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A B S T R A C T  

   

Nowadays, in majority of academic contexts, it has been tried to consider the highest possible level of 
similarities to the real world. Hence, most of the problems have complicated structures. Traditional 
methods for solving almost all of the mathematical and optimization problems are inefficient. As a 
result, meta-heuristic algorithms have been employed increasingly during recent years. In this study, a 
new algorithm, namely Seeker Evolutionary Algorithm (SEA), is introduced for solving continuous 
mathematical problems, which is based on a group seeking logic. In this logic, the seeking region and 
the seekers located inside are divided into several sections and they seek in that special area. In order to 
assess the performance of this algorithm, from the available samples in papers, the most visited 
algorithms have been employed. The obtained results show the advantage of the proposed SEA in 
comparison to these algorithms. At the end, a mathematical problem is designed, which is unlike the 
structure of meta-heuristic algorithms. All the prominent algorithms are applied to solve this problem, 
and none of them is able to solve. 
 

doi: 10.5829/idosi.ije.2014.27.10a.14 
 

 

 
1. INTRODUCTION1 
 
The aim of optimization is to find the best acceptable 
solution by considering the constraints and 
requirements of the problem. From this perspective, 
optimization is an important and determinant action. It 
is likely that there would be different solutions for a 
problem. In this case, an objective function is defined 
in order to compare the solutions and select the optimal 
solution. Many of the optimization problems are more 
complex and difficult to be solved by traditional 
optimization methods (e.g., mathematical planning 
method). Among the existing solutions to face these 
kinds of problems, the evolutionary algorithms can be 
applied. These algorithms give more favourable 
solutions in much less time in comparison to 
mathematical methods. However, these methods do not 
guarantee to provide the optimal solution. In fact, the 
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precision of solution differs depending on the spent 
time for calculation. In recent years, one of the most 
important and promising studies was “the meta-
heuristic methods adopted from the nature”. These 
methods have some similarities with social systems or 
the nature. Their structures have been obtained from 
the evolutionary trend in the system that has had good 
results in solving the problems with complicated 
structures. In most of these types of algorithms, the 
seeking operation is started by producing a random 
population in the seeking region. Afterward, the 
solutions will be moved using computational 
intelligence available in the algorithm. This shift is 
performed in such a way that, after passing some steps, 
the population will be converged to the optimal point. 
The main difference of evolutionary algorithms is laid 
in the way that the population is moved. Up to now, 
various evolutionary algorithms have been introduced. 
A genetic algorithm (GA) is based on the evolutionary 
trend in the subjects of genes and propagation [1, 2].  

The real-valued genetic algorithm (RGA) 
difference with a genetic algorithm is on the 
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chromosome coding, based on real numbers [3]. 
Simulated annealing (SA) is based on the cooling 
procedure of melting metals in the science of 
metallurgy [4]. Ant colony optimization (ACO) is 
based on utilizing pheromones by ants to find the 
shortest path [5]. Particle swarm optimization (PSO) is 
based on mass movements of animals specially birds. 
In this algorithm, each solution represents as a particle 
in the real world. In each iteration, a particle has got a 
movement. The current position, previous speed, best 
position of particle and the best position of all particles 
are the factors that effect on how the particles move [6, 
7]. An imperialist competitive algorithm (ICA) has 
been developed based on social and political strategies 
of the countries [8]. The gravitational search algorithm 
(GSA) is based on the law of gravity, in this algorithm 
each solution represent a planet [9]. The artificial bee 
colony algorithm (ABC) is based on the bee’s 
behaviour on foraging. In this algorithm each solution 
represents as a food source. In this algorithm bees are 
divided to: employed, onlooker and scout [10]. The 
bees algorithm (BA) difference with the ABC is the 
bees movement [11]. The BA was improved by using a 
shrinking process [12].  

Harmony search (HS) based on the harmony in 
musicians notes. In this algorithm each solution 
represents as a musical note [13]. Cuckoo search (CS) 
is a new algorithm, which is based on a cuckoo bird 
migration [14]. The firefly algorithm (FA) structure is 
formed according to the mechanism of firefly light 
absorption (LFA) [15], which is the extended version 
of this algorithm that uses Lévy flights for searching 
feasible solution [16]. The bat algorithm (BA) is based 
on the echolocation in bats life [17]. The cuckoo 
optimization algorithm (COA) has been inspired from 
the cuckoo flyblow [18]. The electromagnetism-like 
algorithm (EM) applies a type of attraction and 
repulsion mechanism for charged particles [19]. 
Tavakkoli-Moghaddam [20] presented new 
mathematical model for a p-hub location-allocation 
problem and proposed three meta-heuristics, namely 
genetic algorithm, particle swarm optimization, and 
simulated annealing. 

In section 2, we introduce the SEA. In section 3, the 
performance of the SEA is shown for different 
problems and some comparisons will be made several 
algorithms. 

 
 

2. SEEKER EVOLUTIONARY ALGORITHM  
 
This section introduces the seeker evolutionary 
algorithm (SEA), which is an algorithm based on a 
simple seeking logic. Assume that some people want to 
seek their objectives in a region, which is the feasible 
solution space. In order to perform an optimized 
seeking and avoid parallelism, seekers are segmented 

into some groups. They divide the seeking area into 
several sections and each of the groups moves to a 
section and starts seeking inside there. After analyzing 
the obtained results, the best area will be identified. In 
the next stage, the seeking team will divide the chosen 
area into some smaller sections and then, every group 
goes to a region and starts seeking in there. This trend 
will continue until the stop condition is met, which can 
be fulfilling some extents of the objective or the time, 
or having no significant evolutionary improvement in 
the seeking procedure. It can be expressed that in all 
continuous meta-heuristic algorithms we are facing 
with similar types of motion trends. The solutions 
move towards the area, which has had a good fitness up 
to now. However, it is with a difference, which in the 
movement is made based on a phenomenon in the 
nature.  

The seeker’s evolutionary algorithm trend is based 
on a regular and purposeful seeking method. In this 
algorithm, each solution is a member of the seeking 
group. In each stage, each solution seeks in a given part 
of the seeking area, which is specified for it. After 
analysing the gained results from all members of the 
seeking group, the best sections of the seeking area will 
be determined for the next stage. In the next stage, the 
chosen areas will be divided into smaller sections and 
the seeking group will seek inside them. This trend will 
be continued until the stop condition is met. If the 
restart conditions are met, the algorithm will return to 
the first stage, and in other words, the seeking 
operation will start over again. These conditions can 
be, not observing the expected improvement, or 
reaching a certain number of iterations. In order to 
reach a better understanding of the evolutionary trend 
of this algorithm, Figure 1 can be considered. There is 
a solution area with two variables. Number of seekers 
is 12. The number of the chosen areas is considered 2. 
Similarly, the number of the crushed areas of each 
chosen area is considered 2 as well. In step “a”, the 
total seeking area is divided into 2 sections and two 6-
member groups are allocated to each of these sections. 
After the seeking operation, we rank the sections based 
on the gained results. The numbers in each area is the 
ranking of that area based on the results of the seeker 
group. Among these sections, two premier parts are 
considered as the chosen sections. In this stage, 
because the number of all sections is equal to two, 
these two sections are selected as the chosen areas. In 
step “b”, each of the chosen areas are divided into two 
smaller sections. As a result, there will be 4 areas to be 
sought. Thus, 3 seekers are allocated into each section 
and we rank the sections again based on the results. 
The two premier regions are considered as the chosen 
areas and the next stage is started. This trend is 
continued until the stop condition is met. In any stage, 
if the restart condition is met, the algorithm will return 
to stage “a”. 
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 Figure 1. Seekers’ motion trend in the solution area 
 
 

This structure leads to a balanced trend towards a 
convergence to the optimal solution. In many of the 
algorithms, the convergence speed of solutions is 
considerably high that leads to some problems for 
algorithms to move towards the optimal solution. The 
gained results from various problems show that the 
chosen areas are not necessarily positioned beside the 
best chosen area. This has accidentally happened that 
the chosen area 2 is always close to the chosen area 1 
in this figure and this happening does not essentially 
occur for the entire samples. 

The SEA has a main and a subsidiary loop. The 
main loop involves selecting the chosen areas, dividing 
them, and allocating the seekers into each area. The 
subsidiary loop involves movement of the seeker team 
in the area that has been specified for it. Some of the 
parameters used in this algorithm are as follows: 

Number of the chosen areas. 
0nc  : 

Number of the obtained areas from dividing the 
chosen area.  

0na  : 

These two parameters should be adjusted for different 
problems. Usually the value 2 is suitable for them. By 
increasing the value of these two parameters, the 
possibility of missing the area, the one that the optimal 
value exists in there, will be diminished knowingly. 

Moreover, the convergence speed of the solutions will 
decrease. In addition, the number of times for 
evaluating the objective function increases and 
naturally, the solving time will be both increased 
accordingly. When these two parameters decrease, the 
opposite will occur.  

The minimum number of iterations to perform 
restart. 

γ  : 

The minimum improvement level for the objective 
function to perform restart.  

β  : 

These two parameters are for restart conditions. For 
instance, if we consider 5γ =  and 0.001β = , it means 
that in the iterations with the multiple value of 5, if the 
improvement of algorithm is less than 0.001, the 
“restart” task will be performed. “β “ can be 
considered in a way that after each restart, its amount 
decreases. This operation leads to an increase in the 
convergence speed of the algorithm towards the 
optimal point. In some problems, the existence of 
“restart” may cause an improvement in the algorithm 
performance and in others, its absence will lead to a 
better result. In this case, the value of “γ “ will be 
adjusted equal to the maximum number of iterations or 
more than that.  

The minimum size of an area that can be divided 
into smaller sections.  

α  : 

If the size of the chosen area is very small and in other 
words, it is less than “α “, we can ignore the division 
of this area into smaller sections. In fact, in small sizes, 
the algorithm can reach desirable results even without 
being divided. This leads to a decrease in the solving 
time and optimization of the algorithm structure.  

Number of variables that will be crushed.  nv  : 

In order to divide the chosen areas, the value of some 
variables should be divided. The criterion for choosing 
variables is based on the distance between their upper 
and lower bounds, and its number is equal to nv. The 
obtained results from different examples show that the 
most desirable value for this parameter is equal to 1 or, 
half of or all of the number of variables. In most of the 
optimization problems, considering all the limitations, 
the value 1 is appropriate for this parameter.  

One of the stop conditions for the main and 
subsidiary loops of the algorithm is the specific number 
of iterations. In this algorithm, the maximum number 
of the total iterations of the algorithm is equal to 
maxiter0 * maxiter1    * na0 * nc0. The seekers’ motion in 
their seeking area (i.e., the subsidiary loop of the 
algorithm) is performed by:  

 (1) 
1

1

2

( )
( (0,1) ( ) 

new old

old

w
w Ran

Seeker Seeker
Best Seeker Seekerd

=
× −

× +
×

  

maxiter0 : The maximum number of iterations of the 
main loop.  

maxiter1 : The maximum number of iterations of the 
subsidiary loop.  
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Figure 2. Seekers’ movement towards the best seeker 

 
 
In fact, each seeker in each stage moves towards.  

The best seeker is in its group and there is a deviation 
in its movement path. The creation of this deviation is 
obtained from multiplying random numbers (equals to 
the number of variables) to the seeker’s distance from 
the best seeker. The trend of this movement is shown in 
Figure 2. In fact, if the values of W1 and W2 are 
considered equal to 1, the seeker is positioned between 
the seeker’s old position and the best seeker’s position 
with a little deviation. The movement of seekers based 
on this formula leads to their convergence to the best 
obtained solution. 

The gained results from different examples show 
that the most favourable value for w1 and w2 is from 0.5 
to 2. There may be some other suitable values for some 
problems that can be obtained from adjusting the 
parameter. The seeker’s motion, which is based on 
formula 1, leads to a situation where in some cases, the 
new position of the seeker in some variables might be 
out of the acceptable area for that variable. In these 
cases, the new position for those variables is located on 
the boundary of the acceptable area. If this occurs for 
the entire variables, it means that the new position of 
the seeker is totally out of the acceptable area. In this 
case, if the new position is equal to the Varmin of the 
given area (i.e., the lower bound of the considered 
area), formula 2 will be used. If the new position 
equals to the Varmax of the given area (i.e., the upper 
bound of the considered area), formula 3 will be used. 

(2) 
Seeker new =  Varmin  +  (0.75,1)Rand ×

 
(Best 

Seeker1 – Varmin ). 

(3) 
Seeker  new =  Varmax  -  (0.75,1)Rand ×  (Varmax – 
Best Seeker1 ).  

According to these two formulas, when each of these 
seekers is completely out of the solution area, they will 
be positioned close to the best seeker. The values of 
W1 and W2 should be selected in a way that the times 
that the seekers are totally out of the acceptable area 
will be very few. The less this value is, the more 
desirable the obtained results well be. The results show 

that the maximum number of times that this event 
happens should not be more than 25% of the entire 
cases. In the subsidiary loop of the algorithm, for the 
seekers that their performance value has been 
unsuitable, we consider another chance to improve 
their performance. For this purpose, we should firstly 
normalize the performance values of the seekers. This 
action is performed based on formulas 4 and 5 for 
minimization and maximization functions, 
respectively.   

(4) 
| ( ) min( ) |( )

| max( ) min( ) |
fitness i fitnessi

fitness fitness
σ −

=
−  

(5) 
| max( ) ( ) |( )

| max( ) min( ) |
fitness fitness ii

fitness fitness
σ

−
=

−
 

If the normalized value for a seeker’s performance is 
less than our random number between 0 and 1, that 
seeker will have another chance to improve the value 
of its performance by another movement according to 
formula 1. If the seeker’s performance value improves 
after making this movement, the position and 
performance of the seeker will be updated. Obviously, 
the maximum number of times that this event will 
happen should be equal to maximum 25% of the 
number of the seekers in each stage. 

 
  

Main Loop  
Determining the feasible solution space as the chosen 
area.  

Step 1 : 

Dividing the chosen area into na0 sections. Step 2 : 
Allocating the seekers into the areas and performing the 
seeking operation in the subsidiary loop. 

Step 3 : 

Selecting nc0 premier areas as the chosen areas.  Step 4 : 
If the restart condition is met, go to step 1. Step 5 : 
If the stopping condition is met, stop; otherwise, go to 
step 2. 

Step 6 : 

Figure 3. Pseudo code for the main loop SEA. 
 
 

Subsidiary Loop   

Producing random seekers (solutions) and calculating the 
fitness of each one. 

Step 1 : 

If a seeker’s performance is better than Best fitness1, Best 
Seeker1 and Best Seeker1 will be updated.  

Step 2 : 

Shifting each seeker based on formula 1 and calculating 
its performance. 

Step 3 : 

Repeat Step 2 Step 4 : 
Normalizing the solutions performance. Step 5 : 
If rand< ( )iσ  : giving another chance to the seeker (i) to 
improve its performance 

Step 6 : 

if the stopping condition is met, stop; otherwise, go to 
step 3 

Step 7: 

if Best fitness1 better than Best fitness0  update Best 
fitness0 and Best Seeker0 

Step 8: 

Figure 4. Pseudo code for the subsidiary loop SEA  

Best Seeker0 : The best solution found in the entire 
algorithm. 

Best Seeker1 : The best solution found in the 
subsidiary loop. 
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The pseudo-codes for the SEA’s main and 
subsidiary loops are shown in Figures 3 and 4, 
respectively. The most important and main ideas are to 
divide the search space. This procedure avoids 
unnecessary and repetitive searches a lot. In most 
algorithms, an evolutionary process searches a search 
space region many times and useless. This algorithm is 
based on regular and objectively searches. The 
movement searchers is similar to the movement 
solutions in the ICA and PSO algorithms, of course the 
unique feature of this algorithm is dividing the search 
space. 
 
 
3. VALIDATION OF THE SEA  
 
In this section, in order to validate the performance of 
the proposed algorithm, 11 benchmark functions are 
used. The information about this problem is presented 
in Section 3.1. In Section 3.2, some problems are 
utilized to present the efficiency of SEA. In Section 
3.3, a comparison is made between the performance of 
the SEA, CICA3, ICA and OICA. This action is 
repeated for the RGA, GSA and PSO algorithms in 
Section 3.4, and ABS, IBA and HS algorithms in 
Section 3.5, and FA, CS, BA and LFA algorithms in 
Section 3.6. In these sections, the numbers in the tables 
are in this format: 80± 10(100%); which shows the 
average of 80, the standard deviation of 10, and the 
success rate of 100%. In Section 3.7, the disability of 
meta-heuristic algorithms in obtaining an optimal 
solution in some continuous optimization problems has 
been discussed by presenting an example. 
 
3. 1. Benchmark Functions        In order to assess 
the performance of the SEA, several benchmark 
functions are used that the information about tens of 
them is presented in the beginning of this section and 
in Table 1 [21]. In this table, d is the dimension of the 
function. All the functions are of the minimization type 
and the most optimal value for these functions is the 
least one. The optimal solution for each function has 
been also mentioned in this table.  
 
3. 2. Performance of the SEA        In order to display 
the motion trend of the seekers in iterations of the SEA 
and the efficiency of the algorithm, the function F1 is 
used.  Function F1 : 

  0
sin(4 ) 1.1 sin(2 )

0 10 10, ,
minimum: (9.039,8.668) 18.55

 
47

f x

f
y

x y y
x < <

= × + ×
< <

= −

 
(6) 

For this function, the number of seekers is set to 20. 
Moreover, nc0=1, na0=2, maxiter1=10, nv=1, 0α β= =  
and the value for γ  is set to 50 in this case. Actually, 
the “restart” action is not performed for this function. 

The parameters of the algorithm show that one chosen 
area is selected and divided into two parts in each 
stage. The division task is obtained from crushing the 
space of a selected variable. The variable that has the 
widest domain will be crushed. The seeking operation 
in each crushed area is performed in 10 iterations and 
with 10 seekers. 
 
3. 3. A Comparison with ICA, OICA and CICA3     
In order to introduce and evaluate the performance of 
the proposed algorithm, The existing problems in Table 
1 are used, in which the dimension of problems is as 
10, the number of a population is as 30, and the 
maximum times of iteration is as 2000. The number of 
executions to evaluate and compare the performance of 
their considered algorithms is assumed as 100. The 
information in Table 2 for the algorithms CICA3, 
OICA and ICA is obtained from the same study. 

In this study, those four problems with the 
dimension of 10 are used to compare the performance 
of our proposed algorithm. The number of a population 
for the SEA is assumed as 30, the maximum number of 
iterations is as 2000, and 0α β= = . The average 
results from 100 times of the algorithm in addition to 
the parameters’ values for SEA are mentioned in Table 
2. The results show that the SEA has a better 
performance in comparison with other three algorithms 
on an equal basis.  

 
3. 4. A Comparison with RGA, PSO and GSA    
Rashedi et al. [9] used 23 benchmark functions in their 
research in order to introduce and evaluate the 
performance of the GSA algorithm. Among these 
problems, six problems that are also among the 
problems in this study are selected. They set the 
number of population and maximum number of 
iterations equal to 50 and 1000, respectively. The 
average results from execution of the algorithms PSO, 
RGA and GSA for 30 times are demonstrated in Table 
3. For SEA, the number of population is considered as 
40 and maximum times of iterations as 1000. For this 
function, Rosenbrock nc0=1, na0=8, maxiter0=25, 
maxiter1=5, 0α β= = , nv=d and for the other 
functions, we have na0=2, maxiter0=50, nv=d, 
maxiter1=5, 0α β= = , nc0=2. The average of the 
obtained results from 30 times execution of SEA is 
provided in Table 3. 

 
3. 5. A Comparison with HS, IBA and ABS     Akay 
and Karaboga [12] compared the performance of the 
ABS, IBA and HS algorithms. The results exhibit that 
the SEA has a better performance compared with the 
three other algorithms in this section on an equal basis. 
In their study, the available functions are used in Table 
4.  
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TABEL 1. Benchmark functions 

Function name Function Global minimum 
Rosenbrock 1 2 2 2( ) (100( ) ( 1) )11

d
f x x x xi i ii

−
∑= − + −+=

  (1) 0f =
r

 

Sphere 2( )
1

d
f x xii

∑=
=

 (0) 0f =
r

 

Schwefel 
( ) s in ( )

1

d
f x x xi i

i
∑= −
=

   (420.9687) 418.9829f d= −
uuuuuuur

 

Ackley 1 12( ) 20 exp 0.2 exp cos(2 ) (20 )
1 1

d d
f x x x eiid di i

π
   
   = − − − + +∑ ∑
   = =  

 (0) 0f =
r

 

Rastrigin 2( ) 10 10 cos(2 )
1

d
f x d x xi ii

π∑= + −
=

       (0) 0f =
r

 

Easom 2 2( , ) cos( ) cos( ) exp ( ) ( )1 2 1 2 1 2f x x x x x xπ π= − − − − −     ( ) 1f π = −
r

 

Griewank 1 2( ) cos( ) 1
1 14000

dd x if x x ii i i
∑ ∏= − +
= =

  (0) 0f =
r

 

 
 

TABLE 2. Results obtained for the ICA, OICA, CICA3 and SEA and information about some the SEA parameters 
Functions d Interval ICA OICA CICA3 SEA 

f Gri 10 [ ]1 5 0 , 1 5 0
d

x ∈ −  1.03E-10± 8.14E-10 2.36E-12± 1.21E-11 3.47E-14± 5.07E-15 0± 0 

f Ack 10 [ ]3 2 , 3 2
d

x ∈ −  7.11E-5± 8.20E-6 3.34E-6± 4.56E-7 1.02E-7± 1.23E-7 8.87E-14± 1.12E-14 

f Ros 10 [ ]5, 5
d

x ∈ −  0.201± 0.362 0.0535± 0.043 0.0241± 0.021 2.77E-22± 1.49E-21 

f Ras 10 [ ]10,10
d

x ∈ −  1.66E-06± 9.12E-06 1.27E-06± 7.00E-06 9.34E-09± 3.42E-08 7.10E-17± 3.49E-16 

Functions w1 w2 maxiter0 maxiter1 nc0 na0 nv γ  

f Gri 0.5 2 15 10 3 2 d 5 
f Ack 1 1 50 5 2 2 d 50 
f Ros 1 1 50 5 2 2 d 20 
f Ras 0.5 1.5 50 5 2 2 d 20 

 
 
 

TABLE 3. Results obtained for the RGA, PSO, GSA and SEA and information about some the SEA parameters 
Functions d Interval RGA PSO GSA SEA 
f Sph 30 [ ]100,100

d
x ∈ −  23.13 1.8E-03 7.3E-11 1.61E-16 

f Ros 30 [ ]30, 30
d

x ∈ −  
1.1E+03 3.6E+04 25.16 9.58E-28 

f Sch 30 [ ]5 0 0 , 5 0 0
d

x ∈ −  -1.2E+04 -9.8E+03 -2.8E+03 -1.25E+04 

f Ras 30 [ ]5 .12 , 5.12
d

x ∈ −  5.9 55.1 15.32 3.55E-16 

f Ack 30 [ ]32, 32
d

x ∈ −  2.13 9E-03 6.9E-06 1.03E-13 

f Gri 30 [ ]60 0 , 6 00
d

x ∈ −  1.16 0.01 0.29 0 

Functions f Sph f Ros f Sch f Ras f Ack f Gri 

w1 0.5 0.5 1 0.5 1 0.5 
w2 2 0.5 2 1.5 1 1.5 

γ  50 5 50 25 50 50 
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TABLE 4. Results obtained for the HS, IBA, ABC and SEA and information about some the SEA parameters 
Functions d Interval HS IBA ABC SEA 

f Sph 50 [ ]100,100
d

x ∈ −  546.25± 92.69 5.39E-16± 1.07E-16 1.19E-15± 4.68E-16 3.52E-43± 2.83E-44 

f Ros 50 [ ]30, 30
d

x ∈ −  24681± 10212 630.28± 1195.67 4.33± 5.48 5.08E-06± 2.74E-05 

f Ras 50 [ ]5.12, 5.12
d

x ∈ −  37.6± 4.87 271.62± 32.7 0.4723± 0.4923 2.48E-15± 6.1E-15 

f Gri 50 [ ]600, 600
d

x ∈ −  
5.81± 0.9161 134.05± 24.14 0.5721± 0.9216 0± 0 

f Ack 50 [ ]32, 32
d

x ∈ −  5.28± 0.4025 8.43± 7.7 4.38E-8± 4.65E-8 2.66E-15± 0 

 
 

TABLE 5. Results obtained for the CS, FA, LFA, BA and SEA and information about some the SEA parameters 

Functions ns0 w1 w2 maxiter1 γ  β  

f Sph 20 0.5 1.5 5 100 0 

f Sch 12 1 2 3 10 0 

f Ack 12 1 1 3 100 0 

f Eas 20 0.5 2 3 40 1 
 
 

   
Figure 5. 3-D plot of cost function F2 

Functions f Sph f Ros f Ras f Gri f Ack 

w1 1 0.5 0.5 0.5 1 

w2 1 0.5 1.5 2 1 

γ  80 10 25 100 100 

Functions f Sph f Ros f Ras f Gri f Ack 

w1 1 0.5 0.5 0.5 1 

w2 1 0.5 1.5 2 1 

γ  80 10 25 100 100 

Functions d Interval CS FA LFA BA SEA 

f Sph 256 [ ]5.12, 5.12
d

x ∈ −  3015±540 
(100%) 

7217±730 
(100%) 

5657±730 
(100%) 

5273± 490 
(100%) 

1080±50.2 
(100%) 

f Sch 128 [ ]500, 500
d

x ∈ −  
4710±592 

(100%) 
9902±592 

(100%) 
7923±524 

(100%) 
8929± 729 

(99%) 
4230± 291 

(100%) 

f Ack 128 [ ]32.768, 32.768
d

x ∈ −  4936±903 
(100%) 

5293±4920 
(100%) 

4392±2710 
(100%) 

6933± 2317 
(100%) 

4320± 520 
(100%) 

f Eas 2 [ ]2
100,100x ∈ −  6751±1902 

(100%) 
7952±1799 

(100%) 
6082±1690 

(100%) 
7532± 1702 

(99%) 
4536± 2400 

(100%) 
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They considered food sources, d, maximum cycle 
number, and the maximum evaluation number equal to 
20, 5, 2500, and 50000, respectively. The average 
results from 30 times execution of the algorithms are 
provided in Table 4. For the SEA, the number of 
populations, the maximum number of iterations, and 
maximum evaluation number are 20, 1600, and 40000, 
respectively. For all the functions, we considered 
maxiter1=5, 0α β= = , nv=d, maxiter0=80, na0=2, 
nc0=2, and just for the Rosenbrock function, 0.01β = . 
The average results from 30 times execution of the 
SEA are mentioned in Table 4. The results show that 
the proposed SEA has a better performance in 
comparison to other three algorithms in this section on 
an equal basis. 
 
3. 6. A Comparison with CS, FA, LFA and BA   Yang 
and Deb [16] and Yang [17]used a number of test 
problems in their study in order to introduce and 
evaluate the BA, LFA, FA, and CS algorithms. The 
four functions available in Table 5 are selected from 
those problems for comparison in this research. The 
population of solutions for these algorithms is equal to 
40. The numbers in Table 5 shows the times, in which 
the function is evaluated by each algorithm. Each 
algorithm stops whenever the deviation of its 
performance has the tolerances of 510ε −≤ . The 
results obtained from 30 iterations of the algorithms are 
illustrated in Table 5. For the SEA and all the 
problems, 0α = , nc0=2, na0=2, and nv=d. The results 
obtained from 30 executions of the SEA and the 
information about the other parameters are given in 
Table 5. The results show an advantage of the SEA 
compared to other four algorithms. 

  
3. 7. Evolutionary Process of Meta-heuristics 
Although the favourable performance of SEA has been 
shown in previous sections, it cannot be claimed that 
this algorithm has a desirable performance for the 
entire problems. Unlike other continuous algorithms 
that their structures are based on a phenomenon from 
around the world, the structure of SEA is based on the 
seeking space. In all meta-heuristic algorithms, a logic 
is followed. The basis of this logic is that any 
favourable solution leads the algorithm population with 
high probability to a more favourable solution which is 
highly likely that it is close to the same solution. In 
fact, meta-heuristic problems could be efficient in the 
problems in which around the optimal point, there are 
some points with desirable fitness. This trend is 
available in the majority of optimization problems. F2 
is a sample of mathematical problems to present the 
weaknesses of meta-heuristic algorithms. 
Function F2 : 

( )

6

2 6
1

10 5

5 10

d
i

i i

x
f

x −
=

−
=

− +
∑

  
(7) 

0 10ix≤ ≤  ;  minimum  :  ( )5 0f =
r

   

As revealed for two dimensions, the point (5,5) is the 
optimal point of this function with the value zero for 
the objective function and the worst points, in terms of 
the objective function’s value, are around the optimal 
point. The objective function’s value for these points is 

72 10× . The results obtained from execution of this 
function on most of the well-known continuous 
algorithms show that no algorithm even with numerous 
iterations and with high populations can achieve the 
optimal value of this function. Most of the algorithms 
in the end identify one of the 4 points of (5, 0), (0, 5), 
(5, 10), and (10, 5) as the optimal point, which is very 
distant from the optimal point in terms of the objective 
function’s value. The value of the objective function 
for these points is 52 10× . This happens because this 
function has been designed in contrast to the nature and 
structure of the meta-heuristic algorithms. The 
functions in which there are points with poor fitness 
around the optimal point, the algorithms will have 
difficulties to obtain the optimal point. For functions 
like F2, in which the worst points are located exactly 
around the best point, algorithms are unable to find the 
optimal point. If an algorithm is designed that is able to 
have a good performance for this problem, it will 
definitely have difficulties in other continuous 
optimization problems. It is happens because, the 
structure of these two problems is in contrast with each 
other. Therefore, the algorithm will be viable, the one 
which has a favourable performance for both defined 
continuous optimization problems. Fortunately, the 
number of the continuous optimization problems that 
has a similar structure like F2 is very few. Thus, the 
meta-heuristic algorithms are still accounted as the 
appropriate options for solving such problems.   

 
 

4. CONCLUSION 
  

In this study, a new optimization algorithm, namely 
seeker evolutionary algorithm (SEA), was defined 
based on a simple seeking logic. In this algorithm, the 
seeking space was divided into several sections and 
seekers were allocated to each section. After 
performing the seeking operation, some of the best 
regions were selected as the chosen areas. This 
selection was based on the performance of the seeking 
teams in the areas. In the next stage, each chosen area 
was divided into several smaller ones and the seeking 
operation was performed. This trend continued until 
the stop condition was met. In addition, if the restart 
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condition was met, the algorithm restarted its trend 
from the beginning. In fact, this algorithm had been 
constructed based on a purposeful seeking logic. The 
structure of the SEA was in a way that there is a 
balance in the convergence of the solutions towards the 
optimal solution. The results obtained from the 
comparison of the proposed SEA with some other 
algorithms showed the more favourable performance of 
the SEA. Although various examples show the great 
capability of this algorithm, we are unable to claim that 
it has the best performance for all continuous 
optimization problems. In fact, this algorithm can be 
one of the suitable options to obtain the optimal 
solution for these kinds of problems. 
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  چکیده
  

  

 از ،شود لحاظ مسائل در واقعی دنیاي با شباهت بیشترین که است این بر سعی علمی هاي زمینه اکثر در امروزه کهاز آنجایی 
. هستند ناکارآمد سازي بهینه و ریاضی مسائل اکثر حل براي سنتی هاي روش .هستند پیچیده ساختار داراي مسائل اکثر رو این
 معرفی به تحقیق این در. است داشته گیري چشم رشد اخیر هاي سال در ابتکاري فرا هاي الگوریتم از استفاده علت همین به
 گروهی جستجو منطق اساس بر الگوریتم این مبناي. شد خواهد پرداخته پیوسته ریاضی مسائل حل براي جدید الگوریتم یک
 براي.  پردازند می ناحیه آن در جستجو به و شوند می تقسیم قسمت چند به جستجوگرها و جستجو ناحیه منطق این در. است

 مدهآ بدست نتایج. است شده استفاده ها الگوریتم ترین رجوع پر مقالات در موجود هاي مثال از الگوریتم این عملکرد سنجش
 ساختار خلاف بر که است شده طراحی ریاضی مساله یک نیز انتها در. است ها الگوریتم این بر SEA برتري  دهنده نشان

 به قادر کدام هیچ ولی است شده گرفته کار به مساله این حل براي مشهور هاي الگوریتم تمام. است ابتکاري فرا هاي الگوریتم
 .باشند نمی آن حل
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