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A B S T R A C T  

   

The redundancy allocation is one of the most important and useful problems in system optimization, 
especially in electrical and mechanical systems. The object of this problem is to maximize system 
reliability or availability within a minimum operation cost. Many works have been proposed in this 
area so far to draw the problem near to real-world situations. While in classic models the system 
components are assumed to have two states of working and failed, in this paper, parallel components of 
serial sub-systems are considered to work in three states, each with a certain performance rate. The 
component states are classified into two working states of working with full performance and working 
with half performance, and a failed state. Besides, technical and organizational activities are considered 
to improve the performance of the components as well as the sub-systems. As the problem belongs to 
the class of NP-hard, a genetic algorithm is utilized to solve it. 
 
 

doi: 10.5829/idosi.ije.2014.27.11b.03 
 

 
1. INTRODUCTION1 
 
The redundancy allocation problem (RAP) is a complex 
combinational optimization problem, in which the goal 
is to determine the optimal combination of the 
components of a system in order to maximize the 
reliability under cost and weight constraints. This 
problem has many applications in industries. Electronic 
systems, power stations, and production systems are 
some examples of RAP applications. 

In all research performed on RAP, a system is 
classified into two categories based on the operation of 
its components: binary-state and multi-state 
components. In a binary system, both the system and its 
subsystems can only take two possible states of 
"completely working" and "completely failed." Fyffe et 
al. [1] introduced the basic RAP model with an active 
strategy of components. The objective function of his 
model was to maximize the system reliability under 
weight and cost constraints. He employed a dynamic 
programming approach to solve the problem. Nakagawa 
                                                        
1*Corresponding Author’s Email: niaki@sharif.edu (S.T.A. Niaki) 

and Miyazaki [2] solved 33 RAPs using an exact 
approach called surrogate constraint and showed it is 
more efficient than the dynamic programming approach. 
In these problems, the upper limit in the weight 
constraint was considered to range between 159 and 
191. Bulfin and Liu [3] proposed three different 
methods; one heuristic and two exact, to solve RAP. 
Misra and Sharma [4] investigated RAP of systems with 
k-out-of-n sub-systems. In their presented model, the 
redundancy strategy was considered a decision variable. 
Chern [5] showed that RAP belongs to the class of NP-
hard problems. Therefore, heuristic and meta-heuristic 
approaches are justified to solve large-size RAP in 
terms of the number of components. Coit and Smith [6] 
presented a new model for series-parallel RAP with k-
out-of-n sub-systems with the choice of selecting active 
and cold-standby redundancy strategy. Moreover, Coit 
and Smith [7] considered RAP of k-out-of-n series-
parallel systems with the choice of different 
components, active strategy, and uncertainly in 
reliability components. Ida et al. [8] and Yokota et al. 
[9] employed genetic algorithms (GA) to solve RAP 
without the choice of allocation of different types of 
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components to each sub-system in a series-parallel 
system. Coit and Smith [10] used GA to solve the 
problem presented in the literature [6]. 

One of the most difficult problems in solving RAP 
using a meta-heuristic algorithm is to generate and 
select infeasible solutions. Defining a penalty function 
is an appropriate approach to overcome this problem. 
Coit and Smith [11] presented a penalty function to 
encourage the algorithm to search the boundaries 
between feasible and near feasible area. Coit and Liu 
[12] proposed a new RAP model with the choice of 
selecting different redundancy strategies. In his later 
work, Coit [13] extended Coit and Liu's [12] model to 
have the redundancy strategy as a decision variable. 
Further utilization of GA corresponds to Tavakoli-
Moghadam et al. [14] who solved the model presented 
by Coit [13] using GA. 

In a multi-state system (MSS), the components can 
assume more than two states, each with a performance 
rate between the perfect working and failed states. This 
leads to extensive computational efforts involved in 
evaluating reliability of systems consisting of a large 
number of components. These systems have been 
studied in depth by many researchers such as Lisnianski 
and Levitin [15], Barlow and Wu [16], Murchland [17], 
and El-Neveihi et al. [18]. Ramirez-Marquez and Coit 
[19] proposed a heuristic method to solve the RAP with 
different failure states. In their model, the components 
and sub-systems not only could work in two working 
and failed states, but also the system could assume any 
intermediate state. 

While the binary-state system reliability can be 
obtained using the basic mathematical and statistical 
relations, most of the research works in MSS reliability 
problem focus on optimizing the level of a unique 
system redundancy [15]. As an alternative, Ushakov 
[20] introduced the universal generation function (UGF) 
approach for the first time. UGF is known as an 
appropriate method for calculating the reliability and 
availability of multi-state systems. This method 
incredibly decreases the number of system state 
evaluations and makes the system reliability and 
availability computations easier [21]. Besides, more 
application of UGF are given in Gnedenko and Ushakov 
[22], Ushakov [23], and Lisnianski [24]. Lisnianski et 
al. [25] utilized UGF to evaluate the reliability of a MSS 
containing serial, parallel, and series-parallel sub-
systems. Ding and Lisnianski [21] showed that the 
output probability distribution for the entire MSS could 
be determined by UGF. Kuo and Wan [26] discussed an 
optimal reliability design in which UGF was employed 
as the main method in appraising multi-state systems 
reliability evaluation. Li and Zuo [27] proposed a 
recursive method to solve MSS reliability problems and 
compared their method with UGF. Tian et al. [28] 
worked on a joint redundancy-reliability optimization 

method for solving series-parallel RAP. They showed 
that using technical and organizational activities is an 
appropriate approach to improve system reliability. 
These activities improve failure and repair rate of 
components. Besides, UGF has been employed in RAP 
of k-out-of-n systems many times (see for example [15], 
[28], and Ouzineb et al. [29]). 

One of the main objections about UGF is its high 
computational time to evaluate system reliability or 
availability. In order to resolve this objection, 
Pourkarim Guilani et al. [30] presented a new method 
for reliability evaluation of non-repairable three-state 
systems using a Markovian model. They showed their 
method was more efficient that the UGF approach. 

In this paper, a RAP model is presented to optimize 
reliability of series-parallel systems, in which the 
components of the subsystems are assumed to have 
three performance rates. In this approach, differential 
equations are used to model the reliability of the sub-
systems, where these equations are solved using a GA. 
Moreover, in order to improve reliability of the system 
under investigation, technical as well as organizational 
activities are considered. 

The proposed modeling comes in section 2. Section 
3 deals with solving the problem. A numerical example 
is presented in section 4, and finally conclusion and 
further studies come in section 5. 

 
 

2. SYSTEM DEFINITION 

In order to present the Markovian approach used to 
model a three-state series-parallel system, consider the 
following descriptions that is adapted from the literature 
[30]. Let a system to have  some sub-systems, each with   
some components. The system is configured as series-
parallel, where its structure is demonstrated in Figure 1. 
Let a component of a sub-system have one of the 
following states at any time: 
• Working perfectly (100% performance) 
• Semi working (50% performance) 
• Not-working or failed. 
Note that as all the components of a sub-system are 
configured parallel, the sub-system works until all of its 
components fail. Moreover, the components, indexed by 
i , are assumed non-repairable with constant failure 
rates (CFR) of: 

1iλ   : Moving from 100 to 50% working performance, 

2iλ   : Moving from 100 to 0% working performance, 

3iλ  : Moving from 50 to 0% working performance. 
To differentiate between working states of a 

component, a fully-working component receives 2 
points, a semi-working component 1 point, and a failed 
component receives 0 point. For instance, if two 
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components work with full performance and one with 
semi performance, then the sub-system scores 5 points. 
Thus, the possible points the thi sub-system with 
components receives are: 

( )2 2 1 2 2 2 1 0i i in , n , n , , , ,− − …  (1) 

Moreover, as a sub-system with a full performance 
component and another sub-system with three semi-
performance components both receive 5 points, the 
notation ( )mw,  is used to represent a sub-system with   
wfull-performance and m  semi-performance 
components. Consequently, if the performance point of 
a sub-system is k , then k  can take any values of 

0,1, 2, , 2 1, 2i ik n n= −… . Furthermore, the number of 
states can be obtained by: 

2 ; 0,1, 2, , 2 1, 2i iw m k k n n
w m n

+ = = −
+ ≤

…  (2) 

 
2. 1. State Space Diagram and Differential 
Equations       The state space of a sub-system denoted 
by ( ){ }nmwmw <,;,  is shown in Figure 2.  
 
 

Figure 1. The system structure 
 

 

 
Figure 2. State space diagram of a sub-system [30]  

 
Figure 3. Space state diagram of the example [30]  

 
 
 
Then, based on Figure 2, the differential equation 
becomes: 

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

1 2,0 ,0

1 2 3, ,

1 2 31, 1 1, , 1

0 : ,  0
(3)

: ,1 1 1

n n

w m w m

w m w m w m

P n n P w n m
P w w m P

w m nw P w P m P

λ λ
λ λ λ

λ λ λ+ − + +

′ + + = = =
 ′ + + + = < + + + + +
 

To make the equations easier to solve, a matrix model is 
proposed to use. The cell in the thi row and thj column 
of this matrix shows the transition probability of the 
sub-system from state i to state j . As an example, 
consider a sub-system with 3 identical components. 
Based on Equation (2), the number of states for this sub-
system is obtained as: 
2 0 1 2 6

3
w m k ; k , , , ,

w m
+ = =

+ ≤
…  (4) 

Equation (4) can be decomposed to seven equations as 
follows: 

{ } ( ) ( ){ }2 66 , 3,03
w mk w mw m

+ == ⇒ ⇒ =+ ≤

{ } ( ) ( ){ }2 55 , 2,13
w mk w mw m

+ == ⇒ ⇒ =+ ≤

{ } ( ) ( ) ( ){ }2 44 , 2,0 , 1,23
w mk w mw m

+ == ⇒ ⇒ =+ ≤
 

{ } ( ) ( ) ( ){ }2 33 , 0,3 , 1,13
w mk w mw m

+ == ⇒ ⇒ =+ ≤

{ } ( ) ( ) ( ){ }2 22 , 1,0 , 0, 23
w mk w mw m

+ == ⇒ ⇒ =+ ≤

{ } ( ) ( ){ }2 11 , 0,13
w mk w mw m

+ == ⇒ ⇒ =+ ≤

{ } ( ) ( ){ }2 00 , 0,03
w mk w mw m

+ == ⇒ ⇒ =+ ≤
 

(5) 

As a result, the reliabilities of sub-systems denoted by 
( )mw,  with possible number of components, ( ),w mR , 
shown in Equation (6) must be calculated: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }, 0, 0 , 0,1 , 0, 2 , 0,3 , 1,0 , 1,1 , 1, 2 , 2, 0 , 2,1 , 3, 0w mR =  (6) 

Then, the space-state diagram and the matrix 
representation of this sub-system is presented in Figure 
3 and Table 1, respectively. 

 2  

 1 

1n 

 2  

 1 

2n 

 2  

 1 

sn 

1 2 s 
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After solving the system of equations and obtaining the 
transition probabilities, the reliability of sub-system i is 
calculated using: 

( ) ( ) ( )
( ) [ ] ( ),

,
, 0 , 0W S

i w s
w s R

R t P t
∈ −

= ∑  
(7) 

In Equation (7) we note that as the components are non-
repairable all the states in the proposed Markov chain 
are transient, except (0,0). Thus, in steady-state 

0 0 1( , )P =  and 0( w ,s )P =   for all other sates. 
 
2. 2. Technical and Organizational Activities   
Technical and organizational activities such as 
maintenance programs and system monitoring are 
supportive actions considered in this paper to reduce 
failure rates of the components and consequently to 
improve system reliability. Assuming 0 1hijα< < the 
effective value of the technical activity h  taken place 
on the component type j of sub-system i with a failure 
rate of ijλ and letting hiTA to be 1 if the activity is 
performed and 0 otherwise, Equation (8) is used to 
present the reducing value of the failure rate '

ijλ : 

' . ; ,ij ij hi hi ijTA h iλ λ α λ= − ∀  (8) 

Similarly, if 0 1fijβ< <  is the effective value of the 
organizational activity f on the component type j of 
sub-system i with a failure rate of ijλ and fiOA is 1 if the 
activity is performed and 0 otherwise, Equation (9) is 
used to present the reducing value of the failure rate '

ijλ  

' . . ; ,ij ij fi fij ijOA i fλ λ β λ= − ∀  (9) 

Interested readers are referred to Tian et al. [28] for 
more details on the effects of these activities.  

2. 3. Mathematical Formulation         The following 
notations are used to model the redundancy allocation 
problem at hand. 
i : An index used for a sub-system, 1 2i , , ...,s=  
s : Number of sub-systems in the system under 

consideration 
in : Number of components in sub-system i , 

1 2i maxn , ,...,n=  
R : The system reliability 

( )iR t : Reliability of sub-system i at time t  

ic : Cost of a redundant component in sub-system i  

MaxC : Maximum system cost (available budget) 

i :θ The parameter associated with internal connection 
cost of a component in sub-system i , the sub-
system internal connection cost is assumed 

( )i ine θ (see Wang et al. [31]) 
hiVCTA : Variable cost of technical activity h  performed 
on a component of sub-system i ; 1 2 ih , ,..., H=  

hiCCTA : Constant cost of technical activity h  performed 
on a component of sub-system i  

iH : Number of available technical activities on a 
component of sub-system i  

fiCOA : Cost of the organizational activity type 
f performed on the components of sub-
system i , 1 2 if , ,...,F=  

iF : Number of available organizational activities on the 
components of sub-system i  

ij :λ Failure rate of type j  for the components of sub-
system i  

'
ij :λ Improved failure rate of type j  for the components 

of sub-system i obtained using technical and 
organizational activity 

 
 

TABLE 1. The matrix representation of the example 
n=3 (3,0) (2,1) (2,0) (1,2) (1,1) (0,3) (1,0) (0,2) (0,1) (0,0) 

(3,0) 0 13λ  23λ  0 0 0 0 0 0 0 

(2,1) 0 0 3λ  12λ  22λ  0 0 0 0 0 

(2,0) 0 0 0 0 12λ  0 22λ  0 0 0 

(1,2) 0 0 0 0 32λ  1λ  0 2λ  0 0 

(1,1) 0 0 0 0 0 0 3λ  1λ  2λ  0 

(0,3) 0 0 0 0 0 0 0 33λ  0 0 

(1,0) 0 0 0 0 0 0 0 0 1λ  2λ  

(0,2) 0 0 0 0 0 0 0 0 32λ  0 

(0,1) 0 0 0 0 0 0 0 0 0 3λ  

(0,0) 0 0 0 0 0 0 0 0 0 0 
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hiTA : A binary variable taking 1 if technical activity 
type h  is taken place for the components of 
sub-system i , otherwise 0  

fiOA : A binary variable taking 1 if organizational 
activity type f is performed on the 
components of sub-system i ,  otherwise 0 

:hijα The effective value of the technical activity h  
taken place on the component type j of sub-
system i , 0 1h ijα< <  

fij :β The effective value of the organizational activity 
f on the component type j of sub-system 
i , 0 1fijβ< <  

Based on the above notations, the mathematical 
formulation of RAP at hand becomes: 

( )
1

s

i
i

Max R R t

s.t :
=

= ∏  (10) 

( ) ( ){ }

( )
1

1

1

. .

.

i
i i

i

H
n

s i i hi i hi hi
h

F Max
i

fi fi
f

n c e VCTA n CCTA TA
C

COA OA

θ

=

=

=

 
+ + +   ≤ 

 +
  

∑
∑

∑
 (11) 

' . ; ,ij ij hi hi ijTA h iλ λ α λ= − ∀  (12)
 

' . . ; ,ij ij fi fij ijOA i fλ λ β λ= − ∀  (13)
 

0 i maxn n ; i≤ ≤ ∀  (14)
 

0 1hiTA , ; h ,i= ∀  (15)
 

0 1fiOA , ; f ,i= ∀  (16)
 The objective function in Equation (10) that is to be 

maximized, is the system reliability obtained by the 
product of serial sub-systems' reliabilities at time t . 
Note that the reliability of a sub-system derived in 
Section 2.1 is a function of the number and the type of 
its redundant components. The constraint in Inequality 
(11) shows that the total cost of the system including 
cost of redundant components, internal connection 
cost, and technical and organizational activity costs, 
cannot be bigger than the available budget MaxC . 
Equations (12) and (13) show the improvement of the 
component failure rates after activating technical and 
organizational activities.  

 
 

 
Figure 4. Chromosome structure of sub-system components 

 

 
Figure 5. Chromosome structure of technical and 
organizational activities 

The number of components in a sub-system is 
bounded in Inequality (14), and the Equations (15) and 
(16) define the type of the variable being used. In the 
next section, a solution procedure is proposed for the 
NP-hard problem at hand. 

 
 

3. SOLVING METHOD 
 
As the problem belongs to the class of NP-hard 
problems, similar to other works introduced in Section 
1, the meta-heuristic algorithm of GA is used to solve 
it. 
 
3. 1. Genetic Algorithm           As GA is a popular 
meta-heuristic to solve many complicated optimization 
problem such as RAP, it is utilized in this paper with 
two special structures for chromosomes denoted by 

sn ×1 and ( )s H Fk × +  matrices. The first chromosome 
contains the number of components in each sub-system 
and the second shows the technical and organizational 
activities, where all the elements in ( )FHsk +×  matrix 
are binary. A value of 1 in this matrix denotes that a 
technical or organizational activity is performed and 0 
indicates the activity is not employed. Figures 4 and 5 
show these chromosomes. As an example, consider 
four different types of technical and one type of 
organizational activity available for three sub-systems 
and their components. Then, the first four columns of 
the 53×k  matrix presented in Figure 5 correspond to 
whether the technical activities are performed on the 
three subsystems (denoted by 1s) or not (denoted by 
zeros), and the last column is related to the 
organizational activity. Note that each row of this 
matrix corresponds to a sub-system. The "1" in the 
third row and the second column of the following 
matrix means technical activity type-2 is performed on 
the components of sub-system 3. Note that as the other 
elements all are zero, no other activities are performed. 

3 5

0 0 0 0 0
0 0 0 0 0
0 1 0 0 0

k ×

 
 =  
  

 

 
3. 2. Crossover Operator          The common uniform 
crossover operator is used in this paper. After 
generating an initial random population, the roulette 
wheel procedure is first used to select the parent of this 
operator. Then, for each gene in the parent's 
chromosome, a binary random variable is produced. If 
the value of this variable is equal to one, then the 
values of the parent's gene are exchanged with each 
other, otherwise if the value of this variable is zero, the 
exchange is not taken place. More details on this type 
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of operator is presented in the work by Gen and Cheng 
[32] and [14]. Figure 6 demonstrates this operation. 
 
3. 3. Mutation Operator         For the mutation 
operation of a gene in a chromosome, a real random 
variable is first produced. If this variable is less than 
the mutation rate of 0.1, then the gene mutates 
randomly (see [14]). The mutation operation is 
illustrated in Figure 7. 
 
3. 4. Initial Condition        The required initial 
information to start GA is: 
1. Population size ( )npop  is the number of 
chromosomes that are kept in each generation. 
2. Crossover rate ( )cP  is the probability of performing 
a crossover. 
3. Mutation rate ( )mP  is the probability of performing 
mutation. 
4. A collection of feasible chromosomes is randomly 
generated as the initial population. Note that feasible 
chromosomes are the ones that satisfy constraints of 
the model, especially the constraints (11) and (14). 
 
3. 5. Chromosome Evaluation       In GA, as soon as 
a chromosome is generated, a fitness value must be 
assigned to it. The fitness in this research is the system 
reliability shown in (10). Since there are some 
constraints in the model of the problem, some 
generated chromosomes may not be feasible. The most 
popular approach in GA to handle infeasibility is to use 
penalty functions that penalize infeasible solutions by 
reducing their fitness values in proportion to their 
degree of constraint violation [32]. In this research, we 
use the penalty function approach. If a constraint is 
satisfied then its penalty is set to zero. Otherwise, the 
penalty assumes a big non-zero value. 
 
3. 6. Stopping Criterion      The final step in the GA 
methodology is to check if the method has found a 
solution that is good enough to meet the user’s 
expectations. Stopping criteria is a set of conditions 
such that when satisfied, a good solution is obtained. In 
this research, stopping criterion is defined as the 
number of generations. When the algorithm reaches a 
predefined number of generations, the algorithm will 
be stopped. As the parameters of a meta-heuristic play 
important roles, in order to find better-quality near-
optimum solutions their values are calibrated using 
response surface methodology. 
 
3. 7. Response Surface Methodology         Response 
surface methodology is a set of useful statistical and 
mathematical techniques for expansion, improvement, 
and optimization of a process. The input variables are 

called independent variables and the output of the 
process is the response. Response surface methodology 
combines design of the experiments, regression 
techniques, and optimization method to adjust the 
independent variables in order to achieve the best 
response. In order to tune the parameters of the GA, i.e. 
the population size ( )npop , the crossover rate ( )cP , and 
the mutation rate ( )mP , two levels for each parameter is 

considered in a 32  factorial design. Besides, in order to 
investigate the curvature in the response surface, 5 
experiments are performed at the center point of the 
design. In addition, to better estimate the response 
function 6 pivot points are amended. Thus 19 
experiments are performed, in each of which the 
stopping condition of the algorithm is set 100 
iterations. The values of the parameters that maximize 
the system reliability are selected at the end. The 
ranges of the input variables are presented in Table 2. 
In the next section, a numerical example is given to 
demonstrate the parameter calibration process. 
 
 

 
Figure 6. The uniform crossover operation 

 
Figure 7. Mutation operation 

 
TABLE 2. Ranges for GA parameters 

 Lower value Upper value 
npop  50 100 

cp  0.4 0.7 

mp  0.1 0.3 

 
TABLE 3. Components and internal connectivity costs 

i  1 2 3 4 5 6 

ic  18 20 22 15 13 12 

iθ  0.1 0.2 0.1 0.15 0.25 0.1 
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TABLE 4. Variable technical costs and cost of 
organizational activities 
i  1iVCTA  2iVCTA  3iVCTA  4iVCTA  1iCOA  

1 5 3 4 2 11 
2 4 5 6 3 12 
3 2 1 1 3 15 
4 5 5 3 2 19 
5 2 2 3 3 20 
6 6 1 3 3 25 

 

TABLE 5. Constant cost of technical activities 
i  1iCCTA  2iCCTA  3iCCTA  4iCCTA  

1 2 2 1 1 
2 1 1 2 2 
3 2 2 3 1 
4 2 2 3 3 
5 4 4 3 5 
6 2 2 1 3 

 
 

TABLE 6. Effects of technical and organizational activities on sub-systems and their components 
  1=i    2=i    3i =   

 
11λ  12λ  13λ  21λ  22λ  23λ  31λ  32λ  33λ  

ij1α  0.1 0 0 0.3 0 0 0.3 0.1 0 

ij2α  0.2 0.05 0 0.05 0 0.4 0 0 0.3 

ij3α  0.2 0.1 0.1 0 0.1 0 0 0.1 0 

ij4α  0.3 0.1 0.2 0 0.1 0 0.05 0 0.2 

ij1β  0 0 0.1 0.1 0.05 0.2 0 0.05 0 

  4=i    5=i    6=i   
 

41λ  42λ  43λ  51λ  52λ  53λ  61λ  62λ  63λ  

ij1α  0 0.25 0 0 0 0.5 0.1 0 0.2 

ij2α  0.5 0 0.07 0 0.25 0 0 0 0.15 

ij3α  0.08 0 0 0 0.3 0.4 0 0.2 0 

ij4α  0 0 0.15 0.1 0 0 0.24 0 0.14 

ij1β  0.18 0 0.35 0 0.45 0.2 0.25 0 0.1 

 
TABLE 7. The triple failure rates of components 

i  
1iλ  2iλ  3iλ  

1 0.008 0.0040 0.0060 
2 0.006 0.0030 0.0050 
3 0.009 0.0045 0.0055 
4 0.009 0.0050 0.0070 
5 0.005 0.0020 0.0040 
6 0.007 0.0020 0.0040 

 
 

4. NUMERICAL EXAMPLE 
 
Consider a system with 6 sub-systems connected 
serially. The component costs and the internal 
connectivity costs are presented in Table 3. Moreover, 
4 different types of technical and one organizational 
activity are available. The costs of these activities are 
shown in Tables 4 and 5, respectively. Table 6 contains 
the effects of technical and organizational activities on 
the performance of the sub-systems and their 
components. The triple failure rates of the components 
are shown in Table 7. Moreover, the maximum 
available cost ( )MAxC is considered 350 such that the 
problem has a solution space. Besides, this value has 
been chosen based on other model parameters. Note 

that all of the model parameters can be determined by 
the decision maker. The 19 experiments mentioned 
above, each with different combinations of the 
parameters were performed using the GA on the 
Minitab-16 software. The input parameters and the 
results of these runs are presented in Table 8. The 
maximum CPU time of running the program is 
considered 200 seconds. The RSM and the ANOVA 
results are shown in Tables 9 and 10, respectively. 
Moreover, the best combination of the parameters are 

100npop = , 01.mP = , and 0 4.cP = . Using these 
values, the near-optimum solution of the problem is 

[ ]1 6 3 3 3 4 3 3n × = , 

( )5 5

0 0 0 1 0
0 0 0 0 0
0 1 1 0 0

100 0 861778601719086
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0

k , R .×

 
 
 
 

= = 
 
 
 
  

with the 

155 255737Time . Seconds= . 
 
4. 1. Verification           In order to validate the results 
obtained using GA, the size of the numerical example 
given in Section 4 is reduced to 2 and 3 subsystems 
such that the exact enumeration method is able to solve 
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them. The exact number of feasible and infeasible 
solutions is obtained using Equation (17): 

( )
max( ) 2s H Fsn × +×  (17) 

Thus, for systems with 2 and 3 sub-systems, the total 
number of solutions are 16,384 and 2,097,152, 
respectively. It can be easily seen that as the number of 
subsystems increases, the number of solutions to 
investigate increases exponentially. The input data for 
the system with 2 sub-systems is the same as the one 
for the first two sub-systems shown in Tables 3-7. For 
the system with 3 sub-systems, the data of the first 
three sub-systems are considered. The maximum 
available costs for these two problems are set 100 and 
150, respectively. The best solutions of the GA and the 
exact enumeration method with their running times 
using MATLAB 10 are shown Table 11. Moreover, the 
optimal solutions obtained using both methods are: 

[ ]1 2 2 5

0 0 0 1 0
2 2

0 1 0 0 0
n ; k× ×

 
= =  

 
 

[ ]1 3 3 5

0 0 0 0 0
3 2 2 0 0 0 0 0

0 1 0 0 0
n ; k× ×

 
 = =  
  

 

The results in Table 11 show that both methods 
provide exact system reliabilities for the two problems 
under investigation. It means GA was able to find the 
optimal solutions obtained using the exact method. 
Note that the solving time of the enumeration method 
increases rapidly by increasing number of sub-systems. 
For a system with 6 sub-systems, the number of 
feasible and infeasible solutions are more than 

24115 10. × and the enumeration method is not able to 
solve the problem even in 172,800 seconds (2 days 
running time). Hence, the use of a meta-heuristic is 
justified.  

 

TABLE 8. Experimental results 
System reliability ( )R  mP  cP  npop  Run 

0.8268969433641979 0.1 0.4 50 1 
0.8617786017190861 0.1 0.4 100 2 
0.821282207457495 0.1 0.7 50 3 
0.793381160008338 0.1 0.7 100 4 

0.8296797497938691 0.3 0.4 50 5 
0.819832906458429 0.3 0.4 100 6 
0.77587437538383 0.3 0.7 50 7 
0.830321007989777 0.3 0.7 100 8 
0.791719504429468 0.2 0.55 50 9 
0.836027420831237 0.2 0.55 100 10 

0.8331531672381191 0.2 0.4 75 11 
0.833172014208721 0.2 0.7 75 12 

0.8497927762179039 0.1 0.55 75 13 
0.839909843369682 0.3 0.55 75 14 
0.853549080361786 0.2 0.55 75 15 
0.805013749877716 0.2 0.55 75 16 
0.805013749877716 0.2 0.55 75 17 
0.829780992841898 0.2 0.55 75 18 

0.8540766016885421 0.2 0.55 75 19 
 

TABLE 9: Response surface regression: R(t) versus npop, Pm, Pc 
P-value T SE coef. Coef. Term 

0.275 1.161 0.25394 0.29486 Constant 
0.580 0.574 0.00472 0.00271 npop 
0.434 0.818 0.92598 0.75786 Pc 
0.317 1.060 0.88859 0.94154 Pm 
0.309 -1.079 0.00003 -0.00003 npop*npop 
0.577 -0.578 0.80717 -0.46687 Pc*Pc 
0.657 -0.460 1.81614 -0.83510 Pm*Pm 
0.493 0.714 0.00283 0.00202 npop*Pc 
0.197 1.394 0.00425 0.00592 npop*Pm 
0.053 -.2.228 0.70760 -1.57654 Pc*Pm 

PRESS = 0.113630 S = 0.0300207 
R-Sq(adj) = 36.16% R-Sq(pred) = 0.00% R-Sq =68.08% 
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TABLE 10. Analysis of variance for R(t) 
P-value F Adj MS Adj SS Seq SS DF Source 

0.137  2.13  0.001922 0.017299 0.017299 9 Regression 
0.348  1.25  0.001127 0.003381 0.005437  3 Linear  
0.580  0.33  0.000297 0.000297  0.000574  1  npop 
0.434 0.67  0.000604  0.000604  0.001462  1  Pc  
0.317 1.12 0.001012 0.001012  0.003402  1  Pm  
0.198 1.91  0.001725 0.005176  0.005176  3  Square 
0.309 1.16  0.001050 0.001050  0.004405  1  npop*npop 
0.577 0.33  0.000302 0.000302  0.000580  1  Pc*Pc 

0.657 0.21  0.000191 0.000191  0.000191  1  Pm*Pm 
0.128 2.47  0.002229 0.006686  0.006686  3  Interaction 
0.493 0.51  0.000460 0.000460  0.000460  1  npop*Pc 
0.197 1.94  0.001753 0.001753  0.001753  1  npop*Pm 
0.053 4.96  0.004474 0.004474  0.004474  1  Pc*Pm 

 0.000901 0.008111 0.008111 9  Residual Error 
0.038 7.34 0.001463 0.007314 0.007314 5 Lack-of-Fit 

  0.000199 0.000797  0.000797  4  Pure Error 

  0.025410  18  Total 

 
TABLE 11. The best solutions and the running times of GA and the exact enumeration method 

3=i  2=i   
Time (seconds) R Time (seconds) R  

3955.661914 0.762999264223081 48.283402 0.836619040292915 Enumeration algorithm 

92.145760 0.762999264223081 75.078759 0.836619040292915 Genetic algorithm 
 
 
5. CONCLUSION AND FURTHUR STUDIES 
 
In this paper, the redundancy allocation problem of a 
series-parallel system with three-state failure rates for 
its components along with technical and organizational 
activities that can improve the performances of the sub-
systems and their components was investigated. As 
RAP belongs to the class of NP-hard problems, a GA 
was utilized to solve the problem. The parameters of 
GA was calibrated using RSM to achieve better 
solutions. The results of employing the parameter-
tuned GA on two instances of small size showed that it 
was quite capable to find the optimal solution. Another 
instance of a larger size was used to illustrate the 
application of the proposed methodology. 

For future research in this area, we recommend 
considering repairable multiple-type components. 
Moreover, a fuzzy approach to model involved 
uncertainties can be another topic for future research. 
In addition, some other assumptions can be added to 
the problem to draw it closer to real situations. 
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  چکیده
  

در سیستمهاي الکتریکی،  "سازي سیستمها، مخصوصا مسئلۀ تخصیص اجزاي مازاد یکی از مسائل مهم و مفید در بهینه
تا به حال پژوهشهاي زیادي . هدف این مسئله بیشینه کردن پایایی سیستم با حداقل هزینه است. الکترونیکی، و مکانیکی است

در حالی که حالت اجزاي سیستم در مدلهاي . ینه انجام شده تا این مسئله کاربرد بیشتري در دنیاي واقعی داشته باشددر این زم
شود که حالت اجزاي موازي تشکیل دهندة زیرسیستمهاي سري  شود، در این مقاله فرض می کلاسیک سالم و خراب فرض می

توانند  به علاوه، فرض بر این است که فعالیتهاي فنی و سازمانی می. باشدسالم، نیمدار، و خراب، هریک با نرخ عملکرد معینی 
قرار  NP-Hardچون مسئلۀ تخصیص اجزاي مازاد در زمرة مسائل . زا و در نتیجه زیرسیتمها باشندجباعث بهبود عملکرد ا

 .دارد، از یک الگوریتم ژنتیک براي حل استفاده شده است
doi: 10.5829/idosi.ije.2014.27.11b.03 

 
 
 


