. Vaghefi et al. 
analyzed three-dimensional static of thick functionally 
graded plates by the MLPG method [23]. Wen used 
meshless local Petrov–Galerkin method for wave 
propagation in three dimensional poroelastic solids [24]. 
Wu et al. proposed a stabilized MLPG method for 
steady state incompressible fluid flow simulation [25]. 
Rezaei Mojdehi et al. analyzed three dimensional static 
and dynamic of thick functionally graded plates by the 
MLPG method [26]. Xia et al. analyzed the elasto-
plastic problem of the moderately thick plate using the 
meshless local Petrov–Galerkin technique [27]. 
Hosseini used the meshless local Petrov–Galerkin 
method for coupled thermoelasticity analysis of a 
functionally graded thick hollow cylinder [28]. 
Shibahara and Atluri applied the meshless local Petrov-
Galerkin method for the analysis of heat conduction due 
to a moving heat source [29]. Mahmoodabadi et al. used 
the meshless local Petrov-Galerkin method for three 
dimensional steady-state heat conduction problems [30]. 
Najafi et al. studied meshless local Petrov–Galerkin 
method for higher Reynolds numbers fluid flow 
applications [31]. Nikfar and Mahmoodi applied the 
MLPG method for free convection of nanofluid in a 
cavity with wavy side walls [32]. Sladek et al. studied 
the bending of circular piezoelectric plates with 
functionally graded material properties by a MLPG 
method [33]. Arefmanesh utilized meshless numerical 
methods for analysis of the buoyancy-driven fluid flow 
and heat transfer in a square cavity with a wavy baffle 
[34]. 

In the MLPG method, the integrations of the weak 
forms are performed over local sub-domains, which 
overlap with each other. The trial functions and the test 
functions are chosen from totally different functional 
spaces. Furthermore, the physical size of the test and the 
trial domains are not necessary to be the same, which 

makes the MLPG a very flexible approach. By selecting 
the different trial and test functions, the MLPG method 
could be classified into six different types, which are 
labeled as MLPG1, MLPG2, MLPG3, MLPG4, 
MLPG5, and MLPG6 [35]. Among them, the MLPG5 
shows high robustness and accuracy for solving two-
dimensional problems [35]. Furthermore, the MLPG5 
(wherein the test function is the Heaviside step function 
over a local sub-domain centered at a node) would 
eliminate the necessity of the domain integration for the 
problems without any body-forces. 

Complicated nature of the meshless trial functions 
makes the three-dimensional application numerically 
demanding; specially, when the background cells and 
the domain integration are involved. Hence, the MLPG5 
method can be efficient in dealing with this difficulty. 
On the other hand, treatment of the material 
discontinuities is a well-known drawback of the 
meshless methods with an inherent higher-order 
continuous displacement field. In fact, because of the 
highly continuous trial function which is at least   , it is 
difficult to simulate jumps in the strain field. There have 
been a lot of efforts devoted to solve this problem. Li et 
al. [36] have used MLPG2 at the material discontinuity 
boundary, with two sets of collocation nodes coincident 
at the interface of two bodies, but with different material 
properties. The MLS interpolation is carried out 
separately within each of the homogeneous domains, so 
that the domain of influence is truncated at the interface 
of the two bodies. Although their proposed technique is 
needless of any integration process, the method is as 
accurate as MLPG2 at the material boundaries, so the 
number of collocation nodes must be much bigger. 
Krongauz and Belytschko [37] introduced a “jump 
shape function” and a trial function with a pre-imposed 
discontinuity in the gradient of the function at the 
location of the material discontinuity in 2-D elasticity. 
However, this method requires interpolation in the 
curvilinear coordinates, which becomes very tedious in 
three dimensional applications. Cordes and Moran [38] 
also solved the problem in 2-D elasticity by using 
Lagrange's multiplier. Their method required both 
domain and boundary integrations on the surface of the 
discontinuity, which needs a lot of computational efforts 
when the discontinuity has an arbitrary geometrical 
shape.  

To overcome to this problem, in this paper, a special 
treatment is applied at the location of material 
discontinuities in order to solve such problems. This 
new technique considers the subdomain of a node 
locating on the material boundary as two parts; one 
residing in the inner layer and the other one residing in 
the outer layer. The elasto-static analysis of the thick-
walled open-end one-layer and two-layer cylinders 
made of isotropic materials are presented. The obtained 
results compared with the FEM results and exact 
solutions of the problem are presented in the appendix. 
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2. THE MLS APPROXIMATION SCHEME 
 
As mentioned earlier, in the MLPG method, the test and 
trial functions are not necessarily from the same space. 
Thus, we can choose the Moving Least Squares (MLS) 
interpolation as the trial function while employ the 
Heaviside step function as the test function over each 
local sub-domain. 

The MLS method was presented by mathematicians 
for data fitting and surface construction. This method is 
generally considered to be one of the useful 
interpolation schemes that approximates random data 
with reasonable accuracy. It has two major features 
which have made it popular: (a) the approximated field 
function is continuous and smooth in the entire problem 
domain (what becomes a drawback at the material 
discontinuity boundaries); (b) it is capable of producing 
an approximation with the desired order of consistency. 
The MLS approximation of u for any point  ∈     
(Figure 1) is defined by [1]:   ( ) =   ( ) ( )                    ∀ ∈      (1) 

where,    is a neighborhood area of point  , and we call 
it the definition domain of point  .   ( ) = [  ( ),  ( ), … ,   ( )] is a monomial basis of order m. In 
the three dimensions problems, the linear basis is 
defined as:   ( ) = [1,  , ,  ]                     = 4  (2) 

and the quadratic basis is defined as:   ( ) = [1,  , ,  ,   ,  ,  ,  ,  ,   ]  = 10  (3) 
Also,  ( ) is a vector containing coefficients which are 
functions of the global Cartesian coordinates [     ] 
depending on the monomial basis.  ( ) is determined 
by minimizing a weighted discrete    norm defined as:    ( ) = ∑   ( )[  (  ) ( )−    ]     =[  ( )−   ] . . [  ( )−   ]  (4) 

where,   ( ) is the weight function, and     is the 
fictitious nodal value.  ,  , and    are identified as 
follows: 

 =    (  )  (  )…  (  )  ×    ,   
    =    ( ) ⋯ 0⋮ ⋱ ⋮0 ⋯   ( )  × ,      = [   ,   , … ,   ] ×   (5) 

The stationary of   in Equation (4) with respect to  ( ) 
leads to following linear relation between  ( ) and   ,  ( ) ( ) =  ( )     ,     ∶ ( ×  ) ;    ∶( × 1)  ;    ∶ ( ×  )  ;     ∶ ( × 1)  (6) 

where, matrices  ( ) and  ( ) are defined by:  ( ) =     ,  ( ) =       (7) 

 
Figure 1. Schematics of the MLS approximation 

 

   
Figure 2. Different positions of the spherical sub-domain.  

 
 
Once coefficients  ( ) in Equation (6) are determined, 
one may obtain the approximation from the nodal values 
at the local scattered points, by substituting them into 
Equation (1), as:   ( ) =   ( ).  = ∑   ( )                  ( ) ≡  ≠        ∀ ∈     

(8) 

With   ( ) =   ( )   ( ) ( )     ,     ( ) = ∑   ( )    [   ( ) ( ) ]    
(9) 

The weight function in Equation (4) defines the range of 
influence of node I. Normally, it has a compact support. 
In this article, a 4   order quadratic spline weight 
function is used.  

  ( ) =  1 − 6        + 8        − 3            0 ≤   ≤   0                                                                ≥      (10) 

where,    is the distance between point   and node   , 
also    is the size of support for the weight functions. It 
can be seen that the quadratic spline weight function is    continuous over the entire domain [1]. 
 
 
3. MLPG5 FORMULATION FOR THREE-
DIMENSIONAL ELASTICITY AND NUMERICAL 
DISCRETIZATION 
 
Despite the conventional Galerkin approaches such as 
element free Galerkin, which are based on global weak-
form of the problem, the MLPG method constructs the 
weak-form over the local sub-domains like    [1]. As 
well,    is a small region taken for each node inside the 
global domain (Figure 2). 
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The equations of equilibrium in a volume   bounded by 
surface  , are given by [1]:    , +   = 0   (11) 

where,     is the stress tensor,    is the body force, and (),  means  /(    ) (with (  ,   ,  ) ≡ ( , ,  )). The 
boundary conditions are assumed as [1]:   ≡         =   ̅            ,     =               (12) 

where,     are the prescribed displacements,   ̅ are the 
prescribed surface tractions,   is the unit outward 
normal of the global boundary,    is the global 
boundary with prescribed displacements and    is the 
global boundary with prescribed surface tractions.  
The local sub-domains could be of any geometric shape. 
However, in this paper, they are taken to be of spherical 
shape for simplicity. The local weak form of the 
equilibrium equations over the sub-domain around node   is given in Equation (13). ∫     , +       
Ω  Ω− α∫ (  −    )   

Γ   Γ = 0  (13) 

where,    is the test function. The penalty parameter α is 
introduced in order to satisfy 2qthe essential boundary 
conditions. Using    ,   = (     ), −      ,  and the 
divergence theorem, we have: ∫              − ∫       , −           −  ∫ (  −       )    = 0   (14) 

By applying the natural boundary conditions (  ≡      =   ̅), we can obtain the local symmetric weak-
form in linear elasticity which leads to MLPG1, 
MLPG5, and MLPG6 approaches. ∫      ,      − ∫          +  ∫           − ∫           =∫   ̅        +  ∫            + ∫            (15) 

If a Heaviside step function is chosen as the test 
function in each sub-domain, we’ll reach the MLPG5 
method [35]. Hence, the above equation reduces to: −∫        +  ∫         − ∫         = ∫   ̅      + ∫          + ∫          (16) 

It is seen that in Equation (16), there is no domain 
integration involved in the left hand side (leading to the 
stiffness matrix after discretization). Thus, if there were 
no body forces, the domain integration would be totally 
eliminated. One can discretize the MLPG5 by 
substituting the MLS interpolation function Equation (8) 
into Equation (16). −∑ ∫                 +  ∑ ∫                 −∑ ∫                  = ∫  ̅      +  ∫          + ∫         (17) 

with the definition of:  =    00 0  0 00  0      0      0   ,  

 =    0 00   00 0    ,    =  1                               Γ  0             ′                Γ     
  =

⎣⎢⎢
⎢⎢⎢
⎢⎡  ,  0 00  ,  00 0  ,  0  ,   ,   ,  0  ,   ,   ,  0⎦⎥⎥

⎥⎥⎥
⎥⎤
  

 =  (   )(    ) ⎣⎢⎢⎢
⎢⎡1 −    000

 1 −   000
  1 −  000

0000.5 −  00
00000.5 −  0

000000.5 −  ⎦⎥⎥
⎥⎥⎤   

  and   are the Young’s module and Poisson’s ratio, 
respectively.  
Equation (17) can be shorted to: ∑           =   ,  = 1,2, … ,   (18) 

M is the total number of the nodes. It’s notable that   ( ) vanishes for the nodes outside the local sub-
domain    , so taking all the nodes into account for each 
sub-domain does not affect the local sense of the 
procedure. The nodal stiffness matrix and force vector 
would be:    = −∫          +  ∫          − ∫             ( 1 9 ) 

  = ∫  ̅      +  ∫          + ∫         ( 2 0 ) 

If we want to enforce the essential boundary conditions 
via the direct interpolation method, after omitting the 
terms consisted   in the above equations, we should 
replace both sides of the  Equations (19) and (20) for the 
nodes on the essential boundary [39]. 

    =               =    0 0 ⋯   0 00   0 ⋯ 0   00 0   ⋯ 0 0    
⎩⎪⎪
⎨⎪
⎪⎧            ⋮            ⎭⎪⎪

⎬⎪
⎪⎫ =

  =                 

(21) 

It’s obvious that for the nodes which are having only 
one or two displacement components being prescribed 
on the essential boundary, the respective equation(s) 
will be substituted in Equations (19) and (20). Direct 
interpolation technique is straightforward and was 
suggested to be applied in MLPG by Atluri et al. [35]. 
So, this very effective method has been used to enforce 
the essential boundary conditions. 
 
 
4. TREATMENT OF MATERIAL DISCONTINUITIES 
 
As mentioned before, the MLPG method has been 
naturally lead to continuous differentiable 
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approximations so that the partial derivatives of the 
approximation such as strains and stresses in elastic 
problems are smooth and don’t require any post-
processing. However, this high continuous nature also 
leads to difficulty when there is an imposed 
discontinuity in the derivatives; e.g. the natural 
discontinuity in strains when material discontinuities are 
present. 

The new technique presented in this paper considers 
the subdomain of a node locating on the material 
boundary as two parts; one residing in the inner layer 
and the other one residing in the outer layer (Figure 3). 
After calculating the Gaussian integration points for 
each part, we would select the neighboring nodes of the 
first part Gaussian points only from the nodes of the 
inner layer and vice versa. In other words, for the nodes 
locating exactly on the material boundary, we simply 
define the support domain of each Gaussian point not a 
perfect sphere but just a part of it, while the subdomains 
of these nodes are the same as the other nodes’. It is 
noteworthy that the support domains for the other 
nodes’ Gaussian points must not intersect the material 
boundary as well. Another note is that the material 
boundary nodes, themselves, are not taken into account 
as the neighboring nodes of any Gaussian point, 
although they are included into the solution (Equations 
18 and 21) with their own subdomains. 
 
 
5. ELASTO-STATIC ANALYSIS OF THICK-WALLED 
LAMINATED CYLINDERS 
 
As mentioned before, the elasto-static analysis of thick-
walled cylinders can be a proper experiment for three-
dimensional application of MLPG5. Moreover, studying 
the laminated cylinders, made of isotropic materials, 
helps us to challenge the performance of the proposed 
technique in dealing with the material discontinuities. 
Hence, a typical two-layer cylinder fulfils this objective. 
Adding more layers to the problem needs to pursue a 
similar procedure. 
 
5. 1. One-layer Cylinder       We consider an open-end 
cylinder of length  = 15, internal radius   = 2 and 
thickness of  = 4.5 subjected to uniform internal 
pressure   = 1 . This cylinder is made of an isotropic 
material with  = 1 and  = 0.3 [35]. The problem is 
solved for one-fourth of the cylinder, due to the 
symmetry in the load and geometry (Figure 4). 

Since the cylinder is open-end, the lengthwise stress 
vanishes (  = 0), and the lengthwise strain (  =      ) 
has a constant value. Further, because of symmetry and 
absence of shear loads, the tangential displacement and 
all of the shear stresses are zero. Considering Appendix 
A, radial and hoop stresses as well as the radial and 
lengthwise displacements are as below: 

  =                 ,        =              (22) 

  =                   ,        = −         (23) 

The three-dimensional node distribution of the MLPG5 
model with 132 nodes, including 4 nodes in the radial, 3 
nodes in the tangential and 11 nodes in the lengthwise 
direction is shown in Figure 5. As said before, as well as 
the exact solution, the results would be compared with 
those obtained from the solution of software ANSYS. 
Since this software renders the results only at the nodes, 
we had to define enough nodes on the comparison 
direction ( = 7.5 and  = 45°.). This means that the 
number of nodes in ANSYS solution is much more than 
the MLPG5, but solutions with less number of nodes, 
which are not cited here, also have the similar results. In 
other words, the FEM solution of this problem is 
converged. In this example, we have applied the 20-
node SOLID95 element which, according to ANSYS’s 
HELP is very efficient for curvilinear domains. There 
are 425 nodes and 64 elements as shown in Figures 6 
and 7. In addition, the boundary conditions and the 
loading are the same as the MLPG5 solution. 

The results show an acceptable agreement with the 
exact solution and the FEM result which suggests its 
application in other classes of problems. In Figures 8 to 
10, the radial displacement, radial stress, and hoop 
stress diagrams are shown at  = 7.5 and  = 45°. 
Furthermore, the lengthwise displacement diagram at  = 45° and   = 4.25 is illustrated in Figure 11. It 
could be seen that the FEM results are almost perfect 
and obviously better than the MLPG5 results. 
 
 

 
Figure 3. Segregation of the sub-domain respective to a node 
on the material boundary.  
 
 

 
Figure 4. One-fourth of the one-layer cylinder subjected to 
internal pressure. 
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Figure 5. Three-dimensional node distribution of the MLPG5 
model for one-fourth of the one-layer cylinder. 
 
 

                 (a) 

                   (b) 
Figure 6. FEM model with 64 elements for one-fourth of the 
one-layer cylinder; a) a section parallel to X-Y plane, b) the 
isometric view. 
 
 

 
Figure 7. Isometric view of 425 nodes of the FEM model for 
one-fourth of the one-layer cylinder. 
 
 

 
Figure 8. Radial displacement diagram at   = 7.5 and  = 45° for the one-layer cylinder. 

 
Figure 9. Radial stress diagram at   = 7.5 and  = 45° for 
the one-layer cylinder. 
 

 
Figure 10. Hoop stress diagram at   = 7.5 and  = 45° for 
the one-layer cylinder. 
 

 
Figure 11. Lengthwise displacement diagram at   = 45° and   = 4.25 for the one-layer cylinder.  

 
 

5. 2. Two-layer Cylinder    An open-end two-layer 
cylinder of length  = 30 and internal radius   = 2 
subjected to uniform internal pressure   = 1 is 
considered. The layers have the same thickness of t = t = 3 and the material properties are:   = 1,  =0.3,   = 2 and   = 0.25 [35]. We assume that the 
layers are freely placed beside each other and have no 
deflection before being pressed by the internal pressure. 
Figure 12 shows a feature of one-fourth of the cylinder. 
The exact stress and displacement values are obtained 
referring to Appendix B (Equations (24) to (27)).   (     ) =                     ,       (     ) =                  (24) 

  (     ) =                     ,       (     ) =                  (25) 

(26)    (     ) =           +                    ,       (     ) =            +           

(27)    (     ) =              ,       (     ) = −            
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Figure 12. One-fourth of the two-layer cylinder subjected to 
internal pressure 
 

 
Figure 13. Three-dimensional node distribution of the 
MLPG5 model for one-fourth of the two-layer cylinder. 
 

 
Figure 14. FEM model with 16 elements for one-fourth of 
the two-layer cylinder.  
 

 
Figure 15. Isometric view of 164 nodes of the FEM model 
for one-fourth of the two-layer cylinder. 
 

 
Figure 16. Radial displacement diagram at   = 7.5 and  = 45° for the two-layer cylinder.  

 
Figure 17. Radial stress diagram at   = 7.5 and  = 45° for 
the two-layer cylinder.  
 

 
Figure 18. Hoop stress diagram at   = 7.5 and  = 45° for 
the two-layer cylinder. 
 

 
Figure 19. Lengthwise displacement diagram for the outer 
layer at   = 45° and   = 6.5 for the two-layer cylinder.  
 
 
The three-dimensional node distribution of the MLPG5 
model with 120 nodes, including 5 nodes in the radial, 3 
nodes in the tangential and 8 nodes in the lengthwise 
direction is shown in Figure 13. Among them, 48 nodes 
are merely located in the inner layer, 48 ones are placed 
only in the outer layer, and the remaining 24 nodes lay 
on the interface. For FEM solution, by using software 
ANSYS, we have defined 16 elements and 162 nodes in 
meshing process with the same element type 
“SOLID95” (Figures 14 and 15). The material 
properties of each element were defined according to 
the layer in which that element was resided. The 
technique introduced in Section 4 is employed to deal 
with material discontinuity. Like the one-layer case, 
displacements and stresses are computed at  = 7.5 and  = 45° (Figures 16 to 18). Further, the lengthwise 
displacement of each layer is obtained at  = 45° and 
the average radiuses of second layer; i.e.  = 6.5 
(Figure 19). The results are promising; specially, at the 
interface, which confirm the effectiveness of the 
proposed technique in comparison with finite element 
method. As shown in Figures 7 and 15, the number of 
nodes for the FEM are much less than the one-layer 
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cylinder; but its results are still fine and in radial 
displacement and radial stress diagrams (Figures 16 and 
17) are almost better than MLPG5. This also implicates 
the convergence of FEM solution. However, in the 
Hoop stress diagram (Figure 18), at the material 
discontinuity boundary ( = 5), the ANSYS solution 
gives an average amount of stress between two true 
magnitudes. That’s because of defining nodes exactly 
on the material boundary. As we know, FEM solution 
merely gives the results at nodes and since these nodes 
belong to both layers, the jumping Hoop stress 
magnitude has become an average of two true ones. 
Furthermore, it is noticeable that because the coding of 
the problem is very heavy and complicated, especially 
in the case of the numerical integration, the 
convergency of the obtained results didn’t check for 
these problems. However, the authors, study the 
convergency of the proposed method for other 
problems, such as those of reported in [40-43]. 
 
 
6. CONCLUSION 
 
The MLPG5 technique is applied for the analysis of the 
thick-walled laminated cylinders made from the 
isotropic materials under the elasto-static pressure. The 
elasto-static analysis of the thick-walled cylinders is a 
suitable examination for the three-dimensional 
application of the meshless methods. Due to the high 
continuity of the approximation functions, the material 
discontinuity is a serious difficulty in meshless methods. 
Since the MLPG method is conceptually one of the 
most attractive approaches; in this article, a simple 
technique embedding a sense of the domain 
decomposition is introduced to tackle the difficulty of 
the material discontinuity. In this technique, the nodes 
on the material boundaries have two integration 
domains, one in the lower layer and the other in the 
upper one, i.e. the problem domain is treated as a 
number of separate domains (depending on the number 
of material layers). Results are quite acceptable and 
promising; specially, at the material interface which 
demonstrate the efficiency of the proposed technique in 
comparison with the exact solutions and FEM results. 
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Appendix A.   
 
The Exact Elasto-Static Solutions for the Thick-
Walled One-Layer Cylinder  
 
Consider a thick-walled cylinder of the length  , 
internal radius   , and external radius    subjected to 
the uniform internal pressure    and external pressure    (Figure 16). We assume that it long enough so that 
the lengthwise strain    is independent of the radius 
variable  . Because of axial symmetry and absence of 
shear loads, the tangential displacement and all of the 
shear stresses are zero. Axis Z is along the length of the 
cylinder and the material’s behavior is assumed totally 
elastic. According to the boundary conditions, the 
radial and hoop stresses are [44]: 

B.C:    = −                  =     = −                =     = 

   =                   − (     )             (    )  =                   + (     )             (    )  (A-1) 

If an axial effective force   is exerted to the cylinder in 
the closed-end case, thus the lengthwise stress will be:   =  0                                                 −        (       ) =                           −         (A-2) 

To obtain the radial and lengthwise displacements, we 
should employ the stress-strain relations: 

⎩⎪⎨
⎪⎧  =      =   (  −  (  +   ))  =    =   (  −  (  +   ))  =      =   (  −  (  +   ))   (A-3) 
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For the special case   = 0, the displacement values 
are as follows:   =           (   )            , =  1 −                    −    1 − 2                −         (A-4) 

 
Appendix B.  
 
The Exact Elasto-Static Solutions for the Thick-
Walled Two-Layer Cylinder 
 
Consider a two-layer thick-walled cylinder of the 
length  , internal radius  , middle radius  , and 
external radius  , subjected to uniform internal 
pressure    and external pressure    (Figure 17). We 
assume that the layers are placed freely beside each 
other and have no deflection before being pressed. 
Therefore, for each layer, we can use the one-layer 
cylinder relations with the equal conditions at the 
material interface, i.e. the radial displacement and 
radial stress should be the same at the middle radius  =  . Suppose the radial stress to be an unknown 
value    at   =  , then the hoop stress at this radius 
will be [44]:      =             =    = −     ⟹         =               + (     )          =               + (     )          (B-1) 

By applying the stress-tangential strain relation and 
imposing the displacement equality condition (   =

   ), we can obtain the value of    in terms of the 
known parameters. Here, it has been evaluated only for 
the open-end case (regarding to the problems stated in 
section 5) and the other case is surrendered to readers.   =                    (     (     ))  (     )[        (     )]   (     )[        (     )]  (B-2) 

Eventually, the stresses and displacements can be 
obtained from the stress-strain relations, if each layer is 
considered as a separate cylinder. 
 

 
Figure 16. One-layer cylinder under pressure; prospective 
and cross section. 
 

 
Figure 17. Two-layer cylinder under pressure; prospective 
and cross section. 
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  چکیده
  

) MLPG(گالرکین محلی  –بدون المان پتروف  در این مقاله یکی از معمول ترین و ساده ترین اعضاي خانواده روشهاي
استاتیک به کار  -، جهت تحلیل مخازن استوانه اي جدار ضخیم لایه اي ایزوتروپیک تحت فشار الاستو MLPG5به نام  

یک روش ساده جدید جهت رفع مشکل بسیار مهم روشهاي بدون المان در مورد ناپیوستگی مواد به . گرفته شده است
از تقریب حداقل مربعات بازگشتی جهت تشکیل توابع سعی و از . علت پیوستگی بالاي توابع شکلشان پیشنهاد شده است

ستقیم جهت ارضاي شرایط مرزي بکار گرفته روش اعمال م. تابع پله هویساید ساده براي توابع آزمون استفاده شده است
تطابق قابل قبول نتایج با جوابهاي تحلیلی و اجزا محدود به ویژه در مرزهاي ناپیوسته ماده ، حاکی از موفقیت . شده است

 .روش پیشنهادي بوده و روش مذکور در حل سایر مسایل مقدار مرزي نیز توصیه می شود
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