
IJE TRANSACTIONS A: Basics Vol. 27, No. 10, (October 2014) 1601-1610

Please cite this article as: S. Poursafary, N. Javadian, R. Tavakkoli-Moghaddam, Seeker Evolutionary Algorithm (SEA): a Novel Algorithm for
Continuous Optimization, International Journal of Engineering (IJE), TRANSACTIONS A: Basics Vol. 27, No. 10, (October 2014) 1601-1610

International Journal of Engineering

J o u r n a l H o m e p a g e : w w w . i j e . i r

Seeker Evolutionary Algorithm (SEA): a Novel Algorithm for Continuous
Optimization

S. Poursafary a,*, N. Javadiana, R. Tavakkoli-Moghaddamb,c

a Department of Industrial Engineering, Mazandaran University of Science & Technology, Babol, Iran
b School of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran
c Research Center for Organizational Processes Improvement, Sari, Iran

P A P E R I N F O

Paper history:
Received 19 April 2013
Received in revised form 20 June 2014
Accepted 26 June 2014

Keywords:
Evolutionary Algorithms
 Meta-heuristic Algorithms
Global Optimization
 Seeker Evolutionary Algorithm
 Multiple Global Minima

A B S T R A C T

Nowadays, in majority of academic contexts, it has been tried to consider the highest possible level of
similarities to the real world. Hence, most of the problems have complicated structures. Traditional
methods for solving almost all of the mathematical and optimization problems are inefficient. As a
result, meta-heuristic algorithms have been employed increasingly during recent years. In this study, a
new algorithm, namely Seeker Evolutionary Algorithm (SEA), is introduced for solving continuous
mathematical problems, which is based on a group seeking logic. In this logic, the seeking region and
the seekers located inside are divided into several sections and they seek in that special area. In order to
assess the performance of this algorithm, from the available samples in papers, the most visited
algorithms have been employed. The obtained results show the advantage of the proposed SEA in
comparison to these algorithms. At the end, a mathematical problem is designed, which is unlike the
structure of meta-heuristic algorithms. All the prominent algorithms are applied to solve this problem,
and none of them is able to solve.

doi: 10.5829/idosi.ije.2014.27.10a.14

1. INTRODUCTION1

The aim of optimization is to find the best acceptable
solution by considering the constraints and
requirements of the problem. From this perspective,
optimization is an important and determinant action. It
is likely that there would be different solutions for a
problem. In this case, an objective function is defined
in order to compare the solutions and select the optimal
solution. Many of the optimization problems are more
complex and difficult to be solved by traditional
optimization methods (e.g., mathematical planning
method). Among the existing solutions to face these
kinds of problems, the evolutionary algorithms can be
applied. These algorithms give more favourable
solutions in much less time in comparison to
mathematical methods. However, these methods do not
guarantee to provide the optimal solution. In fact, the

1*Corresponding Author’s Email: shahab_spt@yahoo.com (S.
Poursafary)

precision of solution differs depending on the spent
time for calculation. In recent years, one of the most
important and promising studies was “the meta-
heuristic methods adopted from the nature”. These
methods have some similarities with social systems or
the nature. Their structures have been obtained from
the evolutionary trend in the system that has had good
results in solving the problems with complicated
structures. In most of these types of algorithms, the
seeking operation is started by producing a random
population in the seeking region. Afterward, the
solutions will be moved using computational
intelligence available in the algorithm. This shift is
performed in such a way that, after passing some steps,
the population will be converged to the optimal point.
The main difference of evolutionary algorithms is laid
in the way that the population is moved. Up to now,
various evolutionary algorithms have been introduced.
A genetic algorithm (GA) is based on the evolutionary
trend in the subjects of genes and propagation [1, 2].

The real-valued genetic algorithm (RGA)
difference with a genetic algorithm is on the

mailto:shahab_spt@yahoo.com

S. Poursafary et al. / IJE TRANSACTIONS A: Basics Vol. 27, No. 10, (October 2014) 1601-1610 1602

chromosome coding, based on real numbers [3].
Simulated annealing (SA) is based on the cooling
procedure of melting metals in the science of
metallurgy [4]. Ant colony optimization (ACO) is
based on utilizing pheromones by ants to find the
shortest path [5]. Particle swarm optimization (PSO) is
based on mass movements of animals specially birds.
In this algorithm, each solution represents as a particle
in the real world. In each iteration, a particle has got a
movement. The current position, previous speed, best
position of particle and the best position of all particles
are the factors that effect on how the particles move [6,
7]. An imperialist competitive algorithm (ICA) has
been developed based on social and political strategies
of the countries [8]. The gravitational search algorithm
(GSA) is based on the law of gravity, in this algorithm
each solution represent a planet [9]. The artificial bee
colony algorithm (ABC) is based on the bee’s
behaviour on foraging. In this algorithm each solution
represents as a food source. In this algorithm bees are
divided to: employed, onlooker and scout [10]. The
bees algorithm (BA) difference with the ABC is the
bees movement [11]. The BA was improved by using a
shrinking process [12].

Harmony search (HS) based on the harmony in
musicians notes. In this algorithm each solution
represents as a musical note [13]. Cuckoo search (CS)
is a new algorithm, which is based on a cuckoo bird
migration [14]. The firefly algorithm (FA) structure is
formed according to the mechanism of firefly light
absorption (LFA) [15], which is the extended version
of this algorithm that uses Lévy flights for searching
feasible solution [16]. The bat algorithm (BA) is based
on the echolocation in bats life [17]. The cuckoo
optimization algorithm (COA) has been inspired from
the cuckoo flyblow [18]. The electromagnetism-like
algorithm (EM) applies a type of attraction and
repulsion mechanism for charged particles [19].
Tavakkoli-Moghaddam [20] presented new
mathematical model for a p-hub location-allocation
problem and proposed three meta-heuristics, namely
genetic algorithm, particle swarm optimization, and
simulated annealing.

In section 2, we introduce the SEA. In section 3, the
performance of the SEA is shown for different
problems and some comparisons will be made several
algorithms.

2. SEEKER EVOLUTIONARY ALGORITHM

This section introduces the seeker evolutionary
algorithm (SEA), which is an algorithm based on a
simple seeking logic. Assume that some people want to
seek their objectives in a region, which is the feasible
solution space. In order to perform an optimized
seeking and avoid parallelism, seekers are segmented

into some groups. They divide the seeking area into
several sections and each of the groups moves to a
section and starts seeking inside there. After analyzing
the obtained results, the best area will be identified. In
the next stage, the seeking team will divide the chosen
area into some smaller sections and then, every group
goes to a region and starts seeking in there. This trend
will continue until the stop condition is met, which can
be fulfilling some extents of the objective or the time,
or having no significant evolutionary improvement in
the seeking procedure. It can be expressed that in all
continuous meta-heuristic algorithms we are facing
with similar types of motion trends. The solutions
move towards the area, which has had a good fitness up
to now. However, it is with a difference, which in the
movement is made based on a phenomenon in the
nature.

The seeker’s evolutionary algorithm trend is based
on a regular and purposeful seeking method. In this
algorithm, each solution is a member of the seeking
group. In each stage, each solution seeks in a given part
of the seeking area, which is specified for it. After
analysing the gained results from all members of the
seeking group, the best sections of the seeking area will
be determined for the next stage. In the next stage, the
chosen areas will be divided into smaller sections and
the seeking group will seek inside them. This trend will
be continued until the stop condition is met. If the
restart conditions are met, the algorithm will return to
the first stage, and in other words, the seeking
operation will start over again. These conditions can
be, not observing the expected improvement, or
reaching a certain number of iterations. In order to
reach a better understanding of the evolutionary trend
of this algorithm, Figure 1 can be considered. There is
a solution area with two variables. Number of seekers
is 12. The number of the chosen areas is considered 2.
Similarly, the number of the crushed areas of each
chosen area is considered 2 as well. In step “a”, the
total seeking area is divided into 2 sections and two 6-
member groups are allocated to each of these sections.
After the seeking operation, we rank the sections based
on the gained results. The numbers in each area is the
ranking of that area based on the results of the seeker
group. Among these sections, two premier parts are
considered as the chosen sections. In this stage,
because the number of all sections is equal to two,
these two sections are selected as the chosen areas. In
step “b”, each of the chosen areas are divided into two
smaller sections. As a result, there will be 4 areas to be
sought. Thus, 3 seekers are allocated into each section
and we rank the sections again based on the results.
The two premier regions are considered as the chosen
areas and the next stage is started. This trend is
continued until the stop condition is met. In any stage,
if the restart condition is met, the algorithm will return
to stage “a”.

1603 S. Poursafary et al./ IJE TRANSACTIONS A: Basics Vol. 27, No. 10, (October 2014) 1601-1610

 Figure 1. Seekers’ motion trend in the solution area

This structure leads to a balanced trend towards a
convergence to the optimal solution. In many of the
algorithms, the convergence speed of solutions is
considerably high that leads to some problems for
algorithms to move towards the optimal solution. The
gained results from various problems show that the
chosen areas are not necessarily positioned beside the
best chosen area. This has accidentally happened that
the chosen area 2 is always close to the chosen area 1
in this figure and this happening does not essentially
occur for the entire samples.

The SEA has a main and a subsidiary loop. The
main loop involves selecting the chosen areas, dividing
them, and allocating the seekers into each area. The
subsidiary loop involves movement of the seeker team
in the area that has been specified for it. Some of the
parameters used in this algorithm are as follows:

Number of the chosen areas.
0nc :

Number of the obtained areas from dividing the
chosen area.

0na :

These two parameters should be adjusted for different
problems. Usually the value 2 is suitable for them. By
increasing the value of these two parameters, the
possibility of missing the area, the one that the optimal
value exists in there, will be diminished knowingly.

Moreover, the convergence speed of the solutions will
decrease. In addition, the number of times for
evaluating the objective function increases and
naturally, the solving time will be both increased
accordingly. When these two parameters decrease, the
opposite will occur.

The minimum number of iterations to perform
restart.

γ :

The minimum improvement level for the objective
function to perform restart.

β :

These two parameters are for restart conditions. For
instance, if we consider 5γ = and 0.001β = , it means
that in the iterations with the multiple value of 5, if the
improvement of algorithm is less than 0.001, the
“restart” task will be performed. “β “ can be
considered in a way that after each restart, its amount
decreases. This operation leads to an increase in the
convergence speed of the algorithm towards the
optimal point. In some problems, the existence of
“restart” may cause an improvement in the algorithm
performance and in others, its absence will lead to a
better result. In this case, the value of “γ “ will be
adjusted equal to the maximum number of iterations or
more than that.

The minimum size of an area that can be divided
into smaller sections.

α :

If the size of the chosen area is very small and in other
words, it is less than “α “, we can ignore the division
of this area into smaller sections. In fact, in small sizes,
the algorithm can reach desirable results even without
being divided. This leads to a decrease in the solving
time and optimization of the algorithm structure.

Number of variables that will be crushed. nv :

In order to divide the chosen areas, the value of some
variables should be divided. The criterion for choosing
variables is based on the distance between their upper
and lower bounds, and its number is equal to nv. The
obtained results from different examples show that the
most desirable value for this parameter is equal to 1 or,
half of or all of the number of variables. In most of the
optimization problems, considering all the limitations,
the value 1 is appropriate for this parameter.

One of the stop conditions for the main and
subsidiary loops of the algorithm is the specific number
of iterations. In this algorithm, the maximum number
of the total iterations of the algorithm is equal to
maxiter0 * maxiter1 * na0 * nc0. The seekers’ motion in
their seeking area (i.e., the subsidiary loop of the
algorithm) is performed by:

 (1)
1

1

2

()
((0,1) ()

new old

old

w
w Ran

Seeker Seeker
Best Seeker Seekerd

=
× −

× +
×

maxiter0 : The maximum number of iterations of the
main loop.

maxiter1 : The maximum number of iterations of the
subsidiary loop.

S. Poursafary et al. / IJE TRANSACTIONS A: Basics Vol. 27, No. 10, (October 2014) 1601-1610 1604

Figure 2. Seekers’ movement towards the best seeker

In fact, each seeker in each stage moves towards.

The best seeker is in its group and there is a deviation
in its movement path. The creation of this deviation is
obtained from multiplying random numbers (equals to
the number of variables) to the seeker’s distance from
the best seeker. The trend of this movement is shown in
Figure 2. In fact, if the values of W1 and W2 are
considered equal to 1, the seeker is positioned between
the seeker’s old position and the best seeker’s position
with a little deviation. The movement of seekers based
on this formula leads to their convergence to the best
obtained solution.

The gained results from different examples show
that the most favourable value for w1 and w2 is from 0.5
to 2. There may be some other suitable values for some
problems that can be obtained from adjusting the
parameter. The seeker’s motion, which is based on
formula 1, leads to a situation where in some cases, the
new position of the seeker in some variables might be
out of the acceptable area for that variable. In these
cases, the new position for those variables is located on
the boundary of the acceptable area. If this occurs for
the entire variables, it means that the new position of
the seeker is totally out of the acceptable area. In this
case, if the new position is equal to the Varmin of the
given area (i.e., the lower bound of the considered
area), formula 2 will be used. If the new position
equals to the Varmax of the given area (i.e., the upper
bound of the considered area), formula 3 will be used.

(2)
Seeker new = Varmin + (0.75,1)Rand ×

(Best

Seeker1 – Varmin).

(3)
Seeker new = Varmax - (0.75,1)Rand × (Varmax –
Best Seeker1).

According to these two formulas, when each of these
seekers is completely out of the solution area, they will
be positioned close to the best seeker. The values of
W1 and W2 should be selected in a way that the times
that the seekers are totally out of the acceptable area
will be very few. The less this value is, the more
desirable the obtained results well be. The results show

that the maximum number of times that this event
happens should not be more than 25% of the entire
cases. In the subsidiary loop of the algorithm, for the
seekers that their performance value has been
unsuitable, we consider another chance to improve
their performance. For this purpose, we should firstly
normalize the performance values of the seekers. This
action is performed based on formulas 4 and 5 for
minimization and maximization functions,
respectively.

(4)
| () min() |()

| max() min() |
fitness i fitnessi

fitness fitness
σ −

=
−

(5)
| max() () |()

| max() min() |
fitness fitness ii

fitness fitness
σ

−
=

−

If the normalized value for a seeker’s performance is
less than our random number between 0 and 1, that
seeker will have another chance to improve the value
of its performance by another movement according to
formula 1. If the seeker’s performance value improves
after making this movement, the position and
performance of the seeker will be updated. Obviously,
the maximum number of times that this event will
happen should be equal to maximum 25% of the
number of the seekers in each stage.

Main Loop
Determining the feasible solution space as the chosen
area.

Step 1 :

Dividing the chosen area into na0 sections. Step 2 :
Allocating the seekers into the areas and performing the
seeking operation in the subsidiary loop.

Step 3 :

Selecting nc0 premier areas as the chosen areas. Step 4 :
If the restart condition is met, go to step 1. Step 5 :
If the stopping condition is met, stop; otherwise, go to
step 2.

Step 6 :

Figure 3. Pseudo code for the main loop SEA.

Subsidiary Loop

Producing random seekers (solutions) and calculating the
fitness of each one.

Step 1 :

If a seeker’s performance is better than Best fitness1, Best
Seeker1 and Best Seeker1 will be updated.

Step 2 :

Shifting each seeker based on formula 1 and calculating
its performance.

Step 3 :

Repeat Step 2 Step 4 :
Normalizing the solutions performance. Step 5 :
If rand< ()iσ : giving another chance to the seeker (i) to
improve its performance

Step 6 :

if the stopping condition is met, stop; otherwise, go to
step 3

Step 7:

if Best fitness1 better than Best fitness0 update Best
fitness0 and Best Seeker0

Step 8:

Figure 4. Pseudo code for the subsidiary loop SEA

Best Seeker0 : The best solution found in the entire
algorithm.

Best Seeker1 : The best solution found in the
subsidiary loop.

1605 S. Poursafary et al./ IJE TRANSACTIONS A: Basics Vol. 27, No. 10, (October 2014) 1601-1610

The pseudo-codes for the SEA’s main and
subsidiary loops are shown in Figures 3 and 4,
respectively. The most important and main ideas are to
divide the search space. This procedure avoids
unnecessary and repetitive searches a lot. In most
algorithms, an evolutionary process searches a search
space region many times and useless. This algorithm is
based on regular and objectively searches. The
movement searchers is similar to the movement
solutions in the ICA and PSO algorithms, of course the
unique feature of this algorithm is dividing the search
space.

3. VALIDATION OF THE SEA

In this section, in order to validate the performance of
the proposed algorithm, 11 benchmark functions are
used. The information about this problem is presented
in Section 3.1. In Section 3.2, some problems are
utilized to present the efficiency of SEA. In Section
3.3, a comparison is made between the performance of
the SEA, CICA3, ICA and OICA. This action is
repeated for the RGA, GSA and PSO algorithms in
Section 3.4, and ABS, IBA and HS algorithms in
Section 3.5, and FA, CS, BA and LFA algorithms in
Section 3.6. In these sections, the numbers in the tables
are in this format: 80± 10(100%); which shows the
average of 80, the standard deviation of 10, and the
success rate of 100%. In Section 3.7, the disability of
meta-heuristic algorithms in obtaining an optimal
solution in some continuous optimization problems has
been discussed by presenting an example.

3. 1. Benchmark Functions In order to assess
the performance of the SEA, several benchmark
functions are used that the information about tens of
them is presented in the beginning of this section and
in Table 1 [21]. In this table, d is the dimension of the
function. All the functions are of the minimization type
and the most optimal value for these functions is the
least one. The optimal solution for each function has
been also mentioned in this table.

3. 2. Performance of the SEA In order to display
the motion trend of the seekers in iterations of the SEA
and the efficiency of the algorithm, the function F1 is
used. Function F1 :

 0
sin(4) 1.1 sin(2)

0 10 10, ,
minimum: (9.039,8.668) 18.55

47

f x

f
y

x y y
x < <

= × + ×
< <

= −

(6)

For this function, the number of seekers is set to 20.
Moreover, nc0=1, na0=2, maxiter1=10, nv=1, 0α β= =
and the value for γ is set to 50 in this case. Actually,
the “restart” action is not performed for this function.

The parameters of the algorithm show that one chosen
area is selected and divided into two parts in each
stage. The division task is obtained from crushing the
space of a selected variable. The variable that has the
widest domain will be crushed. The seeking operation
in each crushed area is performed in 10 iterations and
with 10 seekers.

3. 3. A Comparison with ICA, OICA and CICA3
In order to introduce and evaluate the performance of
the proposed algorithm, The existing problems in Table
1 are used, in which the dimension of problems is as
10, the number of a population is as 30, and the
maximum times of iteration is as 2000. The number of
executions to evaluate and compare the performance of
their considered algorithms is assumed as 100. The
information in Table 2 for the algorithms CICA3,
OICA and ICA is obtained from the same study.

In this study, those four problems with the
dimension of 10 are used to compare the performance
of our proposed algorithm. The number of a population
for the SEA is assumed as 30, the maximum number of
iterations is as 2000, and 0α β= = . The average
results from 100 times of the algorithm in addition to
the parameters’ values for SEA are mentioned in Table
2. The results show that the SEA has a better
performance in comparison with other three algorithms
on an equal basis.

3. 4. A Comparison with RGA, PSO and GSA
Rashedi et al. [9] used 23 benchmark functions in their
research in order to introduce and evaluate the
performance of the GSA algorithm. Among these
problems, six problems that are also among the
problems in this study are selected. They set the
number of population and maximum number of
iterations equal to 50 and 1000, respectively. The
average results from execution of the algorithms PSO,
RGA and GSA for 30 times are demonstrated in Table
3. For SEA, the number of population is considered as
40 and maximum times of iterations as 1000. For this
function, Rosenbrock nc0=1, na0=8, maxiter0=25,
maxiter1=5, 0α β= = , nv=d and for the other
functions, we have na0=2, maxiter0=50, nv=d,
maxiter1=5, 0α β= = , nc0=2. The average of the
obtained results from 30 times execution of SEA is
provided in Table 3.

3. 5. A Comparison with HS, IBA and ABS Akay
and Karaboga [12] compared the performance of the
ABS, IBA and HS algorithms. The results exhibit that
the SEA has a better performance compared with the
three other algorithms in this section on an equal basis.
In their study, the available functions are used in Table
4.

S. Poursafary et al. / IJE TRANSACTIONS A: Basics Vol. 27, No. 10, (October 2014) 1601-1610 1606

TABEL 1. Benchmark functions

Function name Function Global minimum
Rosenbrock 1 2 2 2() (100() (1))11

d
f x x x xi i ii

−
∑= − + −+=

 (1) 0f =
r

Sphere 2()
1

d
f x xii

∑=
=

 (0) 0f =
r

Schwefel
() s in ()

1

d
f x x xi i

i
∑= −
=

 (420.9687) 418.9829f d= −
uuuuuuur

Ackley 1 12() 20 exp 0.2 exp cos(2) (20)
1 1

d d
f x x x eiid di i

π

 = − − − + +∑ ∑
 = =

 (0) 0f =
r

Rastrigin 2() 10 10 cos(2)
1

d
f x d x xi ii

π∑= + −
=

 (0) 0f =
r

Easom 2 2(,) cos() cos() exp () ()1 2 1 2 1 2f x x x x x xπ π= − − − − − () 1f π = −
r

Griewank 1 2() cos() 1
1 14000

dd x if x x ii i i
∑ ∏= − +
= =

 (0) 0f =
r

TABLE 2. Results obtained for the ICA, OICA, CICA3 and SEA and information about some the SEA parameters
Functions d Interval ICA OICA CICA3 SEA

f Gri 10 []1 5 0 , 1 5 0
d

x ∈ − 1.03E-10± 8.14E-10 2.36E-12± 1.21E-11 3.47E-14± 5.07E-15 0± 0

f Ack 10 []3 2 , 3 2
d

x ∈ − 7.11E-5± 8.20E-6 3.34E-6± 4.56E-7 1.02E-7± 1.23E-7 8.87E-14± 1.12E-14

f Ros 10 []5, 5
d

x ∈ − 0.201± 0.362 0.0535± 0.043 0.0241± 0.021 2.77E-22± 1.49E-21

f Ras 10 []10,10
d

x ∈ − 1.66E-06± 9.12E-06 1.27E-06± 7.00E-06 9.34E-09± 3.42E-08 7.10E-17± 3.49E-16

Functions w1 w2 maxiter0 maxiter1 nc0 na0 nv γ

f Gri 0.5 2 15 10 3 2 d 5
f Ack 1 1 50 5 2 2 d 50
f Ros 1 1 50 5 2 2 d 20
f Ras 0.5 1.5 50 5 2 2 d 20

TABLE 3. Results obtained for the RGA, PSO, GSA and SEA and information about some the SEA parameters
Functions d Interval RGA PSO GSA SEA
f Sph 30 []100,100

d
x ∈ − 23.13 1.8E-03 7.3E-11 1.61E-16

f Ros 30 []30, 30
d

x ∈ −
1.1E+03 3.6E+04 25.16 9.58E-28

f Sch 30 []5 0 0 , 5 0 0
d

x ∈ − -1.2E+04 -9.8E+03 -2.8E+03 -1.25E+04

f Ras 30 []5 .12 , 5.12
d

x ∈ − 5.9 55.1 15.32 3.55E-16

f Ack 30 []32, 32
d

x ∈ − 2.13 9E-03 6.9E-06 1.03E-13

f Gri 30 []60 0 , 6 00
d

x ∈ − 1.16 0.01 0.29 0

Functions f Sph f Ros f Sch f Ras f Ack f Gri

w1 0.5 0.5 1 0.5 1 0.5
w2 2 0.5 2 1.5 1 1.5

γ 50 5 50 25 50 50

1607 S. Poursafary et al./ IJE TRANSACTIONS A: Basics Vol. 27, No. 10, (October 2014) 1601-1610

TABLE 4. Results obtained for the HS, IBA, ABC and SEA and information about some the SEA parameters
Functions d Interval HS IBA ABC SEA

f Sph 50 []100,100
d

x ∈ − 546.25± 92.69 5.39E-16± 1.07E-16 1.19E-15± 4.68E-16 3.52E-43± 2.83E-44

f Ros 50 []30, 30
d

x ∈ − 24681± 10212 630.28± 1195.67 4.33± 5.48 5.08E-06± 2.74E-05

f Ras 50 []5.12, 5.12
d

x ∈ − 37.6± 4.87 271.62± 32.7 0.4723± 0.4923 2.48E-15± 6.1E-15

f Gri 50 []600, 600
d

x ∈ −
5.81± 0.9161 134.05± 24.14 0.5721± 0.9216 0± 0

f Ack 50 []32, 32
d

x ∈ − 5.28± 0.4025 8.43± 7.7 4.38E-8± 4.65E-8 2.66E-15± 0

TABLE 5. Results obtained for the CS, FA, LFA, BA and SEA and information about some the SEA parameters

Functions ns0 w1 w2 maxiter1 γ β

f Sph 20 0.5 1.5 5 100 0

f Sch 12 1 2 3 10 0

f Ack 12 1 1 3 100 0

f Eas 20 0.5 2 3 40 1

Figure 5. 3-D plot of cost function F2

Functions f Sph f Ros f Ras f Gri f Ack

w1 1 0.5 0.5 0.5 1

w2 1 0.5 1.5 2 1

γ 80 10 25 100 100

Functions f Sph f Ros f Ras f Gri f Ack

w1 1 0.5 0.5 0.5 1

w2 1 0.5 1.5 2 1

γ 80 10 25 100 100

Functions d Interval CS FA LFA BA SEA

f Sph 256 []5.12, 5.12
d

x ∈ − 3015±540
(100%)

7217±730
(100%)

5657±730
(100%)

5273± 490
(100%)

1080±50.2
(100%)

f Sch 128 []500, 500
d

x ∈ −
4710±592

(100%)
9902±592

(100%)
7923±524

(100%)
8929± 729

(99%)
4230± 291

(100%)

f Ack 128 []32.768, 32.768
d

x ∈ − 4936±903
(100%)

5293±4920
(100%)

4392±2710
(100%)

6933± 2317
(100%)

4320± 520
(100%)

f Eas 2 []2
100,100x ∈ − 6751±1902

(100%)
7952±1799

(100%)
6082±1690

(100%)
7532± 1702

(99%)
4536± 2400

(100%)

S. Poursafary et al. / IJE TRANSACTIONS A: Basics Vol. 27, No. 10, (October 2014) 1601-1610 1608

They considered food sources, d, maximum cycle
number, and the maximum evaluation number equal to
20, 5, 2500, and 50000, respectively. The average
results from 30 times execution of the algorithms are
provided in Table 4. For the SEA, the number of
populations, the maximum number of iterations, and
maximum evaluation number are 20, 1600, and 40000,
respectively. For all the functions, we considered
maxiter1=5, 0α β= = , nv=d, maxiter0=80, na0=2,
nc0=2, and just for the Rosenbrock function, 0.01β = .
The average results from 30 times execution of the
SEA are mentioned in Table 4. The results show that
the proposed SEA has a better performance in
comparison to other three algorithms in this section on
an equal basis.

3. 6. A Comparison with CS, FA, LFA and BA Yang
and Deb [16] and Yang [17]used a number of test
problems in their study in order to introduce and
evaluate the BA, LFA, FA, and CS algorithms. The
four functions available in Table 5 are selected from
those problems for comparison in this research. The
population of solutions for these algorithms is equal to
40. The numbers in Table 5 shows the times, in which
the function is evaluated by each algorithm. Each
algorithm stops whenever the deviation of its
performance has the tolerances of 510ε −≤ . The
results obtained from 30 iterations of the algorithms are
illustrated in Table 5. For the SEA and all the
problems, 0α = , nc0=2, na0=2, and nv=d. The results
obtained from 30 executions of the SEA and the
information about the other parameters are given in
Table 5. The results show an advantage of the SEA
compared to other four algorithms.

3. 7. Evolutionary Process of Meta-heuristics
Although the favourable performance of SEA has been
shown in previous sections, it cannot be claimed that
this algorithm has a desirable performance for the
entire problems. Unlike other continuous algorithms
that their structures are based on a phenomenon from
around the world, the structure of SEA is based on the
seeking space. In all meta-heuristic algorithms, a logic
is followed. The basis of this logic is that any
favourable solution leads the algorithm population with
high probability to a more favourable solution which is
highly likely that it is close to the same solution. In
fact, meta-heuristic problems could be efficient in the
problems in which around the optimal point, there are
some points with desirable fitness. This trend is
available in the majority of optimization problems. F2
is a sample of mathematical problems to present the
weaknesses of meta-heuristic algorithms.
Function F2 :

()

6

2 6
1

10 5

5 10

d
i

i i

x
f

x −
=

−
=

− +
∑

(7)

0 10ix≤ ≤ ; minimum : ()5 0f =
r

As revealed for two dimensions, the point (5,5) is the
optimal point of this function with the value zero for
the objective function and the worst points, in terms of
the objective function’s value, are around the optimal
point. The objective function’s value for these points is

72 10× . The results obtained from execution of this
function on most of the well-known continuous
algorithms show that no algorithm even with numerous
iterations and with high populations can achieve the
optimal value of this function. Most of the algorithms
in the end identify one of the 4 points of (5, 0), (0, 5),
(5, 10), and (10, 5) as the optimal point, which is very
distant from the optimal point in terms of the objective
function’s value. The value of the objective function
for these points is 52 10× . This happens because this
function has been designed in contrast to the nature and
structure of the meta-heuristic algorithms. The
functions in which there are points with poor fitness
around the optimal point, the algorithms will have
difficulties to obtain the optimal point. For functions
like F2, in which the worst points are located exactly
around the best point, algorithms are unable to find the
optimal point. If an algorithm is designed that is able to
have a good performance for this problem, it will
definitely have difficulties in other continuous
optimization problems. It is happens because, the
structure of these two problems is in contrast with each
other. Therefore, the algorithm will be viable, the one
which has a favourable performance for both defined
continuous optimization problems. Fortunately, the
number of the continuous optimization problems that
has a similar structure like F2 is very few. Thus, the
meta-heuristic algorithms are still accounted as the
appropriate options for solving such problems.

4. CONCLUSION

In this study, a new optimization algorithm, namely
seeker evolutionary algorithm (SEA), was defined
based on a simple seeking logic. In this algorithm, the
seeking space was divided into several sections and
seekers were allocated to each section. After
performing the seeking operation, some of the best
regions were selected as the chosen areas. This
selection was based on the performance of the seeking
teams in the areas. In the next stage, each chosen area
was divided into several smaller ones and the seeking
operation was performed. This trend continued until
the stop condition was met. In addition, if the restart

1609 S. Poursafary et al./ IJE TRANSACTIONS A: Basics Vol. 27, No. 10, (October 2014) 1601-1610

condition was met, the algorithm restarted its trend
from the beginning. In fact, this algorithm had been
constructed based on a purposeful seeking logic. The
structure of the SEA was in a way that there is a
balance in the convergence of the solutions towards the
optimal solution. The results obtained from the
comparison of the proposed SEA with some other
algorithms showed the more favourable performance of
the SEA. Although various examples show the great
capability of this algorithm, we are unable to claim that
it has the best performance for all continuous
optimization problems. In fact, this algorithm can be
one of the suitable options to obtain the optimal
solution for these kinds of problems.

5. REFERENCES

1. Melanie, M., "An introduction to genetic algorithms",

Cambridge, Massachusetts London, England, Fifth printing,
Vol. 3, (1999).

2. Tavakkoli-Moghaddam R., Jolai F., Khodadadeghan Y. and
Haghnevis M., "A mathematical model of a multi-criteria
parallel machine scheduling problem: A genetic algorithm",
International Journal of Engineering, Vol. 19, No. 1, (2006),
79-86.

3. Tang, P.-H. and Tseng, M.-H., "Adaptive directed mutation for
real-coded genetic algorithms", Applied Soft Computing, Vol.
13, No. 1, (2013), 600-614.

4. Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P., "Optimization
by simmulated annealing", Science, Vol. 220, No. 4598,
(1983), 671-680.

5. Dorigo M. and Caro G.D., "Ant colony optimization: A new
meta-heuristic", in in: Proc. of the Congress on Evolutionary
Computation, Washington, DC, IEEE Press, Piscataway, NJ.
(1999), 1470-1477.

6. Tavakkoli-Moghaddam, R., Makui, A., Khazaei, M. and
Ghodratnama, A., "Solving a new bi-objective model for a cell
formation problem considering labor allocation by multi-
objective particle swarm optimization", International Journal
of Engineering-Transactions A: Basics, Vol. 24, No. 3,
(2011), 249-255.

7. Chen, D. and Zhao, C., "Particle swarm optimization with
adaptive population size and its application", Applied Soft
Computing, Vol. 9, No. 1, (2009), 39-48.

8. Atashpaz-Gargari, E. and Lucas, C., "Imperialist competitive
algorithm: An algorithm for optimization inspired by
imperialistic competition", in Evolutionary Computation,. CEC.
IEEE Congress on, IEEE. (2007), 4661-4667.

9. Rashedi, E., Nezamabadi-Pour, H. and Saryazdi, S., "Gsa: A
gravitational search algorithm", Information Sciences, Vol.
179, No. 13, (2009), 2232-2248.

10. Karaboga, D. and Akay, B., "A comparative study of artificial
bee colony algorithm", Applied Mathematics and
Computation, Vol. 214, No. 1, (2009), 108-132.

11. Pham, D., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S. and
Zaidi, M., "The bees algorithm-a novel tool for complex
optimisation problems", in Proceedings of the 2nd Virtual
International Conference on Intelligent Production Machines
and Systems (IPROMS). (2006), 454-459.

12. Karaboga, D. and Akay, B., "Artificial bee colony (abc),
harmony search and bees algorithms on numerical
optimization", in Innovative Production Machines and Systems
Virtual Conference., (2009).

13. Geem, Z.W., Kim, J.H. and Loganathan, G., "A new heuristic
optimization algorithm: Harmony search", Simulation, Vol.
76, No. 2, (2001), 60-68.

14. Yang, X.-S. and Deb, S., "Engineering optimisation by cuckoo
search", International Journal of Mathematical Modelling
and Numerical Optimisation, Vol. 1, No. 4, (2010), 330-343.

15. Yang, X.-S., Firefly algorithms for multimodal optimization, in
Stochastic algorithms: Foundations and applications., Springer.
(2009). 169-178.

16. Yang, X.-S., Firefly algorithm, levy flights and global
optimization, in Research and development in intelligent
systems xxvi., Springer (2010). 209-218.

17. Yang, X.-S., A new metaheuristic bat-inspired algorithm, in
Nature inspired cooperative strategies for optimization (nicso).,
Springer, (2010). 65-74.

18. Rajabioun, R., "Cuckoo optimization algorithm", Applied Soft
Computing, Vol. 11, No. 8, (2011), 5508-5518.

19. Alikhani, M.G., Javadian, N. and Tavakkoli-Moghaddam, R.,
"A novel hybrid approach combining electromagnetism-like
method with solis and wets local search for continuous
optimization problems", Journal of Global Optimization, Vol.
44, No. 2, (2009), 227-234.

20. Ghodratnama, A., Tavakkoli-Moghaddam, R. and Baboli, A.,
"Comparing three proposed meta-heuristics to solve a new p-
hub location-allocation problem", International Journal of
Engineering-Transactions C: Aspects, Vol. 26, No. 9, (2013),
1043.

21. Molga, M. and Smutnicki, C., "Test functions for optimization
needs", Test Functions for Optimization Needs, Vol., No.,
(2005).

S. Poursafary et al. / IJE TRANSACTIONS A: Basics Vol. 27, No. 10, (October 2014) 1601-1610 1610

Seeker Evolutionary Algorithm (SEA): a Novel Algorithm for Continuous
Optimization

S. Poursafary a, N. Javadiana, R. Tavakkoli-Moghaddamb,c

a Department of Industrial Engineering, Mazandaran University of Science & Technology, Babol, Iran
b School of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran
c Research Center for Organizational Processes Improvement, Sari, Iran

P A P E R I N F O

Paper history:
Received 19 April 2013
Received in revised form 20 June 2014
Accepted 26 June 2014

Keywords:
Evolutionary Algorithms
 Meta-heuristic Algorithms
Global Optimization
 Seeker Evolutionary Algorithm
 Multiple Global Minima.

 چکیده

 از ،شود لحاظ مسائل در واقعی دنیاي با شباهت بیشترین که است این بر سعی علمی هاي زمینه اکثر در امروزه کهاز آنجایی
. هستند ناکارآمد سازي بهینه و ریاضی مسائل اکثر حل براي سنتی هاي روش .هستند پیچیده ساختار داراي مسائل اکثر رو این
 معرفی به تحقیق این در. است داشته گیري چشم رشد اخیر هاي سال در ابتکاري فرا هاي الگوریتم از استفاده علت همین به
 گروهی جستجو منطق اساس بر الگوریتم این مبناي. شد خواهد پرداخته پیوسته ریاضی مسائل حل براي جدید الگوریتم یک
 براي. پردازند می ناحیه آن در جستجو به و شوند می تقسیم قسمت چند به جستجوگرها و جستجو ناحیه منطق این در. است

 مدهآ بدست نتایج. است شده استفاده ها الگوریتم ترین رجوع پر مقالات در موجود هاي مثال از الگوریتم این عملکرد سنجش
 ساختار خلاف بر که است شده طراحی ریاضی مساله یک نیز انتها در. است ها الگوریتم این بر SEA برتري دهنده نشان

 به قادر کدام هیچ ولی است شده گرفته کار به مساله این حل براي مشهور هاي الگوریتم تمام. است ابتکاري فرا هاي الگوریتم
 .باشند نمی آن حل

doi: 10.5829/idosi.ije.2014.27.10a.14

